中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 2033-2055 DOI: 10.7536/PC200955 Previous Articles   Next Articles

• Review •

Ti3C2-MXene for Interfacial Solar Steam Generation

Yousen Xu1, Zhen Zhang1,2(), Biao Tang1(), Guofu Zhou1,2,3   

  1. 1 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University,Guangzhou 510006, China
    2 SCNU-TUE Joint Lab of Device Integrated Responsive Materials(DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
    3 Academy of Shenzhen Guohua Optoelectronics, Shenzhen 518110, China
  • Received: Revised: Online: Published:
  • Contact: Zhen Zhang, Biao Tang
  • Supported by:
    Natural Science Foundation of Guangdong Province(1914050005542); Department of Science and Technology of Guangdong Province(191900014); Program for Chang Jiang Scholars and Innovative Research Teams in Universities(IRT_17R40); Science and Technology Program of Guangzhou(2019050001); Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(2017B030301007); 111 Project and Yunnan expert workstation and ScienceK Ltd.
Richhtml ( 36 ) PDF ( 942 ) Cited
Export

EndNote

Ris

BibTeX

Interfacial Solar Steam Generation(ISSG) is a promising technology for seawater desalination and wastewater treatment, providing an efficient, green, and low-cost method to address the globally water shortage issue. ISSG employs the green and wide-spread solar energy as the energy resource and localizes the heat converted from sunlight at the water-air interface, leading to an enhanced interfacial temperature and solar steam generation efficiency. Designing and fabricating the photothermal conversion materials with high light absorption is the key for ISSG technology. Ti3C2-MXene is a recently developed two-dimensional titanium carbide and possesses many fascinating properties, such as large specific surface area, well water-dispersibility, and high photothermal conversion ability. Therefore, Ti3C2-MXene shows promising potentials as photothermal conversion material for ISSG. The application of Ti3C2-MXene in ISSG attracts much attention and becomes one of the hottest topics in recent years. In this review, we first introduce the ISSG technology, MXene, general principles for designing photothermal materials, and then elaborate the recent research progress of Ti3C2-MXene composites for ISSG, including the design and fabrication of two-dimensional MXene films, three-dimensional MXene hydrogels or aerogels, bio-based MXene nanocomposites, etc. In the end, the promising prospects and challenges of Ti3C2-MXene for ISSG applications are discussed.

Contents

1 Introduction

1.1 Interfacial solar steam generation

1.2 Design and example analysis of material system in ISSG

1.3 Ti3C2-MXene

1.4 Applications of Ti3C2-MXene for ISSG

2 Research progress of Ti3C2 in interfacial solar steam generation

2.1 Two-dimensional MXene membrane

2.2 Three-dimensional MXene composite material

2.3 Bio-based and biomimetic MXene nanocomposites

3 Development prospects and challenges

4 Conclusion and outlook

Fig. 1 (a) rGO-MWCNTs membrane[59]. Copyright 2018, Royal Society of Chemistry;(b) PPy membrane made from CVPD[60]. Solar steam generation system of sandwich(c)[60] and mushroom structure(d)[62]. Copyright 2018, John Wiley and Sons. Copyright 2017, John Wiley and Sons
Fig. 2 Schematics of M2AX, M3AX2 and M4AX3 crystal structures[73]. Copyright 2017, Springer Nature
Fig. 3 SEM images of Ti3AlC2 before etching(a, c, e, i, k); HF etching prepared Ti3C2-MXene[96](b). Copyright 2012, American Chemical Society; HCl/LiF etching prepared Ti3C2-MXene[97](d). Copyright 2019, John Wiley and Sons; NaHF2(f), KHF2(g) and NH4HF2(h) etching prepared Ti3C2-MXene[98]. Copyright 2017, Elsevier; Concentrated alkali etching prepared Ti3C2-MXene[99](j). Copyright 2018, WILEY-VCH; NaOH/H2SO4 etching prepared Ti3C2-MXene[100](l). Copyright 2014, Royal Society of Chemistry; HR-TEM images of Ti3AlC2 before(m) and after(n) electrochemical etching[101]. Copyright 2018, WILEY-VCH
Table 1 Summary of Ti3C2-MXene for solar steam generation
Fig. 4 (a) Antibacterial Ti3C2-MXene/ cellulose membrane;(b) system composed of PS and CMF;(c) water evaporation rates and solar steam efficiency of bulk water, rGO/cellulose, and Ti3C2-MXene/cellulose membranes under the solar illumination of 1 sun;(d) water evaporation rates of Ti3C2-MXene/cellulose membrane under the solar illumination of different intensities; antibacterial performance of rGO/cellulose and Ti3C2-MXene/cellulose membranes for E. coli (e, g) and S. aureus(f, h)[112]. Copyright 2019, American Chemical Sociey
Fig. 5 (a) Fabrication process and(b) system architecture of the hydrophobic d-Ti3C2 membrane; optical photographs of the hydrophilic and hydrophobic d-Ti3C2 membranes before(c, e) and after(d, f) 24 h solar desalination; solar desalination process of(g) hydrophilic and(h) hydrophobic d-Ti3C2 membranes;(i) measured salinity of four primary ions before and after solar desalination;(j) organic and heavy metal ion rejection performance[54]. Copyright 2018, Royal Society of Chemistry
Fig. 6 Schematic illustration of the(a) fabrication of PDA@MXene light absorption layer and(b) system architecture;(c) mass change of water with different samples under the solar illumination of 1 sun;(d) water evaporation rates and(e) solar steam efficiency of different samples under different solar illumination intensities[113]. Copyright 2019, Springer Nature
Fig. 7 Schematic illustration of(b) T-shaped solar steam generation setup based(a) CAM membrane;(c) salt rejection rate revealed by ion concentration comparison before and after desalination[114]. Copyright 2020, John Wiley and Sons
Fig. 8 Hydrogel-induced water activation[61]. Copyright 2019, AAAS
Fig. 9 (a) Schematic diagram of water being transferred from root to top of trunk by tree, open channels provided by vertically aligned microchannels in tree are beneficial to water transport and vapor release. The scanning electron microscopy(SEM) images on the right are the top view(top) and cross-section(bottom) of wood;(b) schematic illustration of the preparation process of TIH;(c) schematic of the TIH, water transport through vertically aligned channels(lower right) and the water evaporation enthalpy can be tuned by the interaction between water molecules and molecular mesh(upper right);(d) the concentration of four main ions in seawater before and after desalination;(e) UV-vis spectroscopy of BB and RhB aqueous solutions before and after water purification[49]. Copyright 2020, WILEY-VCH
Fig. 10 (a) Fabrication process of a Janus VA-MXA; digital photograph of the(b) top view,(c) side view and(d) the fracture face of the as-prepared Janus VA-MXA;(e)SEM image of the upper layer of prepared Janus VA-MXA[53]. Copyright 2020, American Society Chemistry
Fig. 11 (a) Conceptual schematic of the all-weather steam generation system based on the synergistic photo-thermal and electro-thermal conversion of CMA;(b) schematic illustration for the fabrication process of CMA;(c) the measured concentrations of four primary ions in a standard seawater sample before(original) and after evaporation desalination;(d) the water evaporation durability performance of CMA under the combined solar illumination of 0.5 sun and voltage supply of 5 V over 20 cycles, and insets of(d) are the mass change of water with the CMA in the 1st cycle and 20th cycle;(e) schematic illustration showing that the solar cells convert sunlight into electricity and store it into battery for further powering the steam generator;(f) optical photographs of a set of large-scale steam generation system;(g) the charging current density of SC-B components at different times from 9:00 am to 23:00 pm;(h) the water evaporation rates at different times in two situations, that is with SC-B or without SC-B[128]. Copyright 2019, Royal Society of Chemistry)
Fig. 12 (a~c) Schematic illustration of the fabrication process of GMA;(d) digital image of the ultralight GMA standing on the tip of Asparagus Fern leaves[129]. Copyright 2020, Elsevier
Fig. 13 GMA-3 based work(a) schematic illustration of a designed solar-driven interfacial desalination still;(b) concentrations of five primary ions in the artificial seawater before and after solar driven desalination;(c) endurance tests in pure water and seawater for 30 cycles under 1 sun, Each cycle is 30 mins;(d) concentrations of seven primary metal ions in artificial wastewater before and after solar-driven purification;(e) sterilization results and(f) performance of natural lake water(Sha Lake, Wuhan) and artificial bacterial solution(E. coli) before and after solar-driven interfacial evaporation, respectively. Inset of(e), the photograph of E. coli solution;(g, h) optical microscopy images of emulsified oil/water mixtures before and after solar-driven separation, Inset of(h), the photograph of emulsified oil/water mixtures before(left) and after(right) separation;(i) the cyclic test of solar-driven water purification for emulsified oil/water mixtures;(j) the water purity of emulsified oil/water mixtures after purification[129]. Copyright 2020, Elsevier
Fig. 14 (a) Schematic illustration of the fabrication procedures of the 3D CMF@d-Ti3C2;(b) the 3D CMF@d-Ti3C2 based solar evaporator;(c) mass change of water through evaporation and the corresponding(d) solar to vapor conversion efficiency of the 3D CMF@d-Ti3C2 and the 2D d-Ti3C2 membrane[51]. Copyright 2019, World Scientific Publishing Co. Pte Ltd
Fig. 15 (a) HF etching process diagram for preparation of Ti3C2-MXene;(b) preparation process diagram of 3DMAs;(c) embedded EPE architecture;(d) the measured concentrations of four primary ions in a standard seawater sample with salinity of 20 before(original) and after evaporation; absorption spectra of methylene blue(MB) and methyl orange(MO) solutions before evaporation(black line) and corresponding condensed pure water after evaporation(red line), respectively(e, f), inset in(e, f) is the optical photographs of MB and MO before and after evaporation;(g) metal ion and organic dye rejection performance undergoing solar seawater desalination and wastewater purification[130]. Copyright 2019, Royal Society of Chemistry
Fig. 16 (a) Preparation process diagram of Ti3C2-Wood; storage modulus versus time of(b) wood and(c) Ti3C2-wood after soaking in the Pacific water for a certain time at 50 ℃[135]. Copyright 2020, American Society Chemistry
Fig. 17 (a) Digital photograph of Bitis rhinoceros, the West African Gaboon viper;(b) digital photograph(left) and SEM image(right) of the black dorsal scales of Bitis rhinoceros, the surface of the black scales was covered with intensive microcrest structures;(c) high magnitude SEM image of the black scale, branched nanoridges were present on the microcrest structures;(d) digital photograph(left, scale bar 1 cm) and SEM image(right, scale bar 10 μm) of the G1 MXene nanocoating;(e) SEM image of the hierarchical MXene nanocoating(scale bar 30 μm);(f) schematic illustration of the biomimetic MXene nanocoating with broadband light absorption and enhanced light-to-heat performance;(g) schematic illustration of the solar steam-generation device with the bioinspired MXene nanocoating for high solar-thermal conversion[136]. Copyright 2019, WILEY-VCH
Fig. 18 (a) The biomimetic architectural structure of 3D spherical evaporator;(b) schematic illustration showing the stepwise preparation of Co3O4/ Ti3C2-MXene composites;(c) cumulative weight loss of 3D CM-0.1/fabric sphere through water evaporation over time under 1.0 sun illumination in different angles;(d) evaporation rate and corresponding enhancement factor of efficiency for 2D and 3D evaporator in comparison to the blank sample;(e) the weight percentage of Na+ of the condensed water evaporated from the simulated seawater(1.4 wt%, 3.5 wt%, 4.1 wt%);(f) simulated wastewater purified performance; the absorption peaks of MO(at 464 nm) and MB(at 663 nm) disappeared in the condensed water;(g) the ion concentration of Cu2+, Pb2+, and Cd2+ in heavy metal ion sewage and purified water obtained by ICP measurement;(h) the cycling solar evaporation measurements for 3D CM-0.1/fabric sphere under 1.0 sun illumination[137]. Copyright 2020, WILEY-VCH
[1]
Kumar D S, Askarunisa A, Kumar R M. Microprocess. Microsyst., 2020, 77: 103167.
[2]
Qin Y, Mueller N D, Siebert S, Jackson R B, AghaKouchak A, Zimmerman J B, Tong D, Hong C P, Davis S J. Nat. Sustain., 2019, 2(6): 515.

doi: 10.1038/s41893-019-0294-2
[3]
Rosa L, Chiarelli D D, Rulli M C, Dell’Angelo J, D’Odorico P. Sci. Adv., 2020, 6(18): 6031.
[4]
Delpasand M, Bozorg-Haddad O, Loáiciga H A. Sci. Total. Environ., 2020, 743: 140797.
[5]
Tao S L, Zhang H, Feng Y H, Zhu J L, Cai Q, Xiong X Y, Ma S H, Fang L Q, Fang W J, Tian D, Zhao X, Fang J Y. Front. Ecol. Environ., 2020, 18(4): 188.

doi: 10.1002/fee.v18.4
[6]
Dalin C, Qiu H G, Hanasaki N, Mauzerall D L, Rodriguez-Iturbe I. PNAS, 2015, 112(15): 4588.

doi: 10.1073/pnas.1504345112
[7]
Li B, Yang Z W, Xu X Y. J. Clean. Prod., 2019, 229: 818.

doi: 10.1016/j.jclepro.2019.04.405
[8]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M. Nature, 2008, 452(7185): 301.

doi: 10.1038/nature06599
[9]
Henthorne L, Boysen B. Desalination, 2015, 356: 129.

doi: 10.1016/j.desal.2014.10.039
[10]
Fritzmann C, Löwenberg J, Wintgens T, Melin T. Desalination, 2007, 216(1/3): 1.

doi: 10.1016/j.desal.2006.12.009
[11]
Kalogirou S A. Prog. Energy Combust. Sci., 2005, 31(3): 242.

doi: 10.1016/j.pecs.2005.03.001
[12]
Khawaji A D, Kutubkhanah I K, Wie J M. Desalination, 2008, 2211-3: 47.
[13]
Xu W C. Master Dissertation of Nanjing University, 2018.
(徐炜超. 南京大学硕士论文, 2018.)
[14]
Xiao G, Wang X H, Ni M J, Wang F, Zhu W J, Luo Z Y, Cen K F. Appl. Energy, 2013, 103: 642.

doi: 10.1016/j.apenergy.2012.10.029
[15]
Sharon H, Reddy K S. Renew. Sustain. Energy Rev., 2015, 41: 1080.

doi: 10.1016/j.rser.2014.09.002
[16]
Mashaly A F, Alazba A A, Al-Awaadh A M. Desalination Water Treat., 2016, 57(26): 12019.

doi: 10.1080/19443994.2015.1048738
[17]
Srithar K, Rajaseenivasan T, Karthik N, Periyannan M, Gowtham M. Renew. Energy, 2016, 90: 157.

doi: 10.1016/j.renene.2015.12.063
[18]
Arunkumar T, Velraj R, Denkenberger D C, Sathyamurthy R, Kumar K V, Ahsan A. Renew. Energy, 2016, 88: 391.

doi: 10.1016/j.renene.2015.11.051
[19]
Li S F, Liu Z H, Shao Z X, Xiao H S, Xia N. Appl. Energy, 2018, 213: 343.

doi: 10.1016/j.apenergy.2018.01.064
[20]
Krnac A, Araiz M, Rana S, Velardo J, Date A. Energy Procedia, 2019, 160: 246.

doi: 10.1016/j.egypro.2019.02.143
[21]
Wang G, Wang F S, Chen Z S, Hu P, Cao R F. Renew. Energy, 2019, 134: 284.

doi: 10.1016/j.renene.2018.11.009
[22]
Elashmawy M. Desalination, 2017, 411: 1.

doi: 10.1016/j.desal.2017.02.003
[23]
Hosseini A, Banakar A, Gorjian S. Desalination, 2018, 435: 45.

doi: 10.1016/j.desal.2017.12.031
[24]
Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G. Nat. Commun., 2014, 5(1): 4449.

doi: 10.1038/ncomms5449
[25]
Lin Y W, Xu H, Shan X L, Di Y S, Zhao A Q, Hu Y J, Gan Z X. J. Mater. Chem. A, 2019, 7(33): 19203.

doi: 10.1039/C9TA05935K
[26]
Zhu L L, Gao M M, Peh C K N, Ho G W. Nano Energy, 2019, 57: 507.

doi: 10.1016/j.nanoen.2018.12.046
[27]
Feng L, Huo P C, Liang Y Z, Xu T. Adv. Mater., 2019: 1903787.
[28]
Zhang P P, Liao Q H, Yao H Z, Huang Y X, Cheng H H, Qu L T. Energy Storage Mater., 2019, 18: 429.
[29]
Zhou J H, Gu Y F, Liu P F, Wang P F, Miao L, Liu J, Wei A Y, Mu X J, Li J L, Zhu J. Adv. Funct. Mater., 2019, 29(50): 1903255.
[30]
Cao S S, Jiang Q S, Wu X H, Ghim D, Gholami Derami H, Chou P I, Jun Y S, Singamaneni S. J. Mater. Chem. A, 2019, 7(42): 24092.

doi: 10.1039/C9TA06034K
[31]
Wang G, Fu Y, Ma X F, Pi W B, Liu D W, Wang X B. Carbon, 2017, 114: 117.

doi: 10.1016/j.carbon.2016.11.071
[32]
Wang Z Z, Ye Q X, Liang X B, Xu J L, Chang C, Song C Y, Shang W, Wu J B, Tao P, Deng T. J. Mater. Chem. A, 2017, 5(31): 16359.

doi: 10.1039/C7TA03262E
[33]
Zhao L Y, Wang P S, Tian J, Wang J H, Li L, Xu L Q, Wang Y, Fei X, Li Y. Sci. Total. Environ., 2019, 668: 153.

doi: 10.1016/j.scitotenv.2019.02.407
[34]
Yang J L, Pang Y S, Huang W X, Shaw S K, Schiffbauer J, Pillers M A, Mu X, Luo S R, Zhang T, Huang Y J, Li G X, Ptasinska S, Lieberman M, Luo T F. ACS Nano, 2017, 11(6): 5510.

doi: 10.1021/acsnano.7b00367
[35]
Zhang W, Zhang G, Ji Q H, Liu H J, Liu R P, Qu J H. ACS Appl. Mater. Interfaces, 2019, 11(10): 9974.

doi: 10.1021/acsami.8b21800
[36]
Jin Y, Chang J, Shi Y, Shi L, Hong S, Wang P. J. Mater. Chem. A, 2018, 6(17): 7942.

doi: 10.1039/C8TA00187A
[37]
Chen C J, Li Y J, Song J W, Yang Z, Kuang Y D, Hitz E, Jia C, Gong A, Jiang F, Zhu J Y, Yang B, Xie J, Hu L B. Adv. Mater., 2017, 29(30): 1701756.
[38]
Guo L P, Gong J, Song C Y, Zhao Y L, Tan B E, Zhao Q, Jin S B. ACS Energy Lett., 2020, 5(4): 1300.

doi: 10.1021/acsenergylett.0c00394
[39]
Fu Y, Wang G, Ming X, Liu X H, Hou B F, Mei T, Li J H, Wang J Y, Wang X B. Carbon, 2018, 130: 250.

doi: 10.1016/j.carbon.2017.12.124
[40]
Huo B B, Jiang D G, Cao X Y, Liang H, Liu Z, Li C W, Liu J Q. Carbon, 2019, 142: 13.

doi: 10.1016/j.carbon.2018.10.008
[41]
Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, Zhu J. Adv. Mater., 2017, 29(5):1604031.
[42]
Li Y J, Gao T T, Yang Z, Chen C J, Kuang Y D, Song J W, Jia C, Hitz E M, Yang B, Hu L B. Nano Energy, 2017, 41: 201.

doi: 10.1016/j.nanoen.2017.09.034
[43]
Li C W, Jiang D G, Huo B B, Ding M C, Huang C C, Jia D D, Li H X, Liu C Y, Liu J Q. Nano Energy, 2019, 60: 841.

doi: 10.1016/j.nanoen.2019.03.087
[44]
Li W G, Li Z, Bertelsmann K, Fan D E. Adv. Mater., 2019, 31(29): e1900720.
[45]
Wang X, Liu Q, Wu S, Xu B, Xu H. Adv. Mater., 2019, 31: e1807716.
[46]
Zada I, Zhang W, Sun P, Imtiaz M, Iqbal N, Ghani U, Naz R, Zhang Y X, Li Y, Gu J J, Liu Q L, Pantelić D, Jelenković B, Zhang D. Appl. Mater. Today, 2020, 20: 100669.
[47]
Sun Z Z, Li W Z, Song W L, Zhang L C, Wang Z K. J. Mater. Chem. A, 2020, 8(1): 349.

doi: 10.1039/C9TA10898J
[48]
Qiao P Z, Wu J X, Li H Z, Xu Y C, Ren L P, Lin K, Zhou W. ACS Appl. Mater. Interfaces, 2019, 11(7): 7066.

doi: 10.1021/acsami.8b20665
[49]
Yu Z C, Wu P Y. Adv. Mater. Technol., 2020, 5(6): 2000065.
[50]
Zhao F, Zhou X Y, Shi Y, Qian X, Alexander M, Zhao X P, Mendez S, Yang R G, Qu L T, Yu G H. Nat. Nanotechnol., 2018, 13(6): 489.

doi: 10.1038/s41565-018-0097-z pmid: 29610528
[51]
Ju M M, Yang Y W, Zhao J Q, Yin X T, Wu Y T, Que W X. J. Adv. Dielect., 2019, 9(6): 1950047.
[52]
Xu W Z, Xing Y, Liu J, Wu H P, Cui Y, Li D W, Guo D Y, Li C R, Liu A P, Bai H. ACS Nano, 2019, 13(7): 7930.

doi: 10.1021/acsnano.9b02331
[53]
Zhang Q, Yi G, Fu Z, Yu H T, Chen S, Quan X. ACS Nano, 2019, 13(11): 13196.

doi: 10.1021/acsnano.9b06180 pmid: 31633904
[54]
Zhao J Q, Yang Y W, Yang C H, Tian Y P, Han Y, Liu J, Yin X T, Que W X. J. Mater. Chem. A, 2018, 6(33): 16196.

doi: 10.1039/C8TA05569F
[55]
Finnerty C, Zhang L, Sedlak D L, Nelson K L, Mi B X. Environ. Sci. Technol., 2017, 51(20): 11701.

doi: 10.1021/acs.est.7b03040 pmid: 28892371
[56]
Chen R, Wang X, Gan Q M, Zhang T Q, Zhu K H, Ye M M. J. Mater. Chem. A, 2019, 7(18): 11177.

doi: 10.1039/C9TA02002K
[57]
Shan X L, Lin Y W, Zhao A Q, Di Y S, Hu Y J, Guo Y J, Gan Z X. Nanotechnology, 2019, 30(42): 425403.
[58]
Wang X Y, Xue J Z, Ma C F, He T, Qian H S, Wang B, Liu J W, Lu Y. J. Mater. Chem. A, 2019, 7(28): 16696.

doi: 10.1039/C9TA02210D
[59]
Wang Y C, Wang C Z, Song X J, Megarajan S K, Jiang H Q. J. Mater. Chem. A, 2018, 6(3): 963.

doi: 10.1039/C7TA08972D
[60]
Wang C Z, Wang Y C, Song X J, Huang M H, Jiang H Q. Adv. Sustainable Syst., 2019, 3(1): 1800108.
[61]
Zhou X Y, Zhao F, Guo Y H, Rosenberger B, Yu G H. Sci. Adv., 2019, 5(6): eaaw5484.

doi: 10.1126/sciadv.aaw5484
[62]
Xu N, Hu X Z, Xu W C, Li X Q, Zhou L, Zhu S N, Zhu J. Adv. Mater., 2017, 29(28): 1606762.
[63]
Lim E L, Yap C C, Jumali M H H, Teridi M A M, Teh C H. Nano Micro Lett., 2017, 10(2): 27.

doi: 10.1007/s40820-017-0182-0
[64]
Lee J, Kim J, Kim S, Min D H. Adv. Drug Deliv. Rev., 2016, 105: 275.

doi: 10.1016/j.addr.2016.06.001
[65]
Zheng S X, Tu Q S, Urban J J, Li S F, Mi B X. ACS Nano, 2017, 11(6): 6440.

doi: 10.1021/acsnano.7b02999
[66]
Yang K J, Pan T T, Hong S, Zhang K, Zhu X Y, Chen B L. Environ. Sci.: Nano, 2020, 7(8): 2373.
[67]
Chen L, Shi G S, Shen J, Peng B Q, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, Xu G, Liu G P, Zeng J R, Zhang L J, Yang Y Z, Zhou G Q, Wu M H, Jin W Q, Li J Y, Fang H P. Nature, 2017, 550(7676): 380.

doi: 10.1038/nature24044
[68]
Zhou T Z, Wu C, Wang Y L, Tomsia A P, Li M Z, Saiz E, Fang S L, Baughman R H, Jiang L, Cheng Q F. Nat. Commun., 2020, 11(1): 2077.

doi: 10.1038/s41467-020-15991-6
[69]
Zedan A F, Moussa S, Terner J, Atkinson G, El-Shall M S. ACS Nano, 2013, 7(1): 627.

doi: 10.1021/nn304775h
[70]
Ni Y, Kan C X, Gao Q, Wei J J, Xu H Y, Wang C S. J. Phys. D: Appl. Phys., 2016, 49(5): 055302.
[71]
Zhou L, Tan Y L, Ji D X, Zhu B, Zhang P, Xu J, Gan Q Q, Yu Z F, Zhu J. Sci. Adv., 2016, 2(4): e1501227.

doi: 10.1126/sciadv.1501227
[72]
Liu T. Materials connect., 2019.
[73]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2): 1.
[74]
Xu J G, Zhao M Q, Wang Y C, Yao W, Chen C, Anasori B, Sarycheva A, Ren C G, Mathis T, Gomes L, Liang Z H, Gogotsi Y. ACS Energy Lett., 2016, 1(6): 1094.

doi: 10.1021/acsenergylett.6b00488
[75]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306
[76]
Zhang H, Wang L B, Chen Q, Li P, Zhou A G, Cao X X, Hu Q K. Mater. Des., 2016, 92: 682.

doi: 10.1016/j.matdes.2015.12.084
[77]
Zhang X H, Xue M Q, Yang X H, Wang Z P, Luo G S, Huang Z D, Sui X L, Li C S. RSC Adv., 2015, 5(4): 2762.

doi: 10.1039/C4RA13800G
[78]
Ciou J H, Li S H, Lee P S. Small, 2019, 15(38): e1903281.
[79]
Wang S H, Liu Y L, Lü Q F, Zhuang H P. J. Mol. Liq., 2020, 297: 111810.
[80]
Agresti A, Pazniak A, Pescetelli S, Di Vito A, Rossi D, Pecchia A, Auf der Maur M, Liedl A, Larciprete R, Kuznetsov, D V, Saranin D, Di Carlo A. Nat. Mater., 2019, 18: 1228.

doi: 10.1038/s41563-019-0478-1 pmid: 31501556
[81]
Fu H C, Ramalingam V, Kim H, Lin C H, Fang X S, Alshareef H N, He J H. Adv. Energy Mater., 2019, 9(22): 1900180.
[82]
Kim S J, Koh H J, Ren C G, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y, Jung H T. ACS Nano, 2018, 12(2): 986.

doi: 10.1021/acsnano.7b07460
[83]
Ma Y N, Yue Y, Zhang H, Cheng F, Zhao W Q, Rao J Y, Luo S J, Wang J, Jiang X L, Liu Z T, Liu N S, Gao Y H. ACS Nano, 2018, 12(4): 3209.

doi: 10.1021/acsnano.7b06909
[84]
Wang K L, Zheng B C, Mackinder M, Baule N, Qiao H, Jin H, Schuelke T, Fan Q H. Energy Storage Mater., 2019, 20: 299.
[85]
Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef H N. Adv. Energy Mater., 2018, 8(13): 1703043.
[86]
Wei S C, Xie Y, Xing Y D, Wang L C, Ye H Q, Xiong X, Wang S, Han K. J. Membr. Sci., 2019, 582: 414.

doi: 10.1016/j.memsci.2019.03.085
[87]
Li J, Li X, van der Bruggen B. Environ. Sci.: Nano, 2020, 7(5): 1289.
[88]
Yu L P, Bati A S R, Grace T S L, Batmunkh M, Shapter J G. Adv. Energy Mater., 2019, 9(31): 1901063.
[89]
Xiao R, Zhao C X, Zou Z Y, Chen Z P, Tian L, Xu H T, Tang H, Liu Q Q, Lin Z X, Yang X F. Appl. Catal. B: Environ., 2020, 268: 118382.
[90]
Attanayake N H, Abeyweera S C, Thenuwara A C, Anasori B, Gogotsi Y, Sun Y G, Strongin D R. J. Mater. Chem. A, 2018, 6(35): 16882.

doi: 10.1039/C8TA05033C
[91]
Wang P, Cui H, Wang C X. Nano Energy, 2019, 66: 104196.
[92]
Li Y, Tian X, Gao S P, Jing L, Li K R, Yang H T, Fu F F, Lee J Y, Guo Y X, Ho J S, Chen P Y. Adv. Funct. Mater., 2020, 30(5): 1907451.
[93]
Yun T, Kim H, Iqbal A, Cho Y S, Lee G S, Kim M K, Kim S J, Kim D, Gogotsi Y, Kim S O, Koo C M. Adv. Mater., 2020, 32(9): e1906769.
[94]
Jun B M, Kim S, Heo J, Park C M, Her N, Jang M, Huang Y, Han J, Yoon Y. Nano Res., 2019, 12(3): 471.

doi: 10.1007/s12274-018-2225-3
[95]
Zheng W, Sun Z M, Zhang P G, Tian W B, Wang Y, Zhang Y M. Cailiao Daobao, 2017, 31(9):14.
(郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 材料导报, 2017, 31(9): 14.)
[96]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Borsoum M W. ACS Nano, 2012, 6(2):1322.

doi: 10.1021/nn204153h
[97]
Deng Y Q, Shang T X, Wu Z T, Tao Y, Luo C, Liang J C, Han D L, Lyu R Y, Qi C S, Lv W, Kang F Y, Yang Q H. Adv. Mater., 2019, 31(43): e1902432.
[98]
Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X. Mater. Des., 2017, 114: 161.

doi: 10.1016/j.matdes.2016.10.053
[99]
Li T F, Yao L L, Liu Q L, Gu J J, Luo R C, Li J H, Yan X D, Wang W Q, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Angew. Chem. Int. Ed., 2018, 57(21): 6115.

doi: 10.1002/anie.v57.21
[100]
Xie X H, Xue Y, Li L, Chen S G, Nie Y, Ding W, Wei Z D. Nanoscale, 2014, 6(19): 11035.

doi: 10.1039/C4NR02080D
[101]
Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L. Angew. Chem. Int. Ed., 2018, 57(47): 15491.

doi: 10.1002/anie.v57.47
[102]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.

doi: 10.1038/nature13970
[103]
Zijlstra P, Paulo P M R, Orrit M. Nat. Nanotechnol., 2012, 7(6): 379.

doi: 10.1038/nnano.2012.51 pmid: 22504707
[104]
Wang C L, Astruc D. Chem. Soc. Rev., 2014, 43(20): 7188.

doi: 10.1039/C4CS00145A
[105]
Xu D X, Li Z D, Li L S, Wang J. Adv. Funct. Mater., 2020, 30(47): 2000712.
[106]
Bakshi U A, Bakshi A V. Time Varying Fields and Maxwell’s Equations, 2009. 12.
[107]
Li R Y, Zhang L B, Shi L, Wang P. ACS Nano, 2017, 11(4): 3752.

doi: 10.1021/acsnano.6b08415
[108]
Rasool K, Helal M, Ali A, Ren C G, Gogotsi Y, Mahmoud K A. ACS Nano, 2016, 10(3): 3674.

doi: 10.1021/acsnano.6b00181
[109]
Wang X Z, He Y R, Liu X, Cheng G, Zhu J Q. Appl. Energy, 2017, 195: 414.

doi: 10.1016/j.apenergy.2017.03.080
[110]
Chang Y H, Wang Z G, Shi Y E, Ma X C, Ma L, Zhang Y Q, Zhan J H. J. Mater. Chem. A, 2018, 6(23): 10939.

doi: 10.1039/C8TA02700E
[111]
Li T T, Fang Q L, Lin H B, Liu F. J. Mater. Chem. A, 2019, 7(29): 17505.

doi: 10.1039/C9TA03865E
[112]
Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. ACS Appl. Mater. Interfaces, 2019, 11(40): 36589.

doi: 10.1021/acsami.9b10606
[113]
Zhao X, Zha X J, Tang L S, Pu J H, Ke K, Bao R Y, Liu Z Y, Yang M B, Yang W. Nano Res., 2020, 13(1): 255.

doi: 10.1007/s12274-019-2608-0
[114]
Fei J P, Koh S W, Tu W G, Ge J Y, Rezaeyan H, Hou S, Duan H W, Lam Y C, Li H. Adv. Sustainable Syst., 2020, 4(9): 2000102.
[115]
Zhao Y, Li Z H, Song S L, Yang K R, Liu H, Yang Z, Wang J C, Yang B, Lin Q. Adv. Funct. Mater., 2019, 29(31): 1901474.
[116]
Hou J, Liu M S, Zhang H C, Song Y L, Jiang X C, Yu A B, Jiang L, Su B. J. Mater. Chem. A, 2017, 5(25): 13138.

doi: 10.1039/C7TA03100A
[117]
Gupta M K, Martin J R, Dollinger B R, Hattaway M E, Duvall C L. Adv. Funct. Mater., 2017, 27(47): 1704107.
[118]
Wang P, Sun J F, Lou Z C, Fan F G, Hu K, Sun Y, Gu N. Adv. Mater., 2016, 28(48): 10801.

doi: 10.1002/adma.201603632
[119]
Wang J, Tang F, Wang Y, Lu Q P, Liu S Q, Li L D. ACS Appl. Mater. Interfaces, 2020, 12(1): 1558.

doi: 10.1021/acsami.9b18646
[120]
Yi-Zhou Z, Hyuck L K, Anjum D H, Rachid S, Qiu J, Hyunho K, Alshareef H N. Sci. Adv., 2018, 4: eaat0098.

doi: 10.1126/sciadv.aat0098
[121]
Kudo K, Ishida J, Syuu G, Sekine Y, Ikeda-Fukazawa T. J. Chem. Phys., 2014, 140(4): 044909.
[122]
Sekine Y, Ikeda-Fukazawa T. J. Chem. Phys., 2009, 130(3): 034501.
[123]
Wang T, Gunasekaran S. J. Appl. Polym. Sci., 2006, 101(5): 3227.

doi: 10.1002/(ISSN)1097-4628
[124]
Zhao F, Guo Y H, Zhou X Y, Shi W, Yu G H. Nat. Rev. Mater., 2020, 5(5): 388.

doi: 10.1038/s41578-020-0182-4
[125]
Zhang X, Zhao X Y, Xue T T, Yang F, Fan W, Liu T X. Chem. Eng. J., 2020, 385: 123963.
[126]
Liu J F, Yang H, Liu K Q, Miao R, Fang Y. ChemSusChem, 2020, 13(4): 749.

doi: 10.1002/cssc.v13.4
[127]
Pinto J, Athanassiou A, Fragouli D. J. Environ. Manag., 2018, 206: 872.

doi: 10.1016/j.jenvman.2017.11.060
[128]
Zhao X, Peng L M, Tang C Y, Pu J H, Zha X J, Ke K, Bao R Y, Yang M B, Yang W. Mater. Horiz., 2020, 7(3): 855.

doi: 10.1039/C9MH01443H
[129]
Ming X, Guo A K, Zhang Q, Guo Z Z, Yu F, Hou B F, Wang Y, Homewood K P, Wang X B. Carbon, 2020, 167: 285.

doi: 10.1016/j.carbon.2020.06.023
[130]
Zhao X, Zha X J, Pu J H, Bai L, Bao R Y, Liu Z Y, Yang M B, Yang W. J. Mater. Chem. A, 2019, 7(17): 10446.

doi: 10.1039/C9TA00176J
[131]
Wang Z, Yan Y T, Shen X P, Jin C D, Sun Q F, Li H Q. J. Mater. Chem. A, 2019, 7(36): 20706.

doi: 10.1039/c9ta04914b
[132]
Liu K K, Jiang Q S, Tadepalli S, Raliya R, Biswas P, Naik R R, Singamaneni S. ACS Appl. Mater. Interfaces, 2017, 9(8): 7675.

doi: 10.1021/acsami.7b01307
[133]
Zhu M W, Li Y J, Chen F J, Zhu X Y, Dai J Q, Li Y F, Yang Z, Yan X J, Song J W, Wang Y B, Hitz E, Luo W, Lu M H, Yang B, Hu L B. Adv. Energy Mater., 2018, 8(4): 1701028.
[134]
Chen T J, Wu Z Z, Liu Z Y, Aladejana J T, Wang X A, Niu M, Wei Q H, Xie Y Q. ACS Appl. Mater. Interfaces, 2020, 12(17): 19511.

doi: 10.1021/acsami.0c01815
[135]
Ma N, Fu Q, Hong Y X, Hao X Y, Wang X G, Ju J, Sun J L. ACS Appl. Mater. Interfaces, 2020, 12(15): 18165.

doi: 10.1021/acsami.0c02481
[136]
Li K R, Chang T H, Li Z P, Yang H T, Fu F F, Li T T, Ho J S, Chen P Y. Adv. Energy Mater., 2019, 9(34): 1901687.
[137]
Lu Y, Fan D Q, Xu H L, Min H H, Lu C H, Lin Z X, Yang X F. Sol. RRL, 2020, 4(9): 2000232.
[138]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.

doi: 10.1126/science.aag2421 pmid: 27609888
[139]
Cao W T, Ma C, Tan S, Ma M G, Wan P B, Chen F. Nano Micro Lett., 2019, 11(1): 1.
[140]
Zhang C J, Pinilla S, McEvoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X H, Duesberg G S, Gogotsi Y, Nicolosi V. Chem. Mater., 2017, 29(11): 4848.

doi: 10.1021/acs.chemmater.7b00745
[141]
Li Z Y, Wang L B, Sun D D, Zhang Y D, Liu B Z, Hu Q K, Zhou A G. Mater. Sci. Eng.: B, 2015, 191: 33.

doi: 10.1016/j.mseb.2014.10.009
[142]
Fan Z M, Wang Y S, Xie Z M, Wang D L, Yuan Y, Kang H J, Su B L, Cheng Z J, Liu Y Y. Adv. Sci., 2018, 5(10): 1800750.
[143]
Wu Z T, Shang T X, Deng Y Q, Tao Y, Yang Q H. Adv. Sci., 2020, 7(7): 1903077.
[144]
Kang K M, Kim D W, Ren C G, Cho K M, Kim S J, Choi J H, Nam Y T, Gogotsi Y, Jung H T. ACS Appl. Mater. Interfaces, 2017, 9(51): 44687.

doi: 10.1021/acsami.7b10932
[145]
Ding L, Li L B, Liu Y C, Wu Y, Lu Z, Deng J J, Wei Y Y, Caro J, Wang H H. Nat. Sustain., 2020, 3(4): 296.

doi: 10.1038/s41893-020-0474-0
[146]
Rasool K, Pandey R P, Rasheed P A, Buczek S, Gogotsi Y, Mahmoud K A. Mater. Today, 2019, 30: 80.

doi: 10.1016/j.mattod.2019.05.017
[147]
Ronchi R M, Arantes J T, Santos S F. Ceram. Int., 2019, 45(15): 18167.

doi: 10.1016/j.ceramint.2019.06.114
[1] Rui Chen*, Jingjing Wang, Hongzhi Qiao. Organic Photothermal Conversion Materials and Their Application in Photothermal Therapy [J]. Progress in Chemistry, 2017, 29(2/3): 329-336.