中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1198-1212 DOI: 10.7536/PC150127 Previous Articles   Next Articles

• Review and comments •

Protein Resistance Adsorption Mechanism and Applications of Zwitterionic Polymers

Ci Jiliang1,2, Kang Hongliang2*, Liu Chenguang1*, He Aihua1, Liu Ruigang2*   

  1. 1. Key Laboratory of Rubber-Plastics, Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 26604;
    2. State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21174150, 51003108).
PDF ( 5794 ) Cited
Export

EndNote

Ris

BibTeX

Zwitterionic polymers have both anion and cation groups in one molecular chain. They include several types of polymers such as phosphorylcholine-, sulphobetaine-, carboxyl betaine-, and mixed-charge polymer, according to the different macromolecular structures. They can be cationic or anionic polyelectrolyte by adjusting the pH values in aqueous solutions. They also have a particular anti-polyelectrolyte behavior. Moreover, they have been endowed with lots of other excellent properties, such as strong hydrophilicity, good thermo and chemical stabilities, excellent biocompatibility, and antifouling property. Various zwitterionic polymer materials have been successfully applied in many fields. In this review, the recent progress in antifouling materials, drug delivery carries, and detection and separation materials are summarized. Especially, the developments in the mechanism of protein resistance adsorption are highlighted. The hydration of zwitterionic polymers plays an important role in resisting proteins adsorption, which dominatingly depends on the chemical structures of zwitterionic polymers, such as polymer density, cationic and anionic species and their space length, and charge arrangement. Just based on the properties of protein resistance adsorption and polyelectrolyte, zwitterionic polymers are also used as a block in copolymers or gels to prepare nanocarriers for drug delivery. In preparation of detection and separation materials, the research progress of polymer monolithic columns are particularly summarized, for their excellent stability for resisting a long-term solvent washing and high temperature. In addition, the development perspectives of zwitterionic polymers are also discussed.

Contents
1 Introduction
2 Nonfouling mechanisms of zwitterionic polymers
3 Applications of zwitterionic polymers
3.1 Antifouling materials
3.2 Drug delivery nanocarriers
3.3 Detection and separation materials
3.4 Other applications
4 Conclusion and outlook

CLC Number: 

[1] Lowe A B, McCormick C L. Chem. Rev., 2002, 102: 4177.
[2] 毛程(Mao C), 丁伟(Ding W), 于涛(Yu T), 曲广淼(Qu G M). 钻井液与完井液(Drilling Fluid & Completion Fluid), 2011, 28(5): 5.
[3] 丁伟(Ding W), 毛程(Mao C), 韦兆水(Wei Z S), 李明(Li M), 于涛(Yu T), 曲广淼(Qu G M). 应用化学(Chinese Journal of Applied Chemistry), 2011, 28(5): 555.
[4] 何晓燕(He X Y), 周文瑞(Zhou W R), 徐晓君(Xu X J), 杨武(Yang W). 化学进展(Progress in Chemistry), 2013, 25(6): 1023.
[5] 刘红艳(Liu H Y), 周健(Zhou J). 化学进展(Progress in Chemistry), 2012, 24(11): 2177.
[6] 李倩(Li Q), 田野(Tian Y), 王晓琳(Wang X L). 高分子通报(Polymer Bulletin), 2012,(3): 1.
[7] Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. J. Biomed. Mater. Res., 1992, 26: 1543.
[8] Chen S F, Zheng J, Li L, Jiang S Y. J. Am. Chem. Soc., 2005, 127: 14473.
[9] Zheng J, Li L, Tsao H K, Sheng Y J, Chen S F, Jiang S Y. Biophys. J., 2005, 89: 158.
[10] He Y, Chang Y, Hower J C, Zheng J, Chen S F, Jiang S Y. Phys. Chem. Chem. Phys., 2008, 10: 5539.
[11] He Y, Hower J, Chen S F, Bernards M T, Chang Y, Jiang S Y. Langmuir, 2008, 24: 10358.
[12] Hower J C, He Y, Jiang S Y. J. Chem. Phys., 2008, 129: 225.
[13] Hower J C, Bernards M T, Chen S F, Tsao H K, Sheng Y J, Jiang S Y. J. Phys. Chem. B, 2008, 113: 197.
[14] Ostuni E, Chapman R G, Liang M N, Meluleni G, Pier G, Ingber D E, Whitesides G M. Langmuir, 2001, 17: 6336.
[15] Chapman R G, Ostuni E, Yan L, Whitesides G M. Langmuir, 2000, 16: 6927.
[16] Holmlin R E, Chen X X, Chapman R G, Takayama S, Whitesides G M. Langmuir, 2001, 17: 2841.
[17] Shao Q, Mi L, Han X, Bai T, Liu S, Li Y, Jiang S Y. J. Phys. Chem. B, 2014, 118: 6956.
[18] Shao Q, He Y, White A D, Jiang S Y. J. Phys. Chem. B, 2010, 114: 16625.
[19] Shao Q, Jiang S Y. J. Phys. Chem. B, 2013, 117: 1357.
[20] Shao Q, Jiang S Y. J. Phys. Chem. B, 2014, 118: 7630.
[21] Liu X S, Huang H Y, Jin Q, Ji J. Langmuir, 2011, 27: 5242.
[22] Chen S F, Liu L Y, Jiang S Y. Langmuir, 2006, 22: 2418.
[23] Feng W, Zhu S P, Ishihara K, Brash J L. Langmuir, 2005, 21: 5980.
[24] Feng W, Brash J L, Zhu S P. Biomaterials, 2006, 27: 847.
[25] Mi L, Jiang S Y. Angew. Chem. Int. Ed., 2014, 53: 1746.
[26] Zhang Z, Zhang M, Chen S F, Horbett T A, Ratner B D, Jiang S Y. Biomaterials, 2008, 29: 4285.
[27] Shao Q, He Y, White A D, Jiang S Y. J. Chem. Phys., 2012, 136: 698.
[28] Vaisocherová H, Yang W, Zhang Z, Cao Z, Cheng G, Piliarik M, Homola J, Jiang S Y. Anal. Chem., 2008, 80: 7894.
[29] Yang Y F, Li Y, Li Q L, Wan L S, Xu Z K. J. Membr. Sci., 2010, 362: 255.
[30] Yang W, Zhang L, Wang S, White A D, Jiang S Y. Biomaterials, 2009, 30: 5617.
[31] Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A. Langmuir, 2008, 24: 8772.
[32] Carr L R, Xue H, Jiang S Y. Biomaterials, 2011, 32: 961.
[33] Cheng G, Zhang Z, Chen S, Bryers J D, Jiang S Y. Biomaterials, 2007, 28: 4192.
[34] Jiang S Y, Cao Z. Adv. Mater., 2010, 22: 920.
[35] Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan L M. Chem. Soc. Rev., 2008, 37: 1783.
[36] Krause J E, Brault N D, Li Y, Xue H, Zhou Y, Jiang S Y. Macromolecules, 2011, 44: 9213.
[37] Gao C, Li G, Xue H, Yang W, Zhang F, Jiang S Y. Biomaterials, 2010, 31: 1486.
[38] Zhao J, Shi Q, Luan S, Song L, Yang H, Shi H, Jin J, Li X, Yin J, Stagnaro P. J. Membr. Sci., 2011, 369: 5.
[39] Mi L, Xue H, Li Y, Jiang S Y. Adv. Funct. Mater., 2011, 21: 4028.
[40] Sundaram H S, Ella-Menye J-R, Brault N D, Shao Q, Jiang S Y. Chem. Sci., 2014, 5: 200.
[41] Chang Y, Shih Y J, Lai C J, Kung H H, Jiang S Y. Adv. Funct. Mater., 2013, 23: 1100.
[42] Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R, Irvin C, Ratner B D, Jiang S Y. Nat. Biotechnol., 2013, 31: 553.
[43] Chen S F, Jiang S Y. Adv. Mater., 2008, 20: 335.
[44] Li G, Cheng G, Xue H, Chen S F, Zhang F B, Jiang S Y. Biomaterials, 2008, 29: 4592.
[45] Cho W K, Kong B, Choi I S. Langmuir, 2007, 23: 5678.
[46] Yang R, Xu J, Ozaydin-Ince G, Wong S Y, Gleason K K. Chem. Mater., 2011, 23: 1263.
[47] Aldred N, Clare A S. Biofouling, 2008, 24: 351.
[48] Cao Z, Yu Q, Xue H, Cheng G, Jiang S. Angew. Chem., 2010, 122: 3859.
[49] Chen X, McRae S, Parelkar S, Emrick T. Bioconjugate Chem., 2009, 20: 2331.
[50] Yuan Y Y, Mao C Q, Du X J, Du J Z, Wang F, Wang J. Adv. Mater., 2012, 24: 5476.
[51] Jia G, Cao Z, Xue H, Xu Y, Jiang S Y. Langmuir, 2009, 25: 3196.
[52] Zhang L, Xue H, Cao Z, Keefe A, Wang J, Jiang S Y. Biomaterials, 2011, 32: 4604.
[53] Yang W, Liu S, Bai T, Keefe A J, Zhang L, Ella-Menye J-R, Li Y, Jiang S Y. Nano Today, 2014, 9: 10.
[54] Wang Z, Ma G, Zhang J, Lin W, Ji F, Bernards M T, Chen S. Langmuir, 2014, 30: 3764.
[55] Takegawa Y, Deguchi K, Keira T, Ito H, Nakagawa H, Nishimura S I. J. Chromatogr. A, 2006, 1113: 177.
[56] Hu W, Haraguchi H. Anal. Chem., 1994, 66: 765.
[57] Heller D N, Nochetto C B. Rapid Commun. Mass Spectrom., 2008, 22: 3624.
[58] Jiang W, Fischer G, Girmay Y, Irgum K. J. Chromatogr. A, 2006, 1127: 82.
[59] An Q F, Sun W D, Zhao Q, Ji Y L, Gao C J. J. Membr. Sci., 2013, 431: 171.
[60] Malerod H, Rogeberg M, Tanaka N, Greibrokk T, Lundanes E. J. Chromatogr. A, 2013, 1317: 129.
[61] Yang R, Jang H, Stocker R, Gleason K K. Adv. Mater., 2014, 26: 1711.
[62] Latour, R A. J. Biomed. Mater. Res. A, 2006, 78A: 843.
[63] Zhang Z, Chen S F, Chang Y, Jiang S Y. J. Phys. Chem. B, 2006, 110: 10799.
[64] Metzke M, Bai J Z, Guan Z. J. Am. Chem. Soc., 2003, 125: 7760.
[65] Schlenoff J B. Langmuir, 2014, 30: 9625.
[66] Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, Chung U I, Nakamura K, Kawaguchi H. Nat. Mater., 2004, 3: 829.
[67] Cheng G, Xue H, Zhang Z, Chen S F, Jiang S Y. Angew. Chem. Int. Ed., 2008, 47 (46): 8831.
[68] Cao Z, Brault N, Xue H, Keefe A, Jiang S Y. Angew. Chem. Int. Ed., 2011, 50: 6102.
[69] Cao Z, Mi L, Mendiola J, Ella-Menye J-R, Zhang L, Xue H, Jiang S Y. Angew. Chem. Int. Ed., 2012, 51: 2602.
[70] Sundaram H S, Ella-Menye J-R, Brault N D, Shao Q, Jiang S Y. Chem. Sci., 2014, 5: 200.
[71] Kirk J T, Brault N D, Baehr-Jones T, Hochberg M, Jiang S Y, Ratner D M. Biosens. Bioelectron., 2013, 42: 100.
[72] Nguyen A T, Baggerman J, Paulusse J M J, van Rijn C J M, Zuilhof H. Langmuir, 2011, 27: 2587.
[73] Yang J, Lv J, Behl M, Lendlein A, Yang D, Zhang L, Shi C, Guo J, Feng Y. Macromol. Biosci., 2013, 13: 1681.
[74] Chien H W, Tsai C C, Tsai W B, Wang M J, Kuo W H, Wei T C, Huang S T. Colloid. Surface. B, 2013, 107: 152.
[75] Liu Q, Singh A, Liu L. Biomacromolecules, 2012, 14: 226.
[76] Alswieleh A M, Cheng N, Canton I, Ustbas B, Xue X, Ladmiral V, Xia S, Ducker R E, El Zubir O, Cartron M L, Hunter C N, Leggett G J, Armes S P. J. Am. Chem. Soc., 2014, 136: 9404.
[77] Tyrrell Z L, Shen Y, Radosz M. Prog. Polym. Sci., 2010, 35: 1128.
[78] R?sler A, Vandermeulen G W M, Klok H A. Adv. Drug Deliver. Rev., 2012, 64, Supplement: 270.
[79] Chiang Y C, Chang Y, Chuang C J, Ruaan R C. J. Membr. Sci., 2012, 389: 76.
[80] Xu J P, Ji J, Chen W D, Shen J C. J. Control. Release, 2005, 107: 502.
[81] Yusa S i, Fukuda K, Yamamoto T, Ishihara K, Morishima Y. Biomacromolecules, 2005, 6: 663.
[82] Du J, Tang Y, Lewis A L, Armes S P. J. Am. Chem. Soc., 2005, 127: 17982.
[83] Shen L, Du J Z, Armes S P, Liu S Y. Langmuir, 2008, 24: 10019.
[84] Yu B, Lowe A B, Ishihara K. Biomacromolecules, 2009, 10: 950.
[85] Licciardi M, Tang Y, Billingham N C, Armes S P, Lewis A L. Biomacromolecules, 2005, 6: 1085.
[86] Wen Y, Zhang Z, Li J. Adv. Funct. Mater., 2014, 24: 3874.
[87] Zhang J, Wang Z, Lin W, Chen S F. Biomaterials, 2014, 35: 7909.
[88] 张景迅(Zhang J X), 魏雨(Wei Y), 范娟娟(Fan J J), 蔡素燕(Cai S Y), 鲁浩杰(Lu H J). 应用化工(Applied Chemical Industry), 2014, 43(9): 1601.
[89] Zhang L, Sinclair A, Cao Z, Ella-Menye J-R, Xu X, Carr L R, Pun S H, Jiang S Y. Small, 2013, 9: 3439.
[90] Zhu Y, Sundaram H S, Liu S, Zhang L, Xu X, Yu Q, Xu J, Jiang S Y. Biomacromolecules, 2014, 15: 1845.
[91] Cao J, Xie X, Lu A, He B, Chen Y, Gu Z, Luo X. Biomaterials, 2014, 35: 4517.
[92] He C H, Hu Y P, Yin L C, Tang C, Yin C H. Biomaterials, 2010, 31: 3657.
[93] Cheng G, Mi L, Cao Z, Xue H, Yu Q, Carr L, Jiang S Y. Langmuir, 2010, 26: 6883.
[94] Wang D, Wu T, Wan X J, Wang X F, Liu S Y. Langmuir, 2007, 23: 11866.
[95] Obata Y, Tajima S, Takeoka S. J. Control. Release, 2010, 142: 267.
[96] Mo R, Sun Q, Li N, Zhang C. Biomaterials, 2013, 34: 2773.
[97] Stach H. Angew. Chem., 1951, 63: 263.
[98] Small H, Stevens T S, Bauman W C. Anal. Chem., 1975, 47: 1801.
[99] Haddad P R, Nesterenko P N, Buchberger W. J. Chromatogr. A, 2008, 1184: 456.
[100] Okada T. J. Phys. Chem. B, 1997, 101: 7814.
[101] Okada T. Anal. Chem., 1998, 70: 1692.
[102] Okada T. Anal. Chim. Acta, 2005, 540: 139.
[103] Hu W, Takeuchi T, Haraguchi H. Anal. Chem., 1993, 65: 2204.
[104] Hu W, Haddad P R, Hasebe K, Tanaka K, Tong P, Khoo C. Anal. Chem., 1999, 71: 1617.
[105] Glenn K M, Lucy C A. Analyst, 2008, 133: 1581.
[106] Jiang W, Irgum K. Anal. Chem., 2001, 73: 1993.
[107] Viklund C, Irgum K. Macromolecules, 2000, 33: 2539.
[108] Jiang W, Irgum K. Anal. Chem., 2002, 74: 4682.
[109] Jiang W, Irgum K. Anal. Chem., 1998, 71: 333.
[110] Jandera P, Staňková M, Hájek T. J. Sep. Sci., 2013, 36: 2430.
[111] Qiao L, Dou A, Shi X, Li H, Shan Y, Lu X, Xu G. J. Chromatogr. A, 2013, 1286: 137.
[112] Viklund C, Sj?gren A, Irgum K, Nes I. Anal. Chem., 2000, 73: 444.
[113] Jiang W, Awasum J N, Irgum K. Anal. Chem., 2003, 75: 2768.
[114] Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O. J. Am. Chem. Soc., 2009, 131: 2070.
[115] Calvo A, Yameen B, Williams F J, Soler-Illia G J A A, Azzaroni O. J. Am. Chem. Soc., 2009, 131: 10866.
[116] An Q F, Ji Y L, Hung W S, Lee K R, Gao C J. Macromolecules, 2013, 46: 2228.
[117] Liu S Y, Armes S P. Angew. Chem. Int. Ed., 2002, 41: 1413.
[118] Nilsson K P R, Inganas O. Nat. Mater., 2003, 2: 419.
[119] Kim G, Yong Y, Kang H J, Park K, Kim S I, Lee M, Huh N. Biomaterials, 2014, 35: 294.
[120] Zhang L M, Tan Y B, Li Z M. Carbohydr. Polym., 2001, 44: 255.
[121] Hu Z, Zhang L. J. Macromol. Sci. A, 2002, 39: 419.
[122] Foster E L, Xue Z, Roach C M, Larsen E S, Bielawski C W, Johnston K P. ACS Macro Lett., 2014, 3: 867.
[123] Bai T, Liu S, Sun F, Sinclair A, Zhang L, Shao Q, Jiang S. Biomaterials, 2014, 35: 3926.
[124] Liu P, Lu W, Wang W J, Li B G, Zhu S. Langmuir, 2014, 30: 10248.
[1] He Xiaoyan*, Zhou Wenrui, Xu Xiaojun, Yang Wu*. Preparation and Application of Zwitterionic Polymers [J]. Progress in Chemistry, 2013, 25(06): 1023-1030.
[2] Liu Hongyan, Zhou Jian. Biological Applications of Zwitterionic Polymers [J]. Progress in Chemistry, 2012, 24(11): 2187-2197.