中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (2): 206-218 DOI: 10.7536/PC220705 Previous Articles   Next Articles

• Review •

Helical Motion of Active Artificial Swimmers

Jing Wang1, Haodi Yu1, Junkun Wang1, Ling Yuan1, Lin Ren2(), Qingyu Gao1()   

  1. 1 School of Chemical Engineering and Technology, China University of Mining and Technology,Xuzhou 221116, China
    2 College of Chemistry and Materials Engineering, Institute of New Materials and Industrial Technologies, Wenzhou University,Wenzhou 325035, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: rlin1981@163.com (Lin Ren); gaoqy@cumt.edu.cn (Qingyu Gao)
  • Supported by:
    National Natural Science Foundation of China(22120102001); National Natural Science Foundation of China(21972165)
Richhtml ( 28 ) PDF ( 165 ) Cited
Export

EndNote

Ris

BibTeX

Helical motion can be observed on all length scales, which affects a variety of life processes, including biological reproduction, foraging, locating favorable environments and detecting nutrient gradients. The development of artificial swimmers that can perform helical motions not only has a wide range of applications and improves our understanding of the laws and mechanisms of biological swimmers' motions, but also contributes to the design of novel robots and improves the efficiency of robotic motions. In this paper, we first summarize artificial swimmers that can perform helical motions in artificial systems designed by using the rotation and flapping of microbial flagella/cilia as an inspiration source. Then diverse artificial swimmers that perform helical motions in recent years are introduced by different sources of driving force. Finally, the unresolved questions and prospect are tentatively presented in this field.

Contents

1 Introduction

2 Helical motion and bionic design of biological swimmers

2.1 Flagella-driven swimmers

2.2 Cilia-driven swimmers

3 Driving forces and motion control of helical motion of artificial swimmers

3.1 Helical motion driven by external physical fields

3.2 Helical motion driven by interfacial/surface tension force

3.3 Helical motion driven by chemical force

4 Conclusion and outlook

Fig.1 Helical motion of biological swimmers. (a, b) Motility of organisms with a single flagellum;(c, d) Motility of organisms with a periplasmic flagellum
Fig.2 Bionic artificial swimmers inspired by biological swimmers[30,32??? ~36]
Fig.3 Cilia-driven biological movement. (a) Biological swimmers;(b) Bionic ciliates;(i) and (ii) are the magnetic drive schematic diagram of the bionic ciliates; (iii) motion trajectory[47]
Fig.4 ICEP driven-helical motion of artificial swimmers: (a) spherical type[7];(b) ellipsoidal type[56]
Fig.5 Motion behavior of swimmers at different electric field frequencies. (a) The effect of electric field frequency on the direction of motion;(b) Real-time images of the swimmer's motion at different electric field frequency[52]
Fig.6 Magnetic field-driven kinematic behavior of swimmers: (a) Motion of micro wheel driven by rotating magnetic field[58]; (b) Motion of asymmetric swimming body driven by magnetic field[59]
Fig.7 Light-driven kinematic behavior of swimmers: (a) Light-induced ion diffusion electrophoresis driving the motion of AgCl-Janus particles[63]; (b) Light-induced diffusion permeation flow driving the motion of SiO2 particles[64]
Fig.8 Ultrasound field-driven kinematic behavior of swimmers. (a) Ultrasound field-driven helical trajectories of chiral colloidal particles[66];(b) Ultrasound field-driven multiple kinematic modes of metallic microrods[67]
Fig.9 Helical motion of camphor flakes.(a) Trajectory diagram of the motion of the camphor sheet at t = 9.5 s;(b) Clockwise rotation, counterclockwise rotation and translational motion of the camphor sheet[41]
Fig.10 Temperature-controlled shifts in the trajectory of artificial swimmers. The trajectory of the liquid crystal droplet (nematic) at a temperature of 34 ℃ is shown as a solid line;the trajectory of the liquid crystal droplet (isotropic) at a temperature of 37 ℃ is shown as a dashed line[71]
Fig.11 Light induced helical trajectory reversal of droplets[72]
Fig.12 Spiral motion of L-particles. (a) Plot of the trajectories of L+ and L- particles in 1 minute[79];(b) Experimental trajectories of L-particles at the same inclination angle with increasing light intensity[13]
Fig.13 Motion of Janus particles. (a) Self-diffusion swimming drives Janus particle motion;(b, c) Self-electrophoresis driven Janus particle motion[85?~87]
Fig.14 Spiral wave-driven BZ droplet motion. (a) Experimental image;(b) The trajectory of the droplet center[90]
Fig.15 Spiral waves-driven helical motion of rectangular PAAm BZ self-oscillating gel. (a, b) Experimental trajectory;(c, d) Simulated trajectory[102]
[1]
Ramaswamy S. Annu. Rev. Condens. Matter Phys., 2010, 1: 323.

doi: 10.1146/conmatphys.2010.1.issue-1
[2]
Nakane D, Sato K, Wada H, McBride M J, Nakayama K. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(27): 11145.

doi: 10.1073/pnas.1219753110
[3]
Herschlag G, Miller L. J. Theor. Biol., 2011, 285(1): 84.

doi: 10.1016/j.jtbi.2011.05.035 pmid: 21669208
[4]
Franks N R, Worley A, Grant K A J, Gorman A R, Vizard V, Plackett H, Doran C, Gamble M L, Stumpe M C, Sendova-Franks A B. Proc. R. Soc. B, 2016, 283(1825): 20152946.

doi: 10.1098/rspb.2015.2946
[5]
Bunea A I, Taboryski R. Micromachines, 2020, 11(12): 1048.

doi: 10.3390/mi11121048
[6]
Bente K, Codutti A, Bachmann F, Faivre D. Small, 2018, 14(29): 1704374.

doi: 10.1002/smll.v14.29
[7]
Lee J G, Brooks A M, Shelton W A, Bishop K J M, Bharti B. Nat. Commun., 2019, 10: 2575.

doi: 10.1038/s41467-019-10579-1
[8]
Purcell E M. Am. J. Phys., 1977, 45(1): 3.

doi: 10.1119/1.10903
[9]
Hyon Y, Marcos, Powers T R, Stocker R, Fu H C. J. Fluid Mech., 2012, 705: 58.

doi: 10.1017/jfm.2012.217
[10]
Koens L, Zhang H, Moeller M, Mourran A, Lauga E. Eur. Phys. J. E, 2018, 41(10): 119.

doi: 10.1140/epje/i2018-11728-2
[11]
Crenshaw H C. Am. Zool., 1996, 36(6): 608.

doi: 10.1093/icb/36.6.608
[12]
Chen Y, Lordi N, Taylor M, Pak O S. Phys. Rev. E, 2020, 102(4): 043111.

doi: 10.1103/PhysRevE.102.043111
[13]
ten Hagen B, Kümmel F, Wittkowski R, Takagi D, Löwen H, Bechinger C. Nat. Commun., 2014, 5: 4829.

doi: 10.1038/ncomms5829
[14]
Nelson B J, Kaliakatsos I K, Abbott J J. Annu. Rev. Biomed. Eng., 2010, 12: 55.

doi: 10.1146/bioeng.2010.12.issue-1
[15]
Ye H, Wang Y, Xu D D, Liu X J, Liu S M, Ma X. Appl. Mater. Today, 2021, 23: 101007.
[16]
Jennings H S. Am. Nat., 1901, 35(413): 369.

doi: 10.1086/277922
[17]
Crenshaw H C. Biophys. J., 1989, 56(5): 1029.

pmid: 2636879
[18]
Elgeti J, Winkler R G, Gompper G. Rep. Prog. Phys., 2015, 78(5): 056601.

doi: 10.1088/0034-4885/78/5/056601
[19]
Wheeler R J. PLoS Comput. Biol., 2017, 13(1): e1005353.
[20]
Ebrahimi N, Bi C, Cappelleri D J, Ciuti G, Conn A T, Faivre D, Jafari A. Adv. Funct. Mater., 2021, 31: 2005137.

doi: 10.1002/adfm.v31.11
[21]
Noselli G, Beran A, Arroyo M, DeSimone A. Nat. Phys., 2019, 15(5): 496.

doi: 10.1038/s41567-019-0425-8
[22]
Kudo S, Imai N, Nishitoba M, Sugiyama S, Magariyama Y. FEMS Microbiol. Lett., 2005, 242(2): 221.

doi: 10.1016/j.femsle.2004.11.007
[23]
Cicconofri G, Noselli G, DeSimone A. eLife, 2021, 10: 58610.
[24]
Tsang A C H, Lam A T, Riedel-Kruse I H. Nat. Phys., 2018, 14(12): 1216.

doi: 10.1038/s41567-018-0277-7
[25]
Leifson E. J. Bacteriol., 1951, 62(4): 377.

doi: 10.1128/jb.62.4.377-389.1951
[26]
Leifson E, Hugh R. J. Bacteriol., 1953, 65(3): 263.

doi: 10.1128/jb.65.3.263-271.1953
[27]
DiLuzio W R, Turner L, Mayer M, Garstecki P, Weibel D B, Berg H C, Whitesides G M. Nature, 2005, 435(7046): 1271.

doi: 10.1038/nature03660
[28]
Darnton N C, Turner L, Rojevsky S, Berg H C. J. Bacteriol., 2007, 189(5): 1756.

doi: 10.1128/JB.01501-06
[29]
Altindal T, Xie L, Wu X L. Biophys. J., 2011, 100(1): 32.

doi: 10.1016/j.bpj.2010.11.029 pmid: 21190654
[30]
Zhang L, Abbott J J, Dong L X, Kratochvil B E, Bell D, Nelson B J. Appl. Phys. Lett., 2009, 94(6): 064107.

doi: 10.1063/1.3079655
[31]
Zhang L, Abbott J J, Dong L X, Peyer K E, Kratochvil B E, Zhang H X, Bergeles C, Nelson B J. Nano Lett., 2009, 9(10): 3663.

doi: 10.1021/nl901869j pmid: 19824709
[32]
Ghosh A, Fischer P. Nano Lett., 2009, 9(6): 2243.

doi: 10.1021/nl900186w
[33]
Dreyfus R, Baudry J, Roper M L, Fermigier M, Stone H A, Bibette J. Nature, 2005, 437(7060): 862.

doi: 10.1038/nature04090
[34]
Gong D, Cai J, Celi N E, Feng L, Jiang Y G, Zhang D Y. J. Magn. Magn. Mater., 2018, 468: 148.

doi: 10.1016/j.jmmm.2018.08.001
[35]
Khalil I S M, Tabak A F, Hamed Y, Mitwally M E, Tawakol M, Klingner A, Sitti M. Adv. Sci., 2018, 5(2): 1700461.

doi: 10.1002/advs.201700461
[36]
Ceylan H, Yasa I C, Yasa O, Tabak A F, Giltinan J, Sitti M. ACS Nano, 2019, 13(3): 3353.

doi: 10.1021/acsnano.8b09233 pmid: 30742410
[37]
Medina-Sánchez M, Schmidt O G. Nature, 2017, 545(7655): 406.

doi: 10.1038/545406a
[38]
Dusenbery D B. Living at micro scale: the unexpected physics of being small. Cambridge, 2009.
[39]
Behkam B, Sitti M. Appl. Phys. Lett., 2008, 93(22): 223901.

doi: 10.1063/1.3040318
[40]
Magdanz V, Medina-Sánchez M, Schwarz L, Xu H F, Elgeti J, Schmidt O G. Adv. Mater., 2017, 29(24): 1606301.

doi: 10.1002/adma.201606301
[41]
Nakata S, Iguchi Y, Ose S, Kuboyama M, Ishii T, Yoshikawa K. Langmuir, 1997, 13(16): 4454.

doi: 10.1021/la970196p
[42]
Carlsen R W, Sitti M. Small, 2014, 10(19): 3831.

doi: 10.1002/smll.201400384 pmid: 24895215
[43]
Meng F L, Matsunaga D, Yeomans J M, Golestanian R. Soft Matter, 2019, 15(19): 3864.

doi: 10.1039/C8SM02561D
[44]
Blake J R, Sleigh M A. Biol. Rev., 1974, 49(1): 85.

pmid: 4206625
[45]
Omori T, Ito H, Ishikawa T. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(48): 30201.

doi: 10.1073/pnas.2011146117
[46]
Marumo A, Yamagishi M, Yajima J. Commun. Biol., 2021, 4: 1209.

doi: 10.1038/s42003-021-02756-0
[47]
Kim S, Lee S, Lee J, Nelson B J, Zhang L, Choi H. Sci. Rep., 2016, 6: 30713.

doi: 10.1038/srep30713
[48]
Sareh S, Rossiter J, Conn A, Drescher K, Goldstein R E. J. R. Soc. Interface., 2013, 10(78): 20120666.

doi: 10.1098/rsif.2012.0666
[49]
Verburg T, Schaap A, Zhang S Z, Toonder J, Wang Y. Biotechnol. Bioeng., 2021, 118(7): 2472.

doi: 10.1002/bit.27756 pmid: 33738795
[50]
Pal M, Dasgupta D, Somalwar N, Reshma V R, Tiwari M, Teja D, Narayana S M, Katke A, Jayshree R S, Bhat R, Saini D K, Ghosh A. J. Phys.: Condens. Matter, 2020, 32(22): 224001.
[51]
Dasgupta D, Pally D, Saini D K, Bhat R, Ghosh A. Angew. Chem. Int. Ed., 2020, 59(52): 23690.

doi: 10.1002/anie.v59.52
[52]
Zhuang R C, Zhou D K, Chang X C, Mo Y, Zhang G Y, Li L Q. Appl. Mater. Today, 2022, 26: 101314.
[53]
Boymelgreen A, Yossifon G, Miloh T. Langmuir, 2016, 32(37): 9540.

doi: 10.1021/acs.langmuir.6b01758 pmid: 27611819
[54]
Bazant M Z, Squires T M. Phys. Rev. Lett., 2004, 92(6): 066101.

doi: 10.1103/PhysRevLett.92.066101
[55]
Kilic M S, Bazant M Z. Electrophoresis, 2011, 32(5): 614.

doi: 10.1002/elps.v32.5
[56]
Lee J G, Al Harraq A, Bishop K J M, Bharti B. J. Phys. Chem. B, 2021, 125(16): 4232.

doi: 10.1021/acs.jpcb.1c01644
[57]
Lum G Z, Ye Z, Dong X G, Marvi H, Erin O, Hu W Q, Sitti M. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(41): E6007.
[58]
Tasci T O, Disharoon D, Schoeman R M, Rana K, Herson P S, Marr D W M, Neeves K B. Small, 2017, 13(36): 1700954.

doi: 10.1002/smll.v13.36
[59]
Mohanty S, Jin Q R, Furtado G P, Ghosh A, Pahapale G, Khalil I S M, Gracias D H, Misra S. Adv. Intell. Syst., 2020, 2(9): 2000064.

doi: 10.1002/aisy.v2.9
[60]
Soto F, Karshalev E, Zhang F Y, Esteban Fernandez de Avila B, Nourhani A, Wang J. Chem. Rev., 2022, 122(5): 5365.

doi: 10.1021/acs.chemrev.0c00999
[61]
Chen X Z, Jang B, Ahmed D, Hu C Z, De Marco C, Hoop M, Mushtaq F, Nelson B J, PanÉ S. Adv. Mater., 2018, 30(15): 1705061.

doi: 10.1002/adma.v30.15
[62]
Guix M, Weiz S M, Schmidt O G, Medina-Sánchez M. Part. Part. Syst. Charact., 2018, 35(2): 1700382.

doi: 10.1002/ppsc.v35.2
[63]
Zhou C, Zhang H P, Tang J Y, Wang W. Langmuir, 2018, 34(10): 3289.

doi: 10.1021/acs.langmuir.7b04301
[64]
Feldmann D, Arya P, Lomadze N, Kopyshev A, Santer S. Appl. Phys. Lett., 2019, 115(26): 263701.

doi: 10.1063/1.5129238
[65]
Tu Y F, Peng F, Wilson D A. Adv. Mater., 2017, 29(39): 1701970.

doi: 10.1002/adma.v29.39
[66]
Sabrina S, Tasinkevych M, Ahmed S, Brooks A M, Olvera de la Cruz M, Mallouk T E, Bishop K J M. ACS Nano, 2018, 12(3): 2939.

doi: 10.1021/acsnano.8b00525 pmid: 29547265
[67]
Zhou C, Zhao L L, Wei M S, Wang W. ACS Nano, 2017, 11(12): 12668.

doi: 10.1021/acsnano.7b07183
[68]
Morozov M, Michelin S. Soft Matter, 2019, 15(39): 7814.

doi: 10.1039/c9sm01076a pmid: 31517379
[69]
Kraft D J, Wittkowski R ten Hagen B, Edmond K V, Pine D J, Löwen H. Phys. Rev. E, 2013, 88(5): 050301.

doi: 10.1103/PhysRevE.88.050301
[70]
Lodish H, Berk A, Kaiser C A, Kaiser C, Krieger M, Scott M P, Matsudaira P. Molecular Cell Biology. Macmillan, 2008.
[71]
Krüger C, Klös G, Bahr C, Maass C C. Phys. Rev. Lett., 2016, 117(4): 048003.

doi: 10.1103/PhysRevLett.117.048003
[72]
Yamamoto T, Sano M. Soft Matter, 2017, 13(18): 3328.

doi: 10.1039/c7sm00337d pmid: 28421224
[73]
Lancia F, Yamamoto T, Ryabchun A, Yamaguchi T, Sano M, Katsonis N. Nat. Commun., 2019, 10: 5238.

doi: 10.1038/s41467-019-13201-6
[74]
Yamamoto T, Sano M. Phys. Rev. E, 2019, 99(2): 022704.

doi: 10.1103/PhysRevE.99.022704
[75]
Yabunaka S, Ohta T, Yoshinaga N. J. Chem. Phys., 2012, 136(7): 074904.

doi: 10.1063/1.3685805
[76]
Yoshinaga N, Nagai K H, Sumino Y, Kitahata H. Phys. Rev. E, 2012, 86: 016108.

doi: 10.1103/PhysRevE.86.016108
[77]
Yamamoto T, Sano M. Phys. Rev. E, 2018, 97: 012607.

doi: 10.1103/PhysRevE.97.012607
[78]
Lohse D, Zhang X H. Nat. Rev. Phys., 2020, 2(8): 426.

doi: 10.1038/s42254-020-0199-z
[79]
Kümmel F ten Hagen B, Wittkowski R, Buttinoni I, Eichhorn R, Volpe G, Löwen H, Bechinger C. Phys. Rev. Lett., 2013, 110(19): 198302.

doi: 10.1103/PhysRevLett.110.198302
[80]
Mijalkov M, Volpe G. Soft Matter, 2013, 9(28): 6376.

doi: 10.1039/c3sm27923e
[81]
Paxton W F, Kistler K C, Olmeda C C, Sen A, St Angelo S K, Cao Y Y, Mallouk T E, Lammert P E, Crespi V H. J. Am. Chem. Soc., 2004, 126(41): 13424.

doi: 10.1021/ja047697z
[82]
Zhang J, Grzybowski B A, Granick S. Langmuir, 2017, 33(28): 6964.

doi: 10.1021/acs.langmuir.7b01123 pmid: 28678499
[83]
Archer R J, Campbell A I, Ebbens S J. Soft Matter, 2015, 11(34): 6872.

doi: 10.1039/c5sm01323b pmid: 26234424
[84]
Palagi S, Fischer P. Nat. Rev. Mater., 2018, 3(6): 113.

doi: 10.1038/s41578-018-0016-9
[85]
Campbell A I, Wittkowski R ten Hagen B, Löwen H, Ebbens S J. J. Chem. Phys., 2017, 147(8): 084905.

doi: 10.1063/1.4998605
[86]
Paxton W F, Baker P T, Kline T R, Wang Y, Mallouk T E, Sen A. J. Am. Chem. Soc., 2006, 128(46): 14881.

doi: 10.1021/ja0643164
[87]
Du S N, Wang H G, Zhou C, Wang W, Zhang Z X. J. Am. Chem. Soc., 2020, 142(5): 2213.

doi: 10.1021/jacs.9b13093
[88]
Vicario J, Eelkema R, Browne W R, Meetsma A, La Crois R M, Feringa B L. Chem. Commun., 2005,(31): 3936.
[89]
Furtado K, Pooley C M, Yeomans J M. Phys. Rev. E, 2008, 78(4): 046308.

doi: 10.1103/PhysRevE.78.046308
[90]
Kitahata H, Yoshinaga N, Nagai K H, Sumino Y. Phys. Rev. E, 2011, 84: 015101.

doi: 10.1103/PhysRevE.84.015101
[91]
Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118(21): 5134.

doi: 10.1021/ja9602511
[92]
Yoshida R. Adv. Mater., 2010, 22(31): 3463.

doi: 10.1002/adma.200904075
[93]
Murase Y, Maeda S, Hashimoto S, Yoshida R. Langmuir, 2009, 25(1): 483.

doi: 10.1021/la8029006 pmid: 19063637
[94]
Hara Y, Maeda S, Hashimoto S, Yoshida R. Int. J. Mol. Sci., 2010, 11(2): 704.

doi: 10.3390/ijms11020704
[95]
Yoshida R, Ueki T. NPG Asia Mater., 2014, 6(6): e107.
[96]
Zhou H W, Wang Y R, Zheng Z H, Ding X B, Peng Y X. Chem. Commun., 2014, 50(48): 6372.

doi: 10.1039/c4cc01169d
[97]
Ren L, She W B, Gao Q Y, Pan C W, Ji C, Epstein I R. Angew. Chem., 2016, 128(46): 14513.

doi: 10.1002/ange.v128.46
[98]
Lu X J, Ren L, Gao Q Y, Zhao Y M, Wang S R, Yang J P, Epstein I R. Chem. Commun., 2013, 49(70): 7690.

doi: 10.1039/c3cc44480e
[99]
Ren L, Wang L Y, Gao Q Y, Teng R, Xu Z Y, Wang J, Pan C W, Epstein I R. Angew. Chem. Int. Ed., 2020, 59(18): 7106.

doi: 10.1002/anie.v59.18
[100]
Ren L, Wang M, Pan C W, Gao Q Y, Liu Y, Epstein I R. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(33): 8704.

doi: 10.1073/pnas.1704094114
[101]
Teng R, Gao Q Y, Yuan L, Ren L, Wang J, Wang Y J, Epstein I R. Cell Rep. Phys. Sci., 2022, 3(6): 100933.
[102]
Wang J, Ren L, Teng R, Epstein I R, Wang H, Zhang M, Yuan L, Gao Q Y. J. Phys. Chem. Lett., 2021, 12(50): 11987.

doi: 10.1021/acs.jpclett.1c03128
[103]
Rossi M, Cicconofri G, Beran A, Noselli G, DeSimone A. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(50): 13085.

doi: 10.1073/pnas.1708064114
[104]
Ghanbari A. J. Micro. Bio. Robotics., 2020, 16(2): 173.

doi: 10.1007/s12213-020-00130-7
[105]
Schauer O, Mostaghaci B, Colin R, Hürtgen D, Kraus D, Sitti M, Sourjik V. Sci. Rep., 2018, 8: 9801.

doi: 10.1038/s41598-018-28102-9 pmid: 29955099
[106]
Peters C, Hoop M, PanÉ S, Nelson B J, Hierold C. Adv. Mater., 2016, 28(3): 533.

doi: 10.1002/adma.v28.3
[1] Zhang Yingying, Lu Xiaohua*, Feng Xin, Shi Yijun, Ji Xiaoyan. Properties and Applications of Choline-Based Deep Eutectic Solvents [J]. Progress in Chemistry, 2013, 25(06): 881-892.
[2] Yan Chao, Li Mei, Lu Qinghua. Progress in Liquid Marbles [J]. Progress in Chemistry, 2011, 23(4): 649-656.
[3] Zhang Yong, Pi Pihui, Wen Xiufang, Zheng Dafeng, Cai Zhiqi, Cheng Jiang. Construction and Application of Wettability Gradient Surfaces [J]. Progress in Chemistry, 2011, 23(12): 2457-2465.
[4] . Advance on the Study of Dynamic Surface Tension and Adsorption Kinetics of Surfactant Solution [J]. Progress in Chemistry, 2005, 17(02): 233-241.
[5] Cao Chengang,Liu Jiguang,Dong Jinyong**,Hu Youliang. Advance on the Study of Dynamic Surface Tension and Adsorption Kinetics of Surfactant Solution [J]. Progress in Chemistry, 2005, 17(02): 0-.
[6] Zhong Lili,Huang Junxiong*. Advance on the Study of Dynamic Surface Tension and Adsorption Kinetics of Surfactant Solution [J]. Progress in Chemistry, 2005, 17(02): 0-.
[7] Tang Ruikang. Advance on the Study of Dynamic Surface Tension and Adsorption Kinetics of Surfactant Solution [J]. Progress in Chemistry, 2005, 17(02): 0-.