English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1122-1130 DOI: 10.7536/PC121142 前一篇   后一篇

• 综述与评论 •

纳米储氢合金

李雪1, 张伊放1, 齐卫宏1,2,3*, 曹晓武1, 王渊1, 李浩华1   

  1. 1. 中南大学材料科学与工程学院 长沙 410083;
    2. 中南大学粉末冶金国家重点实验室 长沙 410083;
    3. 教育部有色金属材料科学与工程重点实验室 长沙 410083
  • 收稿日期:2012-11-01 修回日期:2013-03-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 齐卫宏 E-mail:qiwh216@csu.edu.cn
  • 基金资助:

    湖南省自然科学基金项目(No.13JJ1002)、 中南大学“升华学者”专项和湖南省高校科技创新团队项目资助

Hydrogen Storage Nanoalloys

Li Xue1, Zhang Yifang1, Qi Weihong1,2,3*, Cao Xiaowu1, Wang Yuan1, Li Haohua1   

  1. 1. School of Materials Science and Engineering, Central South University, Changsha, 410083, China;
    2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083;
    3. Key Laboratory of Non-Ferrous Materials Science and Engineering, Ministry of Education, Changsha 410083, China
  • Received:2012-11-01 Revised:2013-03-01 Online:2013-07-25 Published:2013-04-16

作为一种新型的清洁能源,氢能在日益严峻的能源危机中越来越重要。纳米储氢合金因其优异的性能,被认为是下一代重要的储氢材料。本文介绍了储氢合金的原理、储氢合金的动力学和热力学以及各种储氢材料性能。基于储氢合金的最新研究进展,本文综述了提高纳米合金储氢性能的措施、纳米储氢合金的制备方法及其优缺点,进一步探讨了影响纳米合金储氢性能的因素,对储氢合金的进一步发展进行了展望。

Hydrogen energy, as a new kind of clean energy, is getting increasingly important in the energy crisis in recent decades. Nanoalloys show great foreground because of their extraordinary properties in different fields of subjects. The hydrogen storage nanoalloys have been regarded as one of the most important hydrogen storage materials. In this review, we introduce the principle of the hydrogen storage nanoalloys and properties of different kinds of hydrogen storage materials, which offer guidance from the point of view of thermodynamics and kinetics. Three methods to improve the hydrogen storage are discussed, namely alloying, non-crystallizing, and nanocrystallization. Then several preparation methods of hydrogen storage nanoalloys are reviewed with brief introduction of their advantages and disadvantages, where we pay more attention to the three methods, i.e., the mechanical disintegration/alloying, gaseous coacervation and cluster beam deposition. Furthermore, the factors affecting the properties of hydrogen storage alloy, such as structure, component and size, are discussed. In the end, we prospect the future of hydrogen storage materials. Contents
1 Introduction
2 Principle of hydrogen storage nanoalloys
3 Properties of different kinds of hydrogen storage materials
4 Methods to improve the hydrogen storage
4.1 Alloying
4.2 Non-crystallizing
4.3 Nanocrystallization
5 Preparation methods
5.1 Mechanical disintegration/alloying method
5.2 Gaseous coacervation method
5.3 Cluster beam deposition method
5.4 Preparation of composite alloys
5.5 Other methods
6 Factors affecting hydrogen storage
6.1 Structure
6.2 Component
7 Conclusions and outlook

中图分类号: 

()

[1] Luo W, Ronnebro E. Journal of Alloys and Compounds, 2005, 404/406: 392-395
[2] 朱相丽(Zhu X L). 新材料产业(Advanced Materials Industry), 2007, (3): 54-60
[3] 卢国俭(Lu G J), 周仕学(Zhou S X), 姜瑶遥(Jiang Y Y), 雷桂芹(Lei G Q), 吴峻青(Wu J Q), 杨敏建(Yang M J). 材料导报( Materials Review), 2007, 21(3): 86-89
[4] 叶素云(Ye S Y), 朱敏(Zhu M). 自然科学进展(Progress in Natural Science), 2007, 17(8): 1105-1113
[5] Züttel A. Materials Today, 2003, 6(9): 24-33
[6] Schlapbach L, Züttel A. Nature, 2001, 414: 353-358
[7] 熊义富(Xiong Y F), 敬文勇(Jing W Y), 张义涛(Zhang Y T). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2007, 36(1): 138-140
[8] 王宏(Wang H), 刘祖岩(Liu Z Y). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2004, 33(3): 239-241
[9] Schur D V, Zaginaichenko S Y, Matysina Z A, Smityukh I, Pishuk V K. Journal of Alloys And Compounds, 2002, 330: 70-75
[10] Alekseeva O, Padurets L, Parshin P, Shilov A. Russian Journal of Inorganic Chemistry, 2007, 52(1): 29-33
[11] Guo J, Wei W L, Ma S Y. Journal of Alloys and Compounds, 2004, 372(1/2): 136-140
[12] Grochala W, Edwards P P. Chemical Reviews, 2004, 104: 1283-1315
[13] Aguey-Zinsou K F, Ares-Fernández J R. Energy & Environmental Science, 2010, (3): 526-543
[14] Hamilton C W, Baker R T, Staubitzc A, Manners I. Chemical Society Reviews, 2009, 38: 279-293
[15] Dompablo M, Ceder G. Journal of Alloys and Compounds, 2004, 364: 6-12
[16] Orimo S, Nakamori Y, Jennifer R E. Chemical Reviews, 2007, 107: 41l1-4132
[17] Au M, Spencer W, Jurgensen A, Zeigler C. Journal of Alloys and Compounds, 2008, 462(1): 303-309
[18] Nakamori Y, Miwa K, Ninomiya A, Li H W, Ohba N, Towata S, Züttel A, Orimo S. Physical Reviews B, 2006, 74(4): art. no. 045126
[19] Li Y, Zhou G, Fang F, Yu X, Zhang Q, Ouyang L, Zhu M, Sun D. Acta Materialia, 2011, 59(4): 1829-l838
[20] Vajo J J, Mertens F, Ahn C C, Bowman R C, Fultz B. Journal of Physical Chemistry C, 2004, 108(37): 13977-13983
[21] 邹勇进(Zou Y J), 向翠丽(Xiang C L), 邱树君(Qiu S J), 诸海亮(Zhu H L), 孙立贤(Sun L X), 徐芬(Xu F). 化学进展(Progress in Chemistry), 2013, 25(1): 115-121
[22] 任建伟(Ren J W), 廖世军(Liao S J), 刘军民(Liu J M). 科学通报(Chinese Science Bulletin), 2006, 51(21): 2481-2484
[23] 任建伟(Ren J W), 廖世军(Liao S J), 刘军民(Liu J M). 科学通报(Chinese Science Bulletin), 2007, 52(14): 1620-1624
[24] Koyabashi H, Yamauchi M, Kitagava H, Kubota Y, Kato K, Takata M. Journal of the American Chemical Society, 2010, 132(16): 55-76
[25] Ding Y, Fan F, Tian Z, Wang Z L. Journal of the American Chemical Society, 2010, 132 (35): 12480-12486
[26] Lebon A, García-Fuente A, Vega A, Aguilera-Granja F. Physical Reviews B, 2011, 83: art. no. 125427
[27] 贾志华(Jia Z H), 马光(Ma G), 李银蛾(Li Y E), 王轶(Wang Y). 钛工业进展(Titanium Industry Progress), 2005, 22( 6) : 28-33
[28] 肖学章(Xiao X Z), 陈立新(Chen L X), 刘广成(Liu G C), 王爽(Wang S), 李寿权(Li S Q), 王新华(Wang X H), 陈长聘(Chen C P). 西安交通大学学报(Journal of Xi’an Jiaotong University), 2007, 41(11): 1368-1372
[29] Schleich D M, Walter B. Nanostructured Materials, 1997, 8(5): 579-586
[30] Orimo S, Fuji H. Intermetallics, 1998, 6(3): 185-192
[31] Jung C B, Kim J H, Lee K S. Nanostructured Materials, 1997, 8(8): 1093-1104
[32] Bryden K J, Ying J Y. Journal of Membrane Science, 2002, 203(1/2): 29-42
[33] Tanaka K, Kanda Y, Furuhashi M, Saito K, Kuroda K, Saka H. Journal of Alloys and Compounds, 1999, 293: 521-525
[34] 韦建军(Wei J J), 王朝阳(Wang C Y), 唐永建(Tang Y J), 吴卫东(Wu W D), 吴栋(Wu D). 原子能科学技术(Atomic Energy Science and Technology), 2008, 42(9): 790-793
[35] 马建丽(Ma J L), 王艳(Wang Y), 陶占良(Tao Z J), 陈军(Chen J). 高等学校化学学报(Chemical Journal of Chinese Universities ), 2012, 33(3): 536-540
[36] 彭成红(Peng C H), 欧阳柳章(Ouyang L Z), 朱敏(Zhu M). 机械工程材料(Materials for Mechanical Engineering), 2010, 34(9): 82-86
[37] Lei Y Q, Wu Y M, Yang Q M, Wu J, Wang Q D. Zeitschrift für Physikalische Chemie, 1994, 183: 379-384
[38] Yang Q M, Lei Y Q, Chen C P, Wu J, Wang Q D, Lu G L, Chen L S. Zeitschrift für Physikalische Chemie, 1994, 183: 141-147
[39] Shu K Y, Lei Y Q, Yang X G, Zhang S K, Chen L S, Lu G L, Wang Q D. Journal of Alloys and Compounds, 2003, 349: 237-241
[40] Aoyagi H, Aoki K, Masumoto T. Journal of Alloys and Compounds, 1995, 231: 804-809
[41] Hout J, Akiba E, Takada T. Journal of Alloys and Compounds, 1995, 231: 815-819
[42] Iwakura C, Nohara S, Inoue H, Fukumoto Y. Chemical Communications, 1996, (15): 1831-1832
[43] Orimo S, Fuji H. Intermetallics, 1998, 6(3): 185-192
[44] 蒋利军(Jiang L J), 李谦(Li Q), 林勤(Lin Q), 周国治(Zhou G Z), 詹锋(Zhan F), 郑强(Zheng Q), 杜军(Du J), 尉秀英(Wei X Y), 李法兵(Li F B), 王树茂(Wang S M). CN 03149652.0, 2003
[45] Gleiter H. Progress in Material Science, 1989, 33: 223-315
[46] Barborini E, Piseri P, Mutti S, Milani P, Biasioli F, Iannotta S, Gialanella S. Nanostructured Materials, 1998, 6 (10): 1023-1031
[47] Zaluski L, Zaluska A, Tessier P, Strm-Olsen J O, Schulz R. Journal of Alloys and Compounds 1995, 217: 295-300
[48] 陈伟(Chen W), 李慎兰(Li S L), 罗刚(Luo G). 原子能科学技术(Atomic Energy Science and Technology), 2010, 44(8): 920-925
[49] 周仕学(Zhou S X), 杨敏建(Yang M J), 马怀营(Ma H Y), 张同环(Zhang T H), 张光伟(Zhang G W), 山东科技大学学报(Journal of Shandong University of Science and Technology), 2009, 28(5): 54-80
[50] 郝春成(Hao C C), 张志琨(Zhang Z K), 崔作林(Cui Z L). 青岛化工学院学报(Journal of Qingdao Institute of Chemical Technology), 1995, 17(3): 301-302
[51] 许炜(Xu W), 陶占良(Tao Z L), 陈军(Chen J). 化学进展(Progress in Chemistry), 2006, 18(2/3): 200-210
[52] Vons V A, Leegwater H, Legerstee W J, Eijt S W H, Schmidt-Ott A. International Journal of Hydrogen Energy, 2010, 35: 5479-5489
[53] Rather S, Zacharia R, Hwang S W, Naik M, Nahm K S. Chemical Physics Letters, 2007, 438: 78-84
[54] Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M. Journal of the American Chemical Society, 2008, 130: 1818-1819
[55] 周怀营(Zhou H Y), 倪成员(Ni C Y), 王仲民(Wang Z M), 颜瑞(Yan R), 王殿辉(Wang D H). 桂林电子科技大学学报(Journal of Guilin University of Electronic Technology), 2010, 30(5): 363-373
[56] Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M. Journal of the American Chemical Society, 2010, 132: 5576-5577
[57] Kobayashi H, Yamauchi M, Ikeda R, Kitagewa H. The Royal Society of Chemistry, 2009, 4806-4808
[58] Orimo S, Fujii H. International Journal of Hydrogen Energy, 1999, 24(9): 933-937
[59] Yang J, Ciureanu M, Roberge R. Journal of Alloys and Compounds, 1999, 287(1/2): 251-255
[60] Kusada K, Yamauchi M, Kobayashi H, Kitagawa H, Kubbota Y. Journal of the American Chemical Societv, 2010, 132(45): 1589-1598
[61] 刘永锋(Liu Y F), 李超(Li C), 高明霞(Gao M X), 潘洪革(Pan H G). 自然杂志(Chinese Journal of Nature), 2011, 1(33): 19-26
[62] Liu C S, An H, Zeng Z. Physical Chemistry Chemical Physics, 2011, 13: 2323-2327

[1] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[2] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[3] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[4] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[5] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[6] 张世亮, 姚淇露, 卢章辉*. 肼硼烷的合成及产氢[J]. 化学进展, 2017, 29(4): 426-434.
[7] 赵冲, 徐芬*, 孙立贤*, 范明慧, 邹勇进, 褚海亮. 铝基材料水解制氢技术[J]. 化学进展, 2016, 28(12): 1870-1879.
[8] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[9] 王诚, 王树博, 张剑波, 李建秋, 王建龙, 欧阳明高. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435.
[10] 王诚, 王树博, 张剑波, 李建秋, 欧阳明高, 王建龙. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(2/3): 310-320.
[11] 徐叔军, 梁丽芸, 李步怡, 罗亚莉, 刘承美, 谭必恩. 有机微孔聚合物研究进展[J]. 化学进展, 2011, 23(10): 2085-2094.
[12] 何非, 彭冉冉, 杨上峰. 质子型可逆固体氧化物电池的材料与反应机理[J]. 化学进展, 2011, 23(0203): 477-486.
[13] 段东红 孙彦平. 直接硼氢化物燃料电池(DBFC)阳极材料及反应机理*[J]. 化学进展, 2010, 22(09): 1720-1728.
[14] 陈兆旭 黄玉成 李哲 康国俊. 理论化学与新能源*[J]. 化学进展, 2009, 21(11): 2271-2284.
[15] 方占召 康向东 王平. 硼氢化锂储氢材料研究* [J]. 化学进展, 2009, 21(10): 2212-2218.
阅读次数
全文


摘要

纳米储氢合金