中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (6): 942-953 DOI: 10.7536/PC160113 Previous Articles   Next Articles

• Review and comments •

Bifunctional Catalysts of Methanol Catalytic Conversion to Dimethoxymethane and Methyl Formate

Liu Huanjun, Gao Tengfei, Shi Da, Liu Jian, Ji Shengfu*   

  1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21573015).
PDF ( 1121 ) Cited
Export

EndNote

Ris

BibTeX

Methanol is a kind of important basic chemical raw material. With the increase of global methanol production capacity, the catalytic conversion of methanol to methanol downstream high value-added downstream products is very important. The bifunctional catalysts for one-step oxidation of methanol to dimethoxymethane (DMM) and methyl formate (MF) with high value-added are very useful and have received considerable attention. In this paper, the recent applications of bifunctional catalysts for one-step oxidation of methanol to DMM and MF in recent are reviewed and summarized. The catalysis of bifunctional catalysts and the distribution of the products, especially the precious metal catalysts, metal oxide catalysts and heteropolyacid catalysts are carefully analyzed in order to provide a wide range of references for the catalytic conversion of methanol through synthesis step process of DMM and MF.

Contents
1 Introduction
2 The bifunctional catalysts for one-step catalytic conversion of methanol to DMM
2.1 The precious metal catalysts
2.2 The metal oxide catalysts
2.3 The supported heteropoly acid catalysts
3 The bifunctional catalysts for one-step synthesis of methyl formate from methanol
3.1 The precious metal catalysts
3.2 The metal oxide catalysts
4 Conclusion and outlook

CLC Number: 

[1] 张丽平(Zhang L P).天然气化工(Natural Gas Chemical Industry), 2013, 38(1): 89.
[2] 武建斌(Wu J B),吴志伟(Wu Z W), 王瑞义(Wang R Y), 师瑞萍(Shi R P), 秦张峰(Qin Z F), 朱华青(Zhu H Q), 董梅(Dong M), 樊卫斌(Fan W B), 王建国(Wang J G).燃料化学学报(Journal of Fuel Chemistry and Technology), 2015, 43(7): 816.
[3] 彭必先(Peng B X), 甘昌胜(Gan C S), 闫天堂(Yan T T).化学进展(Progress in Chemistry), 2004, 16(3): 414.
[4] 王玉和(Wang Y H), 贺德华(He D H), 徐柏庆(Xu B Q).化学进展(Progress in Chemistry), 2003, 15(3): 215.
[5] 宋一兵(Song Y B), 罗爱国(Luo A G), 杜玉海(Du Y H), 方奕文(Fang Y W).化学进展(Progress in Chemistry),2008, 20(23): 221.
[6] 穆仕芳(Mu S F), 尚如静(Shang R J), 魏灵朝(Wei L C), 蒋元力(Jiang Y L).现代化工(Modern Chemical Industry), 2011, 31(5): 11.
[7] 李美兰(Li M L), 邓志勇(Deng Z Y), 翟刚(Zhai G).天然气化工(Natural Gas Chemical Industry), 2014, 39(6): 82.
[8] 付鹏(Fu P), 谢璇(Xie X), 李永刚(Li Y G), 邢海军(Xing H J), 宁春利(Ning C L), 张春雷(Zhang C L).化学世界(Chemical World), 2013, 15(6): 380.
[9] Liu H C, Iglesia E J. Phys. Chem. B, 2005, 109: 2155.
[10] 陈文龙(Chen W L), 刘海超(Liu H C).化学反应工程与工艺(Chemical Engineering and Technology), 2013, 29(5): 462.
[11] Li M L, Long Y, Deng Z Y, Zhang H, Yang X G, Wang G Y. Catal. Commu., 2015, 68: 46.
[12] 曹虎(Cao H), 郑岩(Zheng Y), 马珺(Ma J), 李军平(Li J P), 赵宁(Zhao N), 王秀芝(Wang X Z), 魏伟(Wei W), 董满祥(Dong M X), 孙予罕(Sun Y H), 张启同(Zhang Q T).燃料化学学报(Journal of Fuel Chemistry and Technology), 2007, 35(3): 334.
[13] 李欢(Li H), 李军平(Li J P), 肖福魁(Xiao F K), 魏伟(Wei W), 孙予罕(Sun Y H).燃料化学学报(Journal of Fuel Chemistry and Technology), 2009, 37(5): 613.
[14] Yuan Y Z, Liu H C, Imoto H, Shido T, Iwasawa Y. J. Catal., 2000,195: 51.
[15] 袁友珠(Yuan Y Z), 曹为(Cao W), 蔡启瑞(Cai Q R).高等学校化学学报(Chemical Journal of Chinese Universities), 2002, 23(5): 902.
[16] Secordel X, Tougerti A, Cristol S, Dujardin C, Blanck D, MorinJ C, Capron M, Mamede A S, Paul J F, Languille M A, Berrier E C R. Comptes Rendus Chimie, 2014, 17: 808.
[17] Olesya A N, Mickaël C,Fang G, Faye J, Mamede A S. J. Catal., 2011, 279: 310.
[18] Zhan E S, Li Y, Liu J L, Huang X M, Shen W J. Catal. Commun., 2009, 10: 2051.
[19] Lu X L, Qin Z F, Dong M, Zhu H Q, Wang G F, Zhao Y B, Fan W B. Fuel, 2011, 90: 1335.
[20] Chen S, Wang S P, Ma X B, Gong G L. Chem. Commun., 2011, 47: 9345.
[21] He L, Liu H C, Xiao C X, Kou Y. Green Chem., 2008, 10: 619.
[22] Guo Y L, Lu G Z, Mo X H, Wang Y S. Catal. Lett., 2005, 99: 105.
[23] Wojcieszak R, Gaigneaux M, Ruiz P. ChemCatChem., 2013, 5: 339.
[24] Wojcieszak R, Karelovic A, Gaigneaux E M, Ruiz P. Catal. Sci. Technol., 2014, 4: 3298.
[25] Wittstock A, Zielasek V, Biener J, Friend C M, Bäumer M. Science, 2010, 327: 319.
[26] Whiting S A, Kondrat S A, Hammond C, Dimitratos N, He Q, Morgan D J, Dummer N F, Bartley J K, Kiely C J, Taylor S H, Hutchings G J. ACS Catal., 2015, 5: 637.
[27] 武建斌(Wu J B), 王辉(Wang H), 秦张峰(Qin Z F), 吴志伟(Wu Z W), 黄礼春(Huang L C), 赵启(Zhao Q), 王建国(Wang J G).燃料化学学报(Journal of Fuel Chemistry and Technology), 2011, 39(2): 64.
[28] Zhao Y B, Qin Z F, Wang G F, Dong M, Huang L C, Wu Z W, Fan W B, Wang J G. Fuel, 2013,104: 22.
[29] 张胜红(Zhang S H), 张鸿鹏(Zhang H P), 李为臻(Li W Z), 张伟(Zhang W), 黄华(Huang H), 刘海超(Liu H C). 物理化学学报(Acta Physico-Chimica Sinica), 2010, 26: 1879.
[30] Li W Z, Liu H C, Iglesia E. J. Phys. Chem. B, 2006, 110: 23337.
[31] Yuan Y Z, Iwasawa Y. J. Phys. Chem. B, 2002, 106: 4441.
[32] Secordel X, Berrier E, Capron M, Cristol S, Paul J F, Fournier M. Catal. Today, 2010, 155: 177.
[33] 刘鹏(Liu P), 邓志勇(Deng Z Y), 杨先贵(Yang X G), 姚洁(Yao J), 胡静(Hu J), 王公应(Wang G Y). 天然气化工(C 化学与化工)(Natural Gas Chemical Industry), 2013, 38(6):16.
[34] Guo H Q, Li D B, Jiang D, Li W H, Sun Y H. Catal. Lett., 2010, 135: 48.
[35] Guo H Q, Li D B, Chen C B, Jia L T, Hou B. RSC Adv., 2015, 5: 64202.
[36] Guo H Q, Li D B, Jiang D, Li W H, Sun Y H. Catal. Commun., 2010, 11: 396.
[37] Guo H Q, Chen C B, Xiao Y, Wang J G, Fan Z H, Li D B, Sun Y H. Fuel Process Tech., 2013, 106: 77.
[38] Liu J W, Fu Y C, Sun Q, Shen G Y. Micro. Meso. Materials, 2008, 116: 614.
[39] 郭荷芹(Guo H Q), 李德宝(Li D B), 陈从标(Chen C B), 范志宏(Fan Z H), 孙予罕(Sun Y H). 催化学报(Chinese Journal of Catalysis), 2012, 33(5): 813.
[40] Liu J W, Sun Q, Fu Y C, Zhao H Y, Auroux A, Shen J Y. Catal. Lett., 2008, 126: 155.
[41] Zhao H, Bennici S, Shen J, Auroux A. J. Mol. Catal. A, 2009, 309: 28.
[42] Zhao H, Bennici S, Shen J, Auroux A. J. Therm. Anal. Calorim., 2010, 99: 843.
[43] Zhao H, Bennici S, Cai J, Shen J, Auroux A. Catal. Today, 2010, 152: 70.
[44] Zhao H Y, Bennici S, Cai J X, Shen J, Auroux L. J. Catal., 2010, 274: 259.
[45] Zhao H Y, Bennici S, Shen J Y, Shen J, Auroux A. Appl. Catal. A: Gen., 2010, 385: 224.
[46] Zhao H Y, Bennici S, Shen J Y, Shen J, Auroux A. J. Catal., 2010, 272: 176.
[47] Fan Z H, Guo H Q, Fang K G, Sun Y H. RSC Adv., 2015, 5: 24795.
[48] Chen S, Meng Y L, Zhao Y J, Ma X B, Gong J L. AIChE J., 2013, 59: 2587.
[49] Meng Y L, Wang T, Chen S, Zhao Y J, Ma X B, Gong J L. Appl. Catal. B: Envir., 2014,161: 161.
[50] Faye J, Capron M, Takahashi A, Pau S, Katryniok B, Fujitani T, Dumeignil F. Energy Sci. & Eng., 2015, 3: 115.
[51] Gornay J, Sécordel X, Tesquet G, Menorval B, Cristol S, Fongarland P, Capron M, Duhamel L, Payen E, Dubois J L, Dumeignil F. Green Chem., 2010,12: 1722.
[52] Thavornprasert K A, Capron M, Jalowiecki-Duhamel L, Gardoll O, Trentesaux M, Mamede A S, Fang G, Faye J, Touati N, Vezin H, Dubois J L, Couturier J L, Dumeignil F. Appl. Catal. B: Envir., 2014, 145: 126.
[53] 郭荷芹(Guo H Q), 李德宝(Li D B), 姜东(Jiang D), 李文怀(Li W H), 孙予罕(Sun Y H).天然气化工(Natural Gas Chemical Industry), 2010, 35(2): 1.
[54] Prado N T, Nogueria F G E, Nogueira A E, Nunes C A, Diniz R, Oliveira L C A. Energy Fuels, 2010, 24: 4793.
[55] Golinska-Mazwa H, Decyk P, Ziolek M. J. Catal., 2011, 284: 109.
[56] Deshlahra P, Carr R T, Chai S H, Iglesia E. ACS Catal., 2015, 5: 666.
[57] Liu H C, Bayat N, Iglesia E. Angew. Chem. Int. Ed., 2003, 42: 5072.
[58] Guo H Q, Li D B, Xiao H C, Zhang J L, Li W H, Sun Y H. Kor. J. Chem. Eng., 2009, 26: 902.
[59] Hvolbæk B, Janssens T V, Clausen B S, Falsig H, Christensen C H, Norsknov J K. Nano Today, 2007, 2: 14.
[60] Tenney S A, Cagg B A, Levine M S, He W, Manandhar K, Chen D A. Surf. Sci., 2012, 606: 1233.
[61] Zhang Q F, Li Y K, Zhang L, Chen L, Liu Y. J. Catal., 2014, 317: 54.
[62] Xu B J, Siler C G F, Madix R J, Friend C M. Chem. Eur. J., 2014, 20: 4646.
[63] Han C H, Yang X Z, Gao G J, Wang J, Lu H L, Liu J, Tong M, Liang X Y. Green Chem., 2014, 16: 3603.
[64] Yang Z, Li J, Yang X G, Wu W. Catal. Lett., 2005, 100: 205.
[65] Whiting S A, Kondrat S A, Hammond C, Dimitratos N, He Q, Morgan D J, Dummer N F, Bartley J K, Kiely C J, Taylor S H, Hutchings G J. ACS Catal., 2015, 5: 637.
[66] 施瑞萍(Shi R P), 王辉(Wang H), 朱华青(Zhu H Q), 吴志伟(Wu Z W), 秦张峰(Qin Z F), 樊卫斌(Fan W B), 王建国(Wang J G).燃料化学学报(Journal of Fuel Chemistry and Technology), 2012, 40(8): 985.
[67] Wang R Y, Wu Z W, Chen C M, Qin Z M, Zhu H Q, Wang G F, Wang H, Wu C M, Dong W W, Fan W B, Wang G J. Chem. Commun., 2013, 49: 8250.
[68] Lichtenberger J, Lee D, Iglesia E. Phys. Chem. Chem. Phys., 2007, 9: 4902.
[69] Wojcieszak R, Ghazzal M N, Gaigneaux E M, Ruiz P. Catal. Sci. Tech., 2014, 4: 738.
[70] Lee K J, Min S H, Jang J. Small, 2010, 6: 2378.
[71] Merte L R, Ahmadi M, Behafarid F, Ono L K, Lira E, Matos J, Li L, Yang J C, Cuenya B R. ACS Catal.,2013, 3: 1460.
[72] Lu Z P, Gao D Z, Yin H B, Wang A L, Liu S X. J. Ind. Eng. Chem., 2015, 31: 301.
[73] Liu J, Han C H, Yang X Z, Gao G J, Shi Q Q, Min Tong, Liang X Y, Li C F. J. Catal., 2016, 333: 162.
[74] Valente N G, Arrúa L A, Cadús L E. Appl. Catal. A, 2001, 205: 201.
[75] Wang J B, Cheng J Y, Wang C,Yang S X, Zhu W P. Catal. Commun., 2013, 41: 1.
[76] Over H. Chem. Rev., 2012,112: 3356.
[77] 李为臻(Li W Z), 刘海超(Liu H C). 催化学报(Chinese Journal of Catalysis), 2006, 27(10): 840.
[78] Li W Z, Zhang H P, He X H, Liu H C. J. Energy Chem., 2013,22: 512.
[79] Huang H, Li W Z, Liu H C. Catal. Today, 2012,183: 58.
[80] Liu J L, Zhan E S, Cai W J, Li J, Shen W J. Catal. Lett., 2008, 120: 274.
[81] Kaichev V V, Popova G Y, Chesalov Y A, Saraev A A, Zemlyanov D Y, Beloshapkin S A, Knop-Gericke A, Schlogl R, AndrushkevichT V, Bukhtiyarov V I. J. Catal., 2014, 311: 59.
[1] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[2] Yuan Zhengqiu, Long Jinxing, Zhang Xinghua, Xia Ying, Wang Tiejun, Ma Longlong. Catalytic Conversion of Lignocellulose into Energy Platform Chemicals [J]. Progress in Chemistry, 2016, 28(1): 103-110.
[3] Lin Ling, Zhu Qing, Xu Anwu. Anode Catalysts and Cathode Catalysts of Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2015, 27(9): 1147-1157.
[4] Chen Zhaoxu, Huang Yucheng, He Xiang. Theoretical Study of the Mechanism of Methanol Steam Reforming over Pd/ZnO [J]. Progress in Chemistry, 2012, 24(06): 873-878.
[5] Wang Xindong, Xie Xiaofeng, Wang Meng, Liu Guicheng, Miao Ruiying, Wang Yituo, Yan Qun. Critical Materials and Technology in Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2011, 23(0203): 509-519.
[6] . Pt-Based Electrocatalyst Materials [J]. Progress in Chemistry, 2010, 22(05): 852-860.
[7] . Applications of Supercritical Methanol in Chemical Reactions [J]. Progress in Chemistry, 2010, 22(05): 796-802.
[8] . Methanol-Blocking Perfluorosulfonic Acid Composite Membranes in Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2010, 22(0203): 522-536.
[9] Zhao Dongjiang Yin Geping Wei Jie. Non-platinum Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells [J]. Progress in Chemistry, 2009, 21(12): 2753-2759.
[10] Yu Xianbo Liu Ye Yang Yongrong Wang Jingdai. Mechanisms of Methanol-to-Olefin Reaction [J]. Progress in Chemistry, 2009, 21(09): 1757-1762.
[11] Suo Chunguang Liu Xiaowei Zhang Yufeng Zhang Bo Zhang Peng Wang Luwen. Development of Membrane Electrode Assembly for Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2009, 21(0708): 1662-1671.
[12] Wang Rongrong Jin Baoduo Li Chunwen Wang Ze Xie Xiaofeng Ding Qingqing. Methanol Concentration Control Strategies for Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2009, 21(0708): 1655-1661.
[13]

Qi Liang, Xie Xiaofeng**, Jin Baoduo, Guo Jianwei, Xu Jingming

. AC Impedance Spectroscopy in DMFC diagnosis [J]. Progress in Chemistry, 2008, 20(12): 2083-2092.
[14]

Song Yibing|Luo Aiguo|Du Yuhai|Fang Yiwen

. Synthesis of Dimethyl Carbonate by Direct Vapor-phase Oxycarbonylation of Methanol [J]. Progress in Chemistry, 2008, 20(0203): 221-226.
[15] Tang Zhicheng 1,2,Lv Gongxuan1**. Anode Electrocatalysts for Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2007, 19(9): 1301-1312.