English
新闻公告
More
化学进展 2017, Vol. 29 Issue (2/3): 231-240 DOI: 10.7536/PC161012 前一篇   后一篇

• 综述 •

液态锂资源提锂的吸附材料及性能

张文1*, 牟英炘1, 赵颂1, 解利昕1, 王宇新1, 陈靖2   

  1. 1. 天津大学化工学院 天津市膜科学与海水淡化重点实验室 化学工程联合国家重点实验室 天津 300350;
    2. 清华大学核能与新能源技术研究院 先进核能技术协同创新中心 北京 102201
  • 收稿日期:2016-10-11 修回日期:2016-12-16 出版日期:2017-02-15 发布日期:2017-04-10
  • 通讯作者: 张文 E-mail:zhang_wen@tju.edu.cn.
  • 基金资助:
    国家自然科学基金项目(No.U1430234),天津市自然科学基金项目(No.16JCQNJC06000)和国家科技支撑计划项目(No.2015BAB10B00)资助

Adsorption Materials for Lithium Ion from Brine Resources and Their Performances

Wen Zhang1*, Yingxin Mou1, Song Zhao1, Lixin Xie1, Yuxin Wang1, Jing Chen2   

  1. 1. Key Laboratory of Membrane Science & Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Tianjin University, Tianjin 300350, China;
    2. Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Technology, Tsinghua University, Beijing 102201, China
  • Received:2016-10-11 Revised:2016-12-16 Online:2017-02-15 Published:2017-04-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.U1430234), the Science and Technology Program of Tianjin (No.16JCQNJC06000) and the National Key Technology Support Program(No. 2015BAB10B00).
锂是重要的能源金属,从盐湖和海水卤水等液态锂资源中提锂,是获取锂资源的重要方向。吸附法适合从低浓度大体积的液相中选择性提取锂离子,而吸附材料是吸附提锂的核心。本文从吸附材料的类别出发,对吸附材料的最新研究进展进行综述,包括天然矿石和碳材料、无机锂离子筛(锰系、钛系锂离子筛)及成型方法、有机配体(冠醚、杯芳烃、磷酸酯等)复合吸附材料和材料的基体选择等内容,分析了各类吸附材料的提锂机理和吸附性能,为研究新型提锂吸附剂、开发新的吸附分离体系、克服吸附法的缺点和推动吸附技术在液态锂资源提取领域的发展提供参考。
Lithium is a very important metal resource for lithium-ion batteries and nuclear industries. With the fast-growing market demand for lithium, the focus of lithium extraction technologies has shifted to aqueous lithium resources, such as seawater and salt lake brine. Adsorption method has been recognized as one of the most suitable technologies for recovery of lithium from aqueous resources. The present paper reviews the development of the adsorption materials of lithium ion comprehensively, including the inorganic adsorbents (the natural ores, carbon materials, Mn or Ti lithium ion-sieves and their forming techniques) and organic composite adsorbents. The organic ligand functional groups (crown ether, calixarene and phosphate) for lithium ion adsorption, and their bonded matrixs are also summarized. The adsorption mechanism, adsorption capacity and selectivity of dififferent adsorption materials are compared. This paper provides a reference for developing of novel adsorption materials and separation systems to extract lithium ion from aqueous brine resources.

Contents
1 Introduction
2 Inorganic materials for adsorption of lithium
2.1 Natural ores and carbon materials
2.2 Lithium ion sieves
2.3 Lithium ion sieves composite materials
3 Composite materials for adsorption of lithium
3.1 Organo-functional groups of composite materials
3.2 Matrixes of composite materials
3.3 Composite materials with lithium ion imprinting technology
4 Conclusion

中图分类号: 

()
[1] 高峰(Gao F), 郑绵平(Zhen M P), 乜贞(Nie Z), 刘建华(Liu J H), 宋彭生(Song P S). 地球学报(Acta Geoscientica Sinica), 2011, 32:483.
[2] 张宝全(Zhang B Q). 海湖盐与化工(Sea-Lake Salt and Chemical Industry), 2000, 29:9.
[3] Diallo M S, Kotte M R, Cho M. Environmental Science & Technology, 2015, 49:9390.
[4] Mehta V C. Google Patents, 1988.
[5] 杨建元(Yang J Y), 程温莹(Cheng W Y),张勇(Zhang Y),邓元龙(Deng Y L). 矿物岩石(Journal of Mineralogy and Petrology), 1995, 15:81.
[6] Du X, Guan G Q, Li X M, Jagadale A D, Ma X L, Wang Z D, Hao X G, Abudula A. Journal of Materials Chemistry A, 2016, 36, 13989.
[7] Ryu T, Lee D H, Ryu J C, Shin J, Chung K S, Kim Y H. Hydrometallurgy, 2015, 151:78.
[8] Hoshino T. Desalination, 2015, 359:59.
[9] Hano T, Matsumoto M, Ohtake T, Egashir N, Hori F. Solvent Extraction and Ion Exchange, 1992, 10:195.
[10] Gao D, Guo Y, Yu X, Wang S, Deng T. Journal of Chemical Engineering of Japan, 2016, 49:104.
[11] Shi C, Jing Y, Jia Y. Journal of Molecular Liquids, 2016, 215:640.
[12] Chitrakar R, Makita Y, Ooi K, Sonoda A. Industrial & Engineering Chemistry Research, 2014, 53:3682.
[13] Meshram P, Pandey B D, Mankhand T R. Hydrometallurgy, 2014, 150:192.
[14] Lemaire J, Svecova L, Lagallarde F, Laucournet R, Thivel P X. Hydrometallurgy, 2014, 143:1.
[15] Ji L M, Hu Y H, Li L J, Shi D, Li J F, Nie F, Song F G, Zeng Z M, Sun W, Liu Z Q. Hydrometallurgy, 2016, 162:71.
[16] Li H F, Li L J, Shi D, Li J F, Ji L M, Peng X W, Song F G, Nie F, Zeng Z M, Song X X. Chemistry Letters, 2015, 44:987.
[17] Ageev V, Solovev S. Surface Science, 2001, 480:1.
[18] Krischok S, Schaefer J, Höfft O, Kempter V. Surface and interface analysis, 2005, 37:83.
[19] Gong L, Wang R, Xia Z, Chen C. Journal of Chemical & Engineering Data, 2010, 55:2920.
[20] Kim J, Nielsen U G, Grey C P. Journal of the American Chemical Society, 2008, 130:1285.
[21] Kim J, Grey C P. Chemistry of Materials, 2010, 22:5453.
[22] Jeong J M, Rhee K Y, Park S J. Journal of Industrial and Engineering Chemistry, 2015, 27:329.
[23] 徐顺福(Xu S F). 中国海洋大学博士论文(Doctoral Dissertation of Ocean University of China), 2011.
[24] 刘维慧(Liu W H). 中国海洋大学博士论文(Doctoral Dissertation of Ocean University of China), 2014.
[25] Ooi K, Miyai Y, Katoh S, Maeda H, Abe M. Langmuir, 1990, 6:289.
[26] Feng Q, Miyai Y, Kanoh H, Ooi K. Langmuir, 1992, 8:1861.
[27] Ooi K, Miyai Y, Sakakihara J. Langmuir, 1991, 7:1167.
[28] Zhang Q H, Li S P, Sun S Y, Yin X S, Yu J G. Chemical Engineering Science, 2010, 65:169.
[29] Liu L, Zhang H, Zhang Y, Cao D, Zhao X. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 468:280.
[30] 王禄(Wang L), 马伟(Ma W), 韩梅(Han M), 孟长功(Meng C G). 化学学报(Acta Chimica Sinica), 2007, 65:1135.
[31] Li L, Qu W, Liu F, Zhao T, Zhang X, Chen R, Wu F. Applied Surface Science, 2014, 315:59.
[32] 董殿权(Dong D Q), 刘维娜(Liu W N), 刘亦凡(Liu Y F). 物理化学学报(Acta Physico-Chimica Sinica), 2009, 7:006.
[33] Xiao J, Nie X, Sun S, Song X, Li P, Yu J. Advanced Powder Technology, 2015, 26:589.
[34] 马立文(Ma L W), 陈白珍(Chen B Z), 石西昌(Shi X C), 冯大伟(Feng D W). 无机化学学报(Chin. J. Inorg. Chem.), 2011, 27:697.
[35] 惠许(Hui X), 陈昌国(Chen C G), 宋应华(Song Y H). 无机材料学报(J. Inorg. Mater.), 2013, 28:720.
[36] 孙淑英(Sun S Y), 张钦辉(Zhang Q H), 于建国(Yu J G). 无机材料学报(J. Inorg. Mater.), 2010, 25:626.
[37] Zhang Q H, Li S P, Sun S Y, Yin X S, Yu J G. Advanced Powder Technology, 2009, 20:432.
[38] 陆红岩(Lu H Y), 杨立新(Yang L X), 邬赛祥(Wu S X), 张令君(Zhang L J), 周礼(Zhou L), 刘肖丽(Liu X L). 高等学校化学学报(Chem. J. Chinese U.), 2011, 32:2268.
[39] Zandevakili S, Ranjbar M, Ehteshamzadeh M. IET Micro & Nano Letters, 2015, 10:58.
[40] Zhang L, Zhou D, Yao Q, Zhou J. Applied Surface Science, 2016, 368:82.
[41] Shi X C, Zhang Z B, Zhou D F, Zhang L F, Chen B Z, Yu L L. Transactions of Nonferrous Metals Society of China, 2013, 23:253.
[42] Moazeni M, Hajipour H, Askari M, Nusheh M. Materials Research Bulletin, 2015, 61:70.
[43] 董殿权(Dong D Q), 毕参参(Bi C C), 李晶(Li J), 胡哓瑜(Hu X Y), 林润雄(Lin R X). 无机化学学报(Chinese J.Inorg. Chem.), 2012, 28:1423.
[44] Tomita Y, Yonekura H, Kobayashi K. Bulletin of the Chemical Society of Japan, 2002, 75:2253.
[45] Tian L, Ma W, Han M. Chemical Engineering Journal, 2010, 156:134.
[46] Chitrakar R, Makita Y, Ooi K, Sonoda A. Bulletin of the Chemical Society of Japan, 2013, 86:850.
[47] 朱晓龙(Zhu X L). 青岛科技大学硕士论文(Mater Dissertation of Qingdao University of Science and Technology), 2013.
[48] Lee S Y, Park S J. RSC Advances, 2014, 4:21899.
[49] Wang L, Ma W, Liu R, Li H Y, Meng C G. Solid State Ionics, 2006, 177:1421.
[50] Zandevakili S, Ranjbar M, Ehteshamzadeh M. IET Micro & Nano Letters, 2014, 9:455.
[51] Nugroho A, Kim S J, Chung K Y, Cho B W, Lee Y W, Kim J. Electrochemistry Communications, 2011, 13:650.
[52] Zhang L, He G, Zhou D, Zhou J, Yao Q. Ionics, 2016:1.
[53] Zhang L, Zhou D, He G, Wang F, Zhou J. Materials Letters, 2014, 135:206.
[54] Kim J, Oh S, Kwak S Y. Chemical Engineering Journal, 2015, 281:541.
[55] 解利昕(Xie L X), 陈小棉(Chen X M). 膜科学与技术(Membrane Science and Technology), 2013, 33:103.
[56] Zhu G, Wang P, Qi P, Gao C. Chemical Engineering Journal, 2014, 235:340.
[57] Park M J, Nisola G M, Vivas E L, Limjuco L A, Lawagon C P, Seo J G, Kim H, Shon H K, Chung W J. Journal of Membrane Science, 2016, 510:141.
[58] Park M J, Nisola G M, Beltran A B, Torrejos R E C, Seo J G, Lee S P, Kim H, Chung W J. Chemical Engineering Journal, 2014, 254:73.
[59] Hong H J, Park I S, Ryu T, Ryu J, Kim B G, Chung K S. Chemical Engineering Journal, 2013, 234:16.
[60] Xiao J L, Sun S Y, Song X, Li P, Yu J G. Chemical Engineering Journal, 2015, 279:659.
[61] Xiao G, Tong K, Zhou L, Xiao J, Sun S, Li P, Yu J. Industrial & Engineering Chemistry Research, 2012, 51:10921.
[62] Han Y, Kim H, Park J. Chemical Engineering Journal, 2012, 210:482.
[63] Hong H J, Park I S, Ryu J, Ryu T, Kim B G, Chung K S. Chemical Engineering Journal, 2015, 271:71.
[64] Hwang C W, Park S G, Hwang T S. Macromolecular Research, 2015, 23:313.
[65] Ma L W, Chen B Z, Chen Y, Shi X C. Microporous and Mesoporous Materials, 2011, 142:147.
[66] De S, Ali S M, Shenoi M, Ghosh S K, Maity D K. Desalination and Water Treatment, 2009, 12:93.
[67] Boda A, Ali S M, Rao H, Ghosh S K. Journal of Molecular Modeling, 2012, 18:3507.
[68] Valente M, Sousa S F, Magalhães A L, Freire C. Journal of Solution Chemistry, 2010, 39:1230.
[69] Hashemi B, Shamsipur M, Seyedzadeh Z. New Journal of Chemistry, 2016, 40:4803.
[70] Alexandratos S D, Stine C L, Sachleben R A, Moyer B A. Polymer, 2005, 46:6347.
[71] Luo X, Guo B, Luo J, Deng F, Zhang S, Luo S, Crittenden J. ACS Sustainable Chemistry & Engineering, 2015, 3:460.
[72] Torrejos R E C, Nisola G M, Park M J, Shon H K, Seo J G, Koo S, Chung W J. Chemical Engineering Journal, 2015, 264:89.
[73] Park S S, Moorthy M S, Song H J, Ha C S. Journal of Nanoscience and Nanotechnology, 2014, 14:8845.
[74] Dixit S S, Shashidhar M S, Devaraj S. Tetrahedron, 2006, 62:4360.
[75] Burgard M, Yaftian M R, Jeunesse C, Bagatin I, Matt D. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 38:413.
[76] Yaftian M R, Vahedpour M, Abdollahi H, Jeunesse C, Matt D. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 47:129.
[77] Lukin O, Vysotsky M O, Kalchenko V I. Journal of Physical Organic Chemistry, 2001, 14:468.
[78] 徐光宪(Xu G X), 王文清(Wang W Q), 吴瑾光(Wu J G), 高宏成(Gao H C), 施鼐(Shi N). 上海科技出版社(Shanghai Scientific & Technical Publishers), 1984, 1:60.
[79] 朱慎林(Zhu S L), 朴香兰(Piao X L). 清华大学学报:自然科学版(Journal of Tsinghua Umiversity(Science and Technology)), 2000, 40:47.
[80] Zhou Z, Qin W, Chu Y, Fei W. Chemical Engineering Science, 2013, 101:577.
[81] Zhong Z, Qin W,Fei W Y, Li Y G. Chinese Journal of Chemical Engineering, 2012, 20:36.
[82] Hankins M G, Hayashita T, Kasprzyk S P, Bartsch R A. Analytical Chemistry, 1996, 68:2811.
[83] Zhou W, Sun X L, Gu L, Bao F F, Xu X X, Pang C Y, Gu Z G, Li Z. Journal of Radioanalytical and Nuclear Chemistry, 2014, 300:843.
[1] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[4] 张冀宁, 曹爽, 胡文平, 朴玲钰. 光电催化海水分解制氢[J]. 化学进展, 2020, 32(9): 1376-1385.
[5] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[6] 张茜, 任其龙, 杨亦文, 邢华斌, 苏宝根, 鲍宗必. 硼吸附材料及其性能[J]. 化学进展, 2015, 27(1): 125-134.
[7] 刘广山. 海洋放射化学[J]. 化学进展, 2011, 23(7): 1558-1565.
[8] 朱利中,陈宝梁. 膨润土吸附材料在有机污染控制中的应用*[J]. 化学进展, 2009, 21(0203): 420-429.
[9] 吴礼光,周勇,张林,陈欢林,高从堦. 反渗透复合膜功能材料研究进展[J]. 化学进展, 2008, 20(0708): 1216-1221.