中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 1982-1995 DOI: 10.7536/PC211217 Previous Articles   Next Articles

• Review •

Flexible Sensors Based on Electrohydrodynamic Jet Printing

Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang(), Wenping Hu()   

  1. Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University,Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: yanghui2018@tju.edu.cn (Hui Yang);huwp@tju.edu.cn (Wenping Hu)
  • Supported by:
    Ministry of Science and Technology of China(2018YFA0703200); National Natural Science Foundation of China(51973154); Natural Science Foundation of Tianjin(20JCZDJC00680)
Richhtml ( 53 ) PDF ( 1545 ) Cited
Export

EndNote

Ris

BibTeX

Flexible sensors have potential applications in the fields of soft robotic, wearable electronics and biomedical, etc., due to their stable sensing performance under large deformation conditions, such as,bending, twisting, and stretching. Compared with traditional photolithography technology for constructing flexible sensors, printing as one of additive manufacturing technologies has the advantages of green, low-cost and large-area manufacturing. In various printing technologies, electrohydrodynamic jet (e-jet) printing technology enable replace traditional lithography technology to fabricate high-resolution flexible sensors, because its compatibility with multiple functional materials and special working mechanism. Recently, e-jet printing technology shows wide application prospects in the fields of miniaturized flexible sensors, such as flexible pressure sensors, flexible gas sensors and flexible electrochemical sensors. In the review, we focused on the recent developments of materials, processes and applications of e-jet printing technology in the field of flexible sensor. Firstly, we introduced the working principle of e-jet printing technology and various e-jet printing ink materials in detail. Then, the interface controlling methods between ink and flexible substrate in e-jet printing progress were discussed. Subsequently, the applications of e-jet printing technology for flexible pressure sensors, flexible gas sensors and flexible electrochemical sensors were provided. Finally, we presented the future challenges and opportunities of next-generation e-jet printing in high resolution flexible sensors.

Contents

1 Introduction

2 E-jet printing

2.1 Principles of e-jet printing technique

2.2 Functional ink materials

2.3 Interface control in e-jet printing progress

3 Applications of e-jet printing in flexible sensors

3.1 flexible pressure sensors

3.2 flexible gas sensors

3.3 flexible electrochemical sensors

4 Conclusion and outlook

Fig. 1 Schematic diagram of (a) screen printing[34].Copyright 2019, John Wiley and Sons and (b) inkjet printing process[36]. Copyright 2013, American Chemical society
Fig. 2 Schematic diagram of E-jet printing flexible sensor
Fig. 3 Structure diagram of E-jet printing[42]
Fig. 4 (a) Schematic diagram of the Conical E-jet printing[37]. Due to the application of a voltage between the nozzle tip and the receiving substrate to generate an electric field, the nanoparticle ink is ejected from the apex of the conical ink meniscus formed at the tip of the nozzle nozzle. (b) SEM images of nozzle.[37]. Copyright 2007, Springer Nature. (c) Six different ejection modes observed in E-jet printing technique[48]. Copyright 2015, John Wiley and Sons
Fig. 5 (a) E-jet printed silver ink mic-roelectrode array on a flexible substrate. (b) and (c) Printed high resolution patterns[52]. Copyright 2013, Elsevier. (d) Optical photo of E-jet printing Au ink on curved glass. (e) and (f) Infrared image of heater at 12 V DC voltage[53]
Fig. 6 (a) PEDOT:PSS/GR/SWCNT ink preparation process flow chart[59]. Copyright 2021, Elsevier. (b) Polyaniline ink E-jet printing on the electrode[51]
Fig. 7 (a) Schematic diagram of electrojet printing of T graphene oxide as ink[68]. (b) Optical micrographs of different patterns of printed micro-scale graphene[69]
Fig. 8 (a) E-jet printing metal oxide nanofibers prepared by electrostatic spinning and crushing process. (b) Gas sensor array of nanofibers fabricated by E-jet printing on the sensing electrodes and microheaters[72]. Copyright 2017, Elsevier
Fig. 9 (a) The AgNP solution nanopatterning scheme. (b) Schematic illustrations of the evaporation of AgNP solutions with different compositions[76]. Copyright 2019, John Wiley and Sons
Fig. 10 (a) Schematic diagram of the evaporation process for a printed droplet. (b) Various complex patterns printed on flexible polyimide substrates[75]. Copyright 2019, The Royal Society of Chemistry
Fig. 11 (a) Schematic diagram of the preparation process of the flexible pressure sensor. (b) The images of different angles of finger bending and the monitoring of the micro-motion of the neck muscles[59]. Copyright 2021, Elsevier
Fig. 12 The structure diagram of FNFEDW equipment[59]. Copyright 2021, Elsevier
Fig. 13 (a) Optical picture of the conductor of the E-jet printed Christmas tree pattern on the PDMS substrate.(b) Conductivity test of the conductor in the bent state. (c) Optical photos of different degrees of tensile strain.(d) (a) and (b) An optical photo of a broken circuit caused by excessive stretching of theconductor.(c) and (d) an optical photo of the broken circuit being repaired.(e) bending test of the conductor after repair.(f) multiple stretch-break-Semicircle pattern after repair test.(g) and (h) Optical image of the failed position before and after repair.(i) Cyclic tensile strain function image, (j) and (k) optical images of failure positions before and after repair,(l) images of cyclic tensile strain function[55]
Fig. 14 (a)Conductive polyaniline resistance changes when exposed to ammonia. (b)Sensing and calibration diagrams of HCl-doped polyaniline[51]
Fig. 15 (a) Optical image of E-jet printed line patterns in wave and triangle wave shapes under different voltages. (b) The structure of biological field applications. (c) SEM image of E-jet printed nanofiber material[72]. Copyright 2017, Elsevier
Fig. 16 (a,b) Schematic diagram of pulse voltage in drop-on-demand inkjet mode. (c) Drop-on-demand E-jet printing dot array. (d) Inkjet printing continuous line. (e) Variations of resistivity and line thickness with the number of printing times. (f) Raman spectra of printed graphene[69]
[1]
Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R. Adv. Mater., 2014, 26(1): 149.

doi: 10.1002/adma.201303349
[2]
Myny K. Nat. Electron., 2018, 1(1): 30.

doi: 10.1038/s41928-017-0008-6
[3]
Nathan A, Ahnood A, Cole M T, Lee S, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia-Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Chu D P, Flewitt A J, Ferrari A C, Kelly M J, Robertson J, Amaratunga G A J, Milne W I. Proc. IEEE, 2012, 100: 1486.

doi: 10.1109/JPROC.2012.2190168
[4]
Fan L J, Chen L, He Y, Liu H. Prog. Chem., 2021, 33(5): 767.
( 范路洁, 陈莉, 何崟, 刘皓. 化学进展, 2021, 33(5): 767.).

doi: 10.7536/PC200616
[5]
Pan Z Y, Ma J Z, Zhang W B, Wei L F. Progress in Chemistry, 2020, 32: 1592.
( 潘朝莹, 马建中, 张文博, 卫林峰. 化学进展, 2020, 32: 1592.).

doi: 10.7536/PC200322
[6]
Zhou K K, Dai K, Liu C T, Shen C Y. SmartMat, 2020, 1(1): e1010.
[7]
Ying Z P, Huang Y A, Bu N B, Wang X M, Xiong Y L. Chinese Sci Bull, 2010, 55: 2487.
( 尹周平, 黄永安, 布宁斌, 王小梅, 熊有伦. 中国科学, 2010, 55: 2487.).
[8]
Huang Y A, Ding Y J, Bian J, Su Y W, Zhou J, Duan Y Q, Yin Z P. Nano Energy, 2017, 40: 432.

doi: 10.1016/j.nanoen.2017.07.048
[9]
Adam Bilodeau R, White E L, Kramer R K. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, 2324.
[10]
Yang H, Leow W R, Chen X D. Small Methods, 2018, 2(1): 1700259.

doi: 10.1002/smtd.201700259
[11]
Yang H, Leow W R, Chen X D. Adv. Mater., 2018, 30(13): 1704347.

doi: 10.1002/adma.201704347
[12]
Wu F M, Liu Y X, Zhang J, Duan S M, Ji D Y, Yang H. Small Methods, 2021, 5(12): 2100676.

doi: 10.1002/smtd.202100676
[13]
Wang M, Yan Z, Wang T, Cai P Q, Gao S Y, Zeng Y, Wan C J, Wang H, Pan L, Yu J C, Pan S W, He K, Lu J, Chen X D. Nat. Electron., 2020, 3(9): 563.

doi: 10.1038/s41928-020-0422-z
[14]
Park Y G, Lee S, Park J U. Sensors, 2019, 19(20): 4353.

doi: 10.3390/s19204353
[15]
Chen J, Zheng J H, Gao Q W, Zhang J J, Zhang J Y, Omisore O, Wang L, Li H. Appl. Sci., 2018, 8(3): 345.

doi: 10.3390/app8030345
[16]
Sanderson K. Nature, 2021, 591(7851): 685.

doi: 10.1038/d41586-021-00739-z
[17]
Gang W, Gao X Y, Xing Y, Wang H P. Journal of functional materials and devices, 2021, 27: 105.
( 王刚, 高贤永, 邢毅, 汪浩鹏. 功能材料与器件学报, 2021, 27: 105.).
[18]
Qi D P, Liu Z Y, Leow W R, Chen X D. MRS Bull., 2017, 42(2): 103.

doi: 10.1557/mrs.2017.7
[19]
Lee W, Kim D, Rivnay J, Matsuhisa N, Lonjaret T, Yokota T, Yawo H, Sekino M, Malliaras G G, Someya T. Adv. Mater., 2016, 28(44): 9722.

doi: 10.1002/adma.201602237
[20]
Liu Y H, Pharr M, Salvatore G A. ACS Nano, 2017, 11(10): 9614.

doi: 10.1021/acsnano.7b04898
[21]
Zhang X, Jiang X P, Zhang Z, Qin H T. Int. J. Adv. Manuf. Technol., 2021, 114(1/2): 241.

doi: 10.1007/s00170-021-06858-1
[22]
Bian Y S, Liu K, Guo Y L, Liu Y Q. Acta Chim. Sinica, 2020, 78, 848.

doi: 10.6023/A20050197
( 边洋爽, 刘凯, 郭云龙, 刘云圻. 化学学报, 2020, 78, 848.).

doi: 10.6023/A20050197
[23]
Sekitani T, Zschieschang U, Klauk H, Someya T. Nat. Mater., 2010, 9(12): 1015.

doi: 10.1038/nmat2896
[24]
Gili E, Caironi M, Sirringhaus H. Appl. Phys. Lett., 2012, 100(12): 123303.

doi: 10.1063/1.3696487
[25]
Shen W F, Zhang X P, Huang Q J, Xu Q S, Song W J. Nanoscale, 2014, 6(3): 1622.

doi: 10.1039/C3NR05479A
[26]
Jang D, Kim D, Moon J. Langmuir, 2009, 25(5): 2629.

doi: 10.1021/la900059m
[27]
Matsuhisa N, Inoue D, Zalar P, Jin H, Matsuba Y, Itoh A, Yokota T, Hashizume D, Someya T. Nat. Mater., 2017, 16(8): 834.

doi: 10.1038/nmat4904 pmid: 28504674
[28]
Matsuhisa N, Kaltenbrunner M, Yokota T, Jinno H, Kuribara K, Sekitani T, Someya T. Nat. Commun., 2015, 6: 7461.

doi: 10.1038/ncomms8461 pmid: 26109453
[29]
Zhang J, Zhang X T, Ren X C, Hu W P. Progress in Chemistry, 2021, 33: 490.

doi: 10.7536/PC200560
( 张静, 张小涛, 任晓辰, 胡文平. 化学进展, 2021, 33: 490.).

doi: 10.7536/PC200560
[30]
Yin Z P, Huang Y A, Chen R, Wu Z G, Wu H, Duan Y Q. China Basic Science, 2020, 5: 21.
( 尹周平, 黄永安, 陈蓉, 吴志刚, 吴豪, 段永青. 中国基础科学, 2020, 5: 21.
[31]
Kang S B, Noh Y J, Na S I, Kim H K. Sol. Energy Mater. Sol. Cells, 2014, 122: 152.

doi: 10.1016/j.solmat.2013.11.036
[32]
Hermerschmidt F, Mathies F, Schröder V R F, Rehermann C, Morales N Z, Unger E L, List-Kratochvil E J W. Mater. Horiz., 2020, 7(7): 1773.

doi: 10.1039/D0MH00512F
[33]
Wang Y F, Sekine T, Takeda Y, Yokosawa K, Matsui H, Kumaki D, Shiba T, Nishikawa T, Tokito S. Sci. Rep., 2020, 10: 2467.

doi: 10.1038/s41598-020-59432-2
[34]
Duan S M, Gao X, Wang Y, Yang F X, Chen M X, Zhang X T, Ren X C, Hu W P. Adv. Mater., 2019, 31(16): 1807975.

doi: 10.1002/adma.201807975
[35]
Seifert T, Baum M, Roscher F, Wiemer M, Gessner T. Mater. Today Proc., 2015, 2(8): 4262.
[36]
Kang B, Lee W H, Cho K. ACS Appl. Mater. Interfaces, 2013, 5(7): 2302.

doi: 10.1021/am302796z
[37]
Park J U, Hardy M, Kang S J, Barton K, Adair K, Mukhopadhyay D K, Lee C Y, Strano M S, Alleyne A G, Georgiadis J G, Ferreira P M, Rogers J A. Nat. Mater., 2007, 6(10): 782.

doi: 10.1038/nmat1974
[38]
Kim S Y, Kim K, Hwang Y H, Park J, Jang J, Nam Y, Kang Y, Kim M, Park H J, Lee Z, Choi J, Kim Y, Jeong S, Bae B S, Park J U. Nanoscale, 2016, 8(39): 17113.

pmid: 27722626
[39]
Morozov V N, Morozova T Y. Anal. Chem., 1999, 71(15): 3110.

pmid: 10450156
[40]
An S, Lee M W, Kim N Y, Lee C M, Al-Deyab S S, James S C, Yoon S S. Appl. Phys. Lett., 2014, 105(21): 214102.

doi: 10.1063/1.4902241
[41]
Barton K, Mishra S, Shorter K A, Alleyne A, Ferreira P, Rogers J. Mechatronics, 2010, 20(5): 611.

doi: 10.1016/j.mechatronics.2010.05.004
[42]
Sutanto E, Shigeta K, Kim Y K, Graf P G, Hoelzle D J, Barton K L, Alleyne A G, Ferreira P M, Rogers J A. J. Micromech. Microeng., 2012, 22(4): 045008.

doi: 10.1088/0960-1317/22/4/045008
[43]
Jeong D W, Kim G H, Kim N Y, Lee Z, Jung S D, Lee J O. RSC Adv., 2017, 7(6): 3273.

doi: 10.1039/C6RA26836F
[44]
Choi H K, Park J U, Park O O, Ferreira P M, Georgiadis J G, Rogers J A. Appl. Phys. Lett., 2008, 92(12): 123109.

doi: 10.1063/1.2903700
[45]
Onses M S, Sutanto E, Ferreira P M, Alleyne A G, Rogers J A. Small, 2015, 11(34): 4237.

doi: 10.1002/smll.201500593
[46]
Bober D B, Chen C H. J. Fluid Mech., 2011, 689: 552.

doi: 10.1017/jfm.2011.453
[47]
Engstrom D S, Porter B, Pacios M, Bhaskaran H. J. Mater. Res., 2014, 29(17): 1792.

doi: 10.1557/jmr.2014.159
[48]
Lee A, Jin H, Dang H W, Choi K H, Ahn K H. Langmuir, 2013, 29(44): 13630.

doi: 10.1021/la403111m
[49]
Abbas Z, Wang D Z, Du Z Y, Zhao K P, Du Z L, Lu L K, Cui Y, Liang J S. Microelectron. Eng., 2021, 237: 111496.

doi: 10.1016/j.mee.2020.111496
[50]
Yang W D, Liu C Y, Zhang Z Y, Liu Y, Nie S D. J. Mater. Chem., 2012, 22(43): 23012.

doi: 10.1039/c2jm34264b
[51]
Mkhize N, Murugappan K, Castell M R, Bhaskaran H. J. Mater. Chem. C, 2021, 9(13): 4591.

doi: 10.1039/D0TC05719C
[52]
Qin H T, Dong J Y, Lee Y S. J. Manuf. Process., 2017, 28: 479.

doi: 10.1016/j.jmapro.2017.04.015
[53]
Liu J P, Xiao L, Rao Z F, Dong B Y, Yin Z P, Huang Y A. Adv. Mater. Technol., 2018, 3(8): 1800155.

doi: 10.1002/admt.201800155
[54]
Prasetyo F D, Yudistira H T, Nguyen V D, Byun D. J. Micromech. Microeng., 2013, 23(9): 095028.

doi: 10.1088/0960-1317/23/9/095028
[55]
Han Y W, Dong J Y. Adv. Mater. Technol., 2018, 3(3): 1700268.

doi: 10.1002/admt.201700268
[56]
Qin H T, Cai Y, Dong J Y, Lee Y S. J. Manuf. Sci. Eng., 2017, 139(3): 031011.

doi: 10.1115/1.4034663
[57]
Yu D N, Hu Y, Shi J J, Tang H Y, Zhang W H, Meng Q B, Han H W, Ning Z J, Tian H. Sci. China Chem., 2019, 62(6): 684.

doi: 10.1007/s11426-019-9448-3
[58]
Jiang H, Tang C, Wang Y. Appl. Surf. Sci., 2021, 564: 150447.

doi: 10.1016/j.apsusc.2021.150447
[59]
Dong H F, Zhang L B, Wu T, Song H J, Luo J Q, Huang F L, Zuo C C. Org. Electron., 2021, 89: 106044.

doi: 10.1016/j.orgel.2020.106044
[60]
Ouyang J Y. SmartMat, 2021, 2(3): 263.

doi: 10.1002/smm2.1059
[61]
Chen Y H, Zhou H P. J. Appl. Phys., 2020, 128(6): 060903.

doi: 10.1063/5.0012384
[62]
Li C H, Prokopec S D, Sun R X, Yousif F, Schmitz N, Subtypes P T, Clinical T, Boutros P C, Consortium P. Nat. Commun., 2020, 11: 4330.

doi: 10.1038/s41467-020-17359-2
[63]
Lee M W, Kang D K, Kim N Y, Kim H Y, James S C, Yoon S S. J. Aerosol Sci., 2012, 46: 1.

doi: 10.1016/j.jaerosci.2011.11.002
[64]
Bongiovanni Abel S, Molina M A, Rivarola C R, Kogan M J, Barbero C A. Nanotechnology, 2014, 25(49): 495602.

doi: 10.1088/0957-4484/25/49/495602
[65]
Mabrook M F, Pearson C, Petty M C. Sens. Actuat. B Chem., 2006, 115(1): 547.

doi: 10.1016/j.snb.2005.10.019
[66]
Chang J K, He J K, Lei Q, Li D C. ACS Appl. Mater. Interfaces, 2018, 10(22): 19116.

doi: 10.1021/acsami.8b04051
[67]
Popa D, Wijesundara M B J, Mirza F, Sahasrabuddhe R R, Baptist J R, Wijesundara M B J, Lee W H, Popa D O. Sensors for Next Generation Robotics III, 2016, 9859: 98590.
[68]
Zhang B, Lee J, Kim M, Lee N, Lee H, Byun D. Micromachines, 2019, 11(1): 13.

doi: 10.3390/mi11010013
[69]
Zhao K P, Wang D Z, Li K, Jiang C Y, Wei Y L, Qian J H, Feng L, Du Z Y, Xu Z, Liang J S. J. Electrochem. Soc., 2020, 167(10): 107508.

doi: 10.1149/1945-7111/ab9c7e
[70]
Li K, Wang D, Yi S. Rev. Sci. Instrum., 2019, 90: 115001.

doi: 10.1063/1.5090415
[71]
Huang J, Yang X, Wang J Y, Zhong C, Wang L, Qin J G, Li Z. J. Mater. Chem., 2012, 22(6): 2478.

doi: 10.1039/C1JM14054J
[72]
Kang K, Yang D, Park J, Kim S, Cho I, Yang H H, Cho M, Mousavi S, Choi K H, Park I. Sens. Actuat. B Chem., 2017, 250: 574.

doi: 10.1016/j.snb.2017.04.194
[73]
Jeong Y J, Lee X, Bae J. Journal of Materials Chemistry C., 2016, 4: 4912.

doi: 10.1039/C6TC01371F
[74]
Sun J Z, Kuang M X, Song Y L. Progress in Chemistry, 2015, 27: 979.
( 孙加振, 邝旻翾, 宋延林. 化学进展, 2015, 27: 979.).

doi: 10.7536/PC150230
[75]
Li H G, Liu N, Shao Z L, Li H Y, Xiao L, Bian J, Li J H, Tan Z F, Zhu M H, Duan Y Q, Gao L, Niu G D, Tang J, Huang Y A, Yin Z P. J. Mater. Chem. C, 2019, 7(47): 14867.

doi: 10.1039/C9TC04394B
[76]
Zhou P L, Yu H B, Zou W H, Wang Z D, Liu L Q. Adv. Mater. Interfaces, 2019, 6(20): 1900912.

doi: 10.1002/admi.201900912
[77]
Yunker P J, Still T, Lohr M A, Yodh A G. Nature, 2011, 476(7360): 308.

doi: 10.1038/nature10344
[78]
Cui L Y, Zhang J H, Zhang X M, Huang L, Wang Z H, Li Y F, Gao H N, Zhu S J, Wang T Q, Yang B. ACS Appl. Mater. Interfaces, 2012, 4(5): 2775.

doi: 10.1021/am300423p
[79]
Kuang M X, Wang J X, Bao B, Li F Y, Wang L B, Jiang L, Song Y L. Adv. Opt. Mater., 2014, 2(1): 34.

doi: 10.1002/adom.201300369
[80]
Anyfantakis M, Geng Z, Morel M, Rudiuk S, Baigl D. Langmuir, 2015, 31(14): 4113.

doi: 10.1021/acs.langmuir.5b00453 pmid: 25797472
[81]
Li Y Y, Ai Q Q, Mao L N, Guo J X, Gong T X, Lin Y, Wu G T, Huang W, Zhang X S. Sci. Rep., 2021, 11: 21006.

doi: 10.1038/s41598-021-00307-5
[82]
Cholleti E, Stringer J, Assadian M, Battmann V, Bowen C, Aw K. Sensors, 2018, 19(1): 42.

doi: 10.3390/s19010042
[83]
Hu X H, Jiang Y G, Ma Z Q, He Q P, He Y P, Zhou T F, Zhang D Y. ACS Appl. Polym. Mater., 2020, 2(11): 4399.

doi: 10.1021/acsapm.0c00411
[84]
Mirza F, Sahasrabuddhe R R, Baptist J R, Wijesundara M B J, Lee W H, Popa D O. Sensors for Next-Generation Robotics III, 2016: 9859.
[85]
Nenow D, Trayanov A. Surf. Sci., 1989, 2132-3: 488.
[86]
Zhang X, Chen X, Zhang X,. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: 9193.

doi: 10.1073/pnas.1809474115 pmid: 30150383
[87]
Liu X H, Ma T T, Pinna N, Zhang J. Adv. Funct. Mater., 2017, 27(37): 1702168.

doi: 10.1002/adfm.201702168
[88]
Nikolic M V, Milovanovic V, Vasiljevic Z Z, Stamenkovic Z. Sensors, 2020, 20(22): 6694.

doi: 10.3390/s20226694
[89]
Liu X, Cheng S T, Liu H, Hu S, Zhang D Q, Ning H S. Sensors, 2012, 12(7): 9635.

doi: 10.3390/s120709635
[90]
Hübert T, Boon-Brett L, Black G, Banach U. Sens. Actuat. B Chem., 2011, 157(2): 329.

doi: 10.1016/j.snb.2011.04.070
[91]
Myers R T, Ayers J. J. Appl. Electrochem., 2019, 49(2): 229.

doi: 10.1007/s10800-018-1269-0
[92]
Li R F, Qi H, Ma Y, Deng Y P, Liu S N, Jie Y S, Jing J Z, He J L, Zhang X, Wheatley L, Huang C X, Sheng X, Zhang M L, Yin L. Nat. Commun., 2020, 11: 3207.

doi: 10.1038/s41467-020-17008-8
[93]
Li X L, Park H, Lee M H, Hwang B, Kim S H, Lim S. Org. Electron., 2018, 62: 400.

doi: 10.1016/j.orgel.2018.08.032
[94]
Xu Z, Zou H Q, Wang J, Zhang M Q, Wang D Z, Liu J S. Microsyst. Technol., 2018, 24(2): 1207.

doi: 10.1007/s00542-017-3487-5
[1] Chao Chen, Guyue Wang, Ying Tian, Zhengyang Kong, Fenglong Li, Jin Zhu, Wu Bin Ying. Research Progress on Self-Healing Polyurethane and Its Applications in the Field of Flexible Sensors [J]. Progress in Chemistry, 2023, 35(9): 1275-1293.