English
新闻公告
More
化学进展 2009, Vol. 21 Issue (12): 2760-2770 前一篇   

• 综述与评论 •

液体有机氢化物储氢研究进展*

朱刚利; 杨伯伦**   

  1. (西安交通大学化学工程系 动力工程多相流国家重点实验室   西安710049)
  • 收稿日期:2008-11-17 修回日期:2009-01-01 出版日期:2009-12-24 发布日期:2009-12-01
  • 通讯作者: 杨伯伦 E-mail:blunyang@mail.xjtu.edu.cn
  • 基金资助:

    高等学校博士学科点专项科研基金资助课题;973项目;国家自然科学基金

Hydrogen Storage Using Liquid Organic Hydrides

Zhu Gangli;   Yang Bolun**   

  1. (Department of Chemical Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China)
  • Received:2008-11-17 Revised:2009-01-01 Online:2009-12-24 Published:2009-12-01
  • Contact: Yang Bolun E-mail:blunyang@mail.xjtu.edu.cn

液体有机氢化物储氢技术利用不饱和液态芳烃和对应环烷烃之间的加\脱氢反应,不仅可用于长周期的季节性储氢,还可用于远距离输氢,以解决地区间能源分布不均的问题。本文分析了该技术的基本原理和特点,并着重就其中的脱氢反应,从催化剂的开发、催化反应机理以及反应模式等层面,进行了分析讨论。关于催化剂,主要从催化剂的活性组分、颗粒分散度、载体种类、孔结构和表面性质与催化活性、结焦失活和耐硫性之间关系的关系进行了分析。关于反应模式,重点讨论了过热液膜态反应、非稳态脉冲喷射进料反应和膜分离反应等几种有利于改善传热传质条件、打破平衡限制的催化脱氢反应模式。并展望了液体有机氢化物储氢的研究和发展方向。

The hydrogen storage technology based on liquid organic hydrides, which employs the recyclable aromatic-cycloalkanes pairs as the media for hydrogen storage, is definitely a promising potential candidate for hydrogen storage and supply method with high storage capacity and low cost, especially for the long distance transportation of hydrogen and long term seasonal hydrogen storage. This paper reviews the latest research progress in liquid organic hydrides hydrogen storage technology. The basic principles and advantages of the technology as well as several major cycloalkanes used for hydrogen storage are introduced. Various catalysts for dehydrogenation of cycloalkanes are summarized from the following respects: catalyst composition, addition of second metals, particle dispersion, porous structure and surface properties, catalyst deactivation and stability, resistance to sulphur poisoning. Development of new catalytic-reactor configurations such as nonsteady spray-pulsed system, superheated liquid film system and membrane separation reaction system to overcome heat mass transfer limitations are described. And the proposal for future research is also outlined.

Contents
1 Introduction
2 Hydrogen storage using liquid organic hydrides
2.1 Basic principles and features
2.2 Key problems to solve
2.3 Cycloalkanes for hydrogen storage
2.4 Catalysts for dehydrogenation of cycloalkanes
2.5 Catalytic-reactor configurations for effective dehydrogenation
3 Conclusion

中图分类号: 

()

[ 1 ]  丁福臣(Ding F C) , 易玉峰(Yi Y F) . 制氢储氢技术. 北京:化学工业出版社(Beijing : Chemical Industry Press ) , 2006 ,1243 —2471
[ 2 ]  Saito Y. Catalyst and Catalysis , 2001 , 43 (4) : 259 —263
[ 3 ]  Srivastava S , Srivastava O N. Alloy Compd. , 1999 , 290 (1/2) :250 —256
[ 4 ]  Noh J S , Agarwal R K, Schwarz J A. Int . J . Hydrogen Energ. ,1987 , 12 (10) : 693 —700
[ 5 ]  Dillon A C , Jones K M, Bekkedahl T A , et al . Nature , 1997 , 386 :377 —379
[ 6 ]  Tibbetts G G, Meisner G P , Olk C H. Carbon , 2001 , 39 : 2291 —2301
[ 7 ]  孙艳(Sun Y) , 周理( Zhou L) , 苏伟(Su W) 等. 科学通报(Chinese Science Bulletin) ,2007 , 52 (3) : 361 —365
[ 8 ]  Rosi N L , Eckert J , Yaghi O M, et al . Science , 2003 , 300(5622) : 1127 —1129
[ 9 ]  Wong-Foy A G, Matzger A J , Yaghi O M, et al . J . Am. Chem.Soc. , 2006 , 128 (11) : 3494 —3495
[10 ]  Pan L , Sander MB , Li J , et al . J . Am. Chem. Soc. , 2004 , 126(5) , 1308 —1309
[11 ]  潘相敏(Pan XM) , 马建新(Ma J X) . 天然气化工(Natural Gas Chemical Industry) , 2003 , 28 (5) : 51 —55
[12 ]  Wee J H. J . Power Sources , 2006 , 155 (2) : 329 —339
[13 ]  Parmaliana A , Crisafulli C , Maggiore R , et al . React . Kinet .Catal . L. , 1981 , 18 (3P4) :295 —299
[14 ]  Lázaro M P , García-BordejéE , Sebastián D , et al . Catal . Today ,2008 , 138 (3/4) : 203 —209
[15 ]  González-Marcos M P , Iìarra B , Guil J M,et al . Appl . Catal . A-gen. , 2004 , 273 (1P2) : 259 —268
[16 ]  Hodoshima S , Takaiwa S , Shono A , et al . Appl . Catal . A-gen. ,2005 , 283 : 235 —242
[17 ]  Swesi Y, Ronze D , Pitault I , et al . Int . J . Hydrogen Energ. ,2007 , 32 : 5059 —5066
[18 ]  Scherer G W H , Newson E. Int . J . Hydrogen Energ. , 1998 , 23(1) : 19 —25
[19 ]  Scherer GW H , Newson E , Wokaun A. Int . J . Hydrogen Energ. ,1999 , 24 (12) : 1157 —1169
[20 ]  Newson E , Haueter T H , Hottinger P , et al . Int . J . Hydrogen Energ. , 1998 , 23 (10) : 905 —909
[21 ]  Weissermel K, Arpe H J , Hammett L P. Industrial Organic Chemistry. 4th ed. Weinheim: Wiley-VCH , 2003. 313 —337
[22 ]  Biniwale R B , Rayalu S , Devotta S , et al . Int . J . Hydrogen Energ. , 2008 , 33 (1) : 360 —365
[23 ]  Kariya N , Fukuoka A , Ichikawa M. Appl . Catal . A-Gen. , 2002 ,233 (1) : 91 —102
[24 ]  Hodoshima S , Nagata H , Saito Y, et al . Appl . Catal . A-Gen. ,2005 , 292 (18) : 90 —96
[25 ]  Kaiya N , Fukuoka A , Ichikawa M. Appl . Catal . A-Gen. , 2003 ,247 : 247 —259
[26 ]  Hodoshima S , Arai H , Saito Y. Int . J . Hydrogen Energ. , 2003 , 28(2) : 107 —204
[27 ]  Hodoshima S , Hiroshi A , Shigeki T, et al . Int . J . Hydrogen Energ. , 2003 , 28 : 1255 —1262
[28 ]  Pham D T, Tetsuya S , Masahiro M, et al . Fuel Process Technol . ,2008 , 89 (4) : 415 —418
[29 ]  Vázquez-Zavala A , Ostoa-Montes A , Acosta D. Appl . Surf . Sci . ,1998 , 136 : 62 —72
[30 ]  Vê ltera J ,Kürschnera U. Appl . Catal . , 1983 , 8 (2) : 167 —176
[31 ]  Chaouki J , Klvana D. Chem. Eng. Sci . , 1994 , 49 (24) : 4639 —4646
[32 ]  Fujikawa T, Ribeiro F H , Somorjai G A. J . Catal . , 1998 , 178 :58 —65
[33 ]  González-Marcos M P , Iìarra B , Guil J M, et al . Catal . Today ,2005 , 107/108 : 685 —692
[34 ]  Dautzenberg F M, Helle J N , Biloen P. J . Catal . , 1980 , 63 :119 —128
[35 ]  Biloen P , Helle J N , Verbeek H. J . Catal . , 1980 , 63 : 112 —118
[36 ]  Burch R , Garla L C. J . Catal . , 1981 , 71 : 360 —372
[37 ]  Palazov A , Bonev C H , Lietz G, et al . J . Catal . , 1987 , 103 :249 —260
[38 ]  Yolcular S , Olgun O. Catal . Today , 2008 , 138 : 198 —202
[39 ]  Nabarawy T. Adsorpt . Sci . Technol . , 1997 , 15 (1) : 25 —37
[40 ]  Zaki T. Petrol . Sci . Technol . , 2005 , 23 (9P10) : 1163 —1181
[41 ]  Al2Zehour H. Catal . Commun. , 2008 , 9 : 1398 —1403
[42 ]  Onda A , Komatsu K, Yashima T. J . Catal . , 2001 , 201 : 13 —21
[43 ]  袁华军(Yuan H J ) . 浙江大学硕士论文(Master Dissertation of Zhejiang University) , 2004
[44 ]  沈绍辉(Shen S H) . 浙江大学硕士论文(Master Dissertation of Zhejiang University) , 2006
[45 ]  高林辉(Gao L H) . 浙江大学博士论文(Doctoral Dissertation of Zhejiang University) , 2006
[46 ]  高林辉(Gao L H) , 陈长聘(Chen C P) , 张继文(Zhang J W)等. 化工学报(Journal of Chemical Industry and Engineering) ,2004 , 55 : 163 —167
[47 ]  Biniwale R B , Nobuko K, Ichikawa M. Catal . Lett . , 2005 , 105 (1/2) : 83 —87
[48 ]  Patrici R , Fresia O , Gina P. J . Chem. Technol . Biot . , 1994 , 59 :233 —236
[49 ]  Serp P , Corrias M, Kalck P. Appl . Catal . A-Gen. , 2003 , 253(2) : 337 —358
[50 ]  Wang Y G, Shah N , Huffman G P. Energy Fuels , 2004 , 18 (5) :1429 —1433
[51 ]  Wang Y G, Shah N , Huggins F E , et al . Energy Fuels , 2006 , 20(6) : 2612 —2615
[52 ]  Yoshimi O , Eiji S , Watanabe E , et al . Int . J . Hydrogen Energ. ,2006 , 31 : 1348 —1356
[53 ]  Chen A B , Zhang WP , Li X Y, et al . Catal . Lett . , 2007 , 119 (1/2) : 159 —164
[54 ]  陈进富(Chen J F) , 陆绍信(Lu S X) , 朱亚杰(Zhu Y J ) . 燃料化学学报(Journal of Fuel Chemistry and Technology) , 1998 , 26(6) : 543 —547
[55 ]  陈进富(Chen J F) , 俞英(Yu Y) , 蔡卫权(Cai W Q) . 太阳能学报(Acta Energiae Solaris Sinica) , 2002 , 23 (6) : 782 —785
[56 ]  苏君雅(Su J Y) , 丁梅(Ding M) , 杨青(Yang Q) . 石油化工(Petrochemical Technology) , 1996 , 25 (6) : 391 —395
[57 ]  杨继涛(Yang J T) , 郝雪松(Hao X S) , 苏君雅(Su J Y) 等.石油化工(Petrochemical Technology) , 2002 , 31 (12) : 955 —957
[58 ]  杨继涛(Yang J T) , 黄亚茹(Huang Y R) , 苏君雅(Su J Y) 等.石油大学学报(自然科学版) (Journal of China University of Petroleum (Edition of Natural Science) ) , 2003 , 27 (2) : 98 —104
[59 ]  Amano H , Sato S , Takahashi R , et al . Phys. Chem. Chem. Phys. ,2001 , 3 (5) : 873 —879
[60 ]  Reyes P , Pecchi G, Oportus M, et al . Bol . Soc. Chil . Quim. ,1996 , 41 : 173 —179
[61 ]  Reyes P , Fernandez J , Pecchi G, et al . J . Chem. Technol . Biot . ,1998 , 73 : 1 —6
[62 ]  Gates B C , Katzer J R , Schuit G C A. Chemistry of Catalytic Processes. New York : McGraw-Hill , 1979. 184 —324
[63 ]  Saito Y, Aramaki K, Hodoshima S , et al . Chem. Eng. Sci . , 2008 ,63 (20) : 4935 —4941
[64 ]  Zhang L Y,Xu G H ,An L ,et al . Int . J . Hydrogen Energ. , 2006 ,31 : 2250 —2255
[65 ]  Biniwale R B , Yamashiro H , Masaru I. Catal . Lett . , 2005 , 102(1/2) : 23 —31
[66 ]  Biniwale R B , Masaru I. Chem. Eng. Sci . , 2007 , 62 : 7370 —7377
[67 ]  Itoh N , Tamura E , Hara S , et . al . Catal . Today , 2003 , 82 (1/4) :119 —125
[68 ]  Frisch H L , Shahin M, Haoran D N. J . Membrane Sci . , 1999 , 154(1) : 33 —40
[69 ]  Jeong B H , Sotowa K I , Kusakabe K. J . Membrane Sci . , 2003 ,224 (1/2) : 151 —158
[70 ]  Zhao L L , Wang R S. Appl . Surf . Sci . , 2004 , 236 : 217 —222
[71 ]  Tereschenko G F , Ermilova M M, Mordovin V P , et al . Int . J .Hydrogen Energ. , 2007 , 32 (16) : 4016 —4022

[1] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[2] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[3] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[4] 张世亮, 姚淇露, 卢章辉*. 肼硼烷的合成及产氢[J]. 化学进展, 2017, 29(4): 426-434.
[5] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[6] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[7] 李雪, 张伊放, 齐卫宏, 曹晓武, 王渊, 李浩华. 纳米储氢合金[J]. 化学进展, 2013, 25(07): 1122-1130.
[8] 邹勇进, 向翠丽, 邱树君, 褚海亮, 孙立贤*, 徐芬. 纳米限域的储氢材料[J]. 化学进展, 2013, 25(01): 115-121.
[9] 徐叔军, 梁丽芸, 李步怡, 罗亚莉, 刘承美, 谭必恩. 有机微孔聚合物研究进展[J]. 化学进展, 2011, 23(10): 2085-2094.
[10] 段东红 孙彦平. 直接硼氢化物燃料电池(DBFC)阳极材料及反应机理*[J]. 化学进展, 2010, 22(09): 1720-1728.
[11] 杜晓明 李静 吴尔冬. 沸石吸附储氢研究进展[J]. 化学进展, 2010, 22(01): 248-254.
[12] 李采临,陈云贵,吴朝玲,周晶晶,庞丽娟. 金属-碳基储氢材料计算与实验研究* [J]. 化学进展, 2009, 21(6): 1101-1106.
[13] 陈兆旭 黄玉成 李哲 康国俊. 理论化学与新能源*[J]. 化学进展, 2009, 21(11): 2271-2284.
[14] 梁艳 王平 戴洪斌. 硼氢化钠催化水解制氢*[J]. 化学进展, 2009, 21(10): 2219-2228.
[15] 方占召 康向东 王平. 硼氢化锂储氢材料研究* [J]. 化学进展, 2009, 21(10): 2212-2218.
阅读次数
全文


摘要

液体有机氢化物储氢研究进展*