荧光内滤效应在环境检测领域的应用
收稿日期: 2020-07-20
修回日期: 2020-11-20
网络出版日期: 2020-12-28
基金资助
国家重点基础研究发展计划(973)项目(2015CB352100)
Inner Filter Effect for Environmental Monitoring
Received date: 2020-07-20
Revised date: 2020-11-20
Online published: 2020-12-28
Supported by
National Basic Research Program of China(2015CB352100)
荧光内滤效应(inner filter effect,IFE)是指吸收体对荧光体激发光或发射光(或对两者同时)的吸收,造成荧光体的荧光强度降低的现象。IFE相较于荧光共振能量转移等技术省却了许多繁琐的标记过程,具有灵敏度高、选择性好和操作简单灵活等优点,在环境检测领域具有广泛的应用前景。吸收体和荧光体是组成IFE传感体系的两个主要单元,两者的光学特性和谱带重叠程度直接影响着IFE的猝灭效率,但可选择的材料相对有限。发掘新型纳米材料,探索合适的吸收体-荧光体组合有助于提高IFE的猝灭效率,增强检测效果。本文综述了近年来IFE在环境检测中的研究进展,包括重金属离子、阴离子和小分子环境污染物等物质的检测,并分析了纳米材料在IFE传感体系中的重要作用,最后探讨了基于IFE的荧光分析方法所面临的挑战及未来的发展方向。
谢勇 , 韩明杰 , 徐钰豪 , 熊晨雨 , 王日 , 夏善红 . 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021 , 33(8) : 1450 -1460 . DOI: 10.7536/PC200748
Inner filter effect(IFE) refers to the phenomenon that the absorber absorbs the excitation and/or emission light of the fluorophore, resulting in the fluorescence quenching of the fluorophore. Compared with fluorescence resonance energy transfer(FRET) or other techniques, IFE avoids cumbersome labeling processes, and has the advantages of high sensitivity, strong selectivity, simple and flexible operation. The IFE-based fluorescent approach has broad application foreground in the field of environmental monitoring. The absorber and the fluorophore are the two main components of the IFE-based sensing system. The optical properties and the spectral overlap of the two directly affect the quenching efficiency of the IFE-based sensing system. There are relatively limited choices of materials for the absorber and the fluorophore. Discovering new nanomaterials and exploring suitable absorber/fluorophore pair are very helpful to improve the quenching efficiency of IFE and enhance the detection performance of the IFE-based fluorescent approach. In this review, we mainly focus on the recent progress of IFE researches for environmental monitoring, including the detection of heavy metal ions, anions and small molecular environmental pollutants. The important effects of nanomaterials in the IFE-based sensing system are analyzed. Finally, the challenges and future developments of the IFE-based fluorescent approach are discussed.
1 Introduction
2 IFE applied to environmental monitoring
2.1 Detection of heavy metal ions
2.2 Detection of anions
2.3 Detection of small molecule environmental pollutants
3 Conclusion and outlook
[1] |
Tian B D, Wu S N, Zhang H, Jiang L, Huo F W. Prog. Chem., 2019, 31(2/3): 413.
(田丹碧, 吴胜男, 张浩, 江凌, 霍峰蔚. 化学进展, 2019, 31(2/3): 413.)
|
[2] |
Chen S, Yu Y L, Wang J H. Anal. Chimica Acta, 2018, 999: 13.
|
[3] |
Zhang J Y, Zhou R H, Tang D D, Hou X D, Wu P. Trac Trends Anal. Chem., 2019, 110: 183.
|
[4] |
Bhatt S, Bhatt M, Kumar A, Vyas G, Gajaria T, Paul P. Colloids Surf. B: Biointerfaces, 2018, 167: 126.
|
[5] |
Qiao G X, Lu D, Tang Y P, Gao J W, Wang Q M. Dyes Pigments, 2019, 163: 102.
|
[6] |
Lu H Z, Xu S F. Anal., 2020, 145(7): 2661.
|
[7] |
Xue D X, Yu F J, Zhang Z J, Yang Y. Sens. Actuat. B: Chem., 2019, 279: 130.
|
[8] |
Feng S A, Gao Z, Liu H, Huang J F, Li X L, Yang Y L. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 212: 286.
|
[9] |
Lu K H, Lin J H, Lin C Y, Chen C F, Yeh Y C. Microchimica Acta, 2019, 186(4): 1.
|
[10] |
Sheng L Y, Huangfu B H, Xu Q H, Tian W L, Li Z J, Meng A, Tan S Q. J. Alloys Compd., 2020, 820: 153191.
|
[11] |
Liu Y S, Li W, Wu P, Ma C H, Wu X Y, Luo S, Liu S X. Microchimica Acta, 2019, 186(8): 1.
|
[12] |
Ming F L, Hou J Z, Hou C J, Yang M, Wang X F, Li J W, Huo D Q, He Q. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 222: 117165.
|
[13] |
Liu S H, Cui J L, Huang J B, Tian B S, Jia F, Wang Z L. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206: 65.
|
[14] |
Huang S, Yang E L, Yao J D, Chu X, Liu Y, Xiao Q. Microchimica Acta, 2019, 186(12): 1.
|
[15] |
Singh V K, Singh V, Yadav P K, Chandra S, Bano D, Kumar V, Koch B, Talat M, Hasan S H. New J. Chem., 2018, 42(15): 12990.
|
[16] |
Zhang Y H, Fang X, Zhao H, Li Z X. Talanta, 2018, 181: 318.
|
[17] |
Wang B G, Lin Y, Tan H, Luo M N, Dai S S, Lu H S, Huang Z Y. Anal., 2018, 143(8): 1906.
|
[18] |
Meng Y T, Jiao Y, Zhang Y, Li Y, Gao Y F, Lu W J, Liu Y, Shuang S M, Dong C. Talanta, 2020, 210: 120653.
|
[19] |
Song S M, Liang F, Li M L, Du F F, Dong W J, Gong X J, Shuang S M, Dong C. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 215: 58.
|
[20] |
Liu Z Q, Yang L, Chen M, Chen Q S. J. Photochem. Photobiol. A, 2020, 388: 112203.
|
[21] |
Xu W, Yu L S, Xu H F, Zhang S Q, Xu W, Lin Y, Zhu X. Microchimica Acta, 2019, 186(10): 1.
|
[22] |
Zare-Moghadam M, Shamsipur M, Molaabasi F, Hajipour-Verdom B. Talanta, 2020, 209: 120521.
|
[23] |
Jigyasa , Kumar D, Arora P, Singh H, Rajput J K. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 230: 118087.
|
[24] |
Nain A, Tseng Y T, Lin Y S, Wei S C, Mandal R P, Unnikrishnan B, Huang C C, Tseng F G, Chang H T. Sens. Actuat. B: Chem., 2020, 321: 128539.
|
[25] |
Wang Y Q, Man Y, Li S S, Wu S B, Zhao X L, Xie F Z, Qu Q S, Zou W S. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 226: 117594.
|
[26] |
Zhou X, Zhao G F, Tan X P, Qian X C, Zhang T, Gui J W, Yang L, Xie X G. Microchimica Acta, 2019, 186(2): 1.
|
[27] |
Yan F Y, Zu F L, Xu J X, Zhou X G, Bai Z J, Ma C, Luo Y M, Chen L. Sens. Actuat. B: Chem., 2019, 287: 231.
|
[28] |
Guo X R, Yue G Q, Huang J Z, Liu C, Zeng Q, Wang L S. ACS Appl. Mater. Interfaces, 2018, 10(31): 26118.
|
[29] |
Zhang Q X, Sun Y, Liu M L, Liu Y. Nanoscale, 2020, 12(3): 1826.
|
[30] |
Chen M, Kutsanedzie F Y H, Cheng W, Agyekum A A, Li H H, Chen Q S. Microchimica Acta, 2018, 185(8): 1.
|
[31] |
Shojaeifard Z, Heidari N, Hemmateenejad B. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 209: 202.
|
[32] |
Guo L, Liu Y, Kong R M, Chen G, Liu Z, Qu F L, Xia L, Tan W H. Anal. Chem., 2019, 91(19): 12453.
|
[33] |
Dalapati R, Biswas S. Chem. Asian J., 2019: asia.201900546.
|
[34] |
Li Y H, Cai J B, Liu F J, Yu H W, Lin F, Yang H, Lin Y, Li S X. Microchimica Acta, 2018, 185(2): 1.
|
[35] |
Ma X M, Sun M, Lin Y, Liu Y J, Luo F, Guo L H, Qiu B, Lin Z Y, Chen G N, Chin. J. Anal. Chem., 2018, 46(1): 1.
(马小明, 孙密, 林悦, 刘银金, 罗芳, 郭隆华, 邱彬, 林振宇, 陈国南. 分析化学, 2018, 46(1): 1.)
|
[36] |
Hu T Y, Yan X, Na W D, Su X G. Microchimica Acta, 2016, 183(7): 2131.
|
[37] |
Yang Y, Zhao J, Weng G J, Li J J, Zhu J, Zhao J W. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 228: 117776.
|
[38] |
Han L, Liu S G, Dong X Z, Liang J Y, Li N B, Luo H Q. J. Hazard. Mater., 2019, 376: 170.
|
[39] |
Li W J, Liu D, Bi X Y, You T Y. Sens. Actuat. A: Phys., 2020, 302: 111794.
|
[40] |
Peng D, Zhang L, Liang R P, Qiu J D. ACS Sens., 2018, 3(5): 1040.
|
[41] |
Khairy G M, Duerkop A. Sens. Actuat. B: Chem., 2019, 281: 878.
|
[42] |
Lan M H, Zhao S J, Wu S L, Wei X F, Fu Y Z, Wu J J, Wang P F, Zhang W J. Nano Res., 2019, 12(10): 2576.
|
[43] |
Smith J A, Singh-Wilmot M A, Carter K P, Cahill C L, Ridenour J A. Cryst. Growth Des., 2019, 19(1): 305.
|
[44] |
Liu L L, Yu Y Z, Zhao X J, Wang Y R, Cheng F Y, Zhang M K, Shu J J, Liu L. Dalton Trans., 2018, 47(23): 7787.
|
[45] |
Du F F, Li G, Gong X J, Guo Z H, Shuang S M, Xian M, Dong C. Sens. Actuat. B: Chem., 2018, 277: 492.
|
[46] |
Jiang X H, Qin D M, Mo G C, Feng J S, Zheng X F, Deng B Y. Anal. Chem., 2019, 91(17): 11455.
|
[47] |
Wu L, Zhu L, Ma J, Li J J, Liu J W, Chen Y P. Microchim. Acta, 2020, 187(5): 273.
|
[48] |
Ge K, Liu J M, Wang P H, Fang G Z, Zhang D D, Wang S. Microchimica Acta, 2019, 186(3): 1.
|
[49] |
Shi L H, Chang D, Zhang G M, Zhang C H, Zhang Y, Dong C, Chu L L, Shuang S M. RSC Adv., 2019, 9(70): 41361.
|
[50] |
Shao H, Xu D, Ding Y D, Hong X, Liu Y C. Microchimica Acta, 2018, 185(4): 1.
|
[51] |
Jia S, Bian C, Sun J Z, Tong J H, Xia S H. Biosens. Bioelectron., 2018, 114: 15.
|
[52] |
Hui Y, Xiong C Y, Bian C, Gui S L, Tong J H, Li Y, Gao C Y, Huang Y Y, Tang W C, Xia S H. Anal. Methods, 2019, 11(20): 2669.
|
[53] |
Hui Y, Liu Y J, Tang W C, Song D, Madou M, Xia S D, Wu T Z. Micromachines, 2019, 10(8): 523.
|
[54] |
Chen C X, Zhao D, Hu T, Sun J, Yang X R. Sens. Actuat. B: Chem., 2017, 241: 779.
|
[55] |
Dong Y Q, Wang R X, Tian W R, Chi Y W, Chen G N. RSC Adv., 2014, 4(8): 3685.
|
[56] |
Zhai Y M, Jin L H, Wang P, Dong S J. Chem. Commun., 2011, 47(29): 8268.
|
[57] |
Shang L, Dong S J. Anal. Chem., 2009, 81(4): 1465.
|
[58] |
Kong Y L, Cheng Q, He Y, Ge Y L, Zhou J G, Song G W. Food Chem., 2020, 312: 126089.
|
[59] |
Wang X F, Hou J Z, Shen X, He Q, Hou C J, Huo D Q. Anal. Methods, 2020, 12(8): 1107.
|
[60] |
Liu Y S, Luo S, Wu P, Ma C H, Wu X Y, Xu M C, Li W, Liu S X. Anal. Chimica Acta, 2019, 1090: 133.
|
[61] |
Liu J S, Liu C F, Zhou Z H. Microchimica Acta, 2019, 186(5): 1.
|
[62] |
Shojaeifard Z, Hemmateenejad B, Shamsipur M, Ahmadi R. J. Photochem. Photobiol. A: Chem., 2019, 384: 112030.
|
[63] |
Zhang L N, Wang Z W, Zhang J B, Jia J B, Zhao D, Fan Y C. Nanomaterials, 2018, 8(12): 1071.
|
[64] |
Zou W S, Zhao Q C, Kong W L, Wang X F, Chen X M, Zhang J, Wang Y Q. Chem. Eng. J., 2018, 337: 471.
|
[65] |
Yang M L, Liu M W, Wu Z P, He Y, Ge Y L, Song G W, Zhou J G. Microchimica Acta, 2019, 186(8): 1.
|
[66] |
Wei J C, Yang Y, Dong J Y, Wang S P, Li P. Microchim. Acta, 2019, 186(2): 66.
|
[67] |
Luo M, Wei J C, Zhao Y Y, Sun Y Z, Liang H X, Wang S P, Li P. Microchem. J., 2020, 154: 104547.
|
[68] |
Wang R H, Zhu C L, Wang L L, Xu L Z, Wang W L, Yang C, Zhang Y. Talanta, 2019, 205: 120094.
|
[69] |
Li H F, Wen K, Dong B L, Zhang J, Bai Y C, Liu M G, Li P P, Mujtaba M G, Yu X Z, Yu W B, Ke Y B, Shen J Z, Wang Z H. Sens. Actuat. B: Chem., 2019, 297: 126787.
|
[70] |
Zhang J, Zhou W D, Zhai L J, Niu X Y, Hu T P. CrystEngComm, 2020, 22(6): 1050.
|
[71] |
Sheng E Z, Lu Y X, Tan Y T, Xiao Y, Li Z X, Dai Z H. Anal. Chem., 2020, 92(6): 4364.
|
[72] |
Yang Y, Wei Q Y, Zou T, Kong Y L, Su L F, Ma D, Wang Y D. Sens. Actuat. B: Chem., 2020, 321: 128534.
|
[73] |
Chen S Q, Gao J M, Chang J Y, Zhang Y, Feng L. Sens. Actuat. B: Chem., 2019, 297: 126701.
|
[74] |
Yang L M, Zhang X H, Wang J X, Sun H F, Jiang L. Microchimica Acta, 2018, 185(10): 1.
|
[75] |
Ding Y, Hua X D, Chen H, Gonzalez-Sapienza G, Barnych B, Liu F Q, Wang M H, Hammock B D. Sens. Actuat. B: Chem., 2019, 297: 126714.
|
[76] |
Chen L L, Xu H, Wang L, Li Y, Tian X K. Microchimica Acta, 2020, 187(2): 1.
|
[77] |
Wang Y L, Ni P J, Jiang S, Lu W D, Li Z, Liu H M, Lin J, Sun Y J, Li Z,. Sens. Actuat. B: Chem., 2018, 254: 1118.
|
[78] |
Miao H, Wang Y Y, Yang X M. Nanoscale, 2018, 10(17): 8139.
|
[79] |
Yang J, Lin Z Z, Nur A Z, Lu Y, Wu M H, Zeng J, Chen X M, Huang Z Y. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2018, 190: 450.
|
[80] |
Li C L, Zeng C H, Chen Z, Jiang Y F, Yao H, Yang Y Y, Wong W T. J. Hazard. Mater., 2020, 384: 121498.
|
[81] |
Yang H W, Xu P, Ding B, Liu Z Y, Zhao X J, Yang E C. Eur. J. Inorg. Chem., 2019, 2019(48): 5077.
|
[82] |
Yu M K, Xie Y, Wang X Y, Li Y X, Li G M. ACS Appl. Mater. Interfaces, 2019, 11(23): 21201.
|
[83] |
Li C H, Zhu L, Yang W X, He X, Zhao S L, Zhang X S, Tang W Z, Wang J L, Yue T L, Li Z H. J. Agric. Food Chem., 2019, 67(4): 1277.
|
[84] |
Li C H, Zhang X S, Wen S M, Xiang R, Han Y, Tang W Z, Yue T L, Li Z H. J. Hazard. Mater., 2020, 395: 122615.
|
[85] |
Li X T, Fan K M, Yang R M, Du X X, Qu B H, Miao X M, Lu L H. J. Hazard. Mater., 2020, 386: 121929.
|
[86] |
Lin B X, Zhang T Y, Xin X L, Wu D, Huang Y, Liu Y W, Cao Y J, Guo M L, Yu Y. Microchimica Acta, 2019, 186(7): 1.
|
[87] |
Jia P, Bu T, Sun X Y, Liu Y N, Liu J H, Wang Q Z, Shui Y H, Guo S W, Wang L. Food Chem., 2019, 297: 124969.
|
[88] |
Shao C Y, Li C B, Zhang C, Ni Z, Liu X H, Wang Y X. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 236: 118334.
|
[89] |
Lu C S, Su Q, Yang X M. Nanoscale, 2019, 11(34): 16036.
|
[90] |
Qian S H, Qiao L N, Xu W X, Jiang K, Wang Y H, Lin H W. Talanta, 2019, 194: 598.
|
[91] |
Wang Y, Chen T X, Zhuang Q F, Ni Y N. Talanta, 2018, 179: 409.
|
[92] |
Wang J L, Lu T T, Hu Y, Wang X L, Wu Y G. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226: 117651.
|
[93] |
Ren G D, Hou X Y, Kang Y, Zhang R, Zhang M, Liu W, Li L H, Wei S Y, Wang H J, Wang B, Diao H P. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 234: 118251.
|
[94] |
Yang S L, Wang L, Zuo L, Zhao C, Li H Y, Ding L. Microchimica Acta, 2019, 186(9): 1.
|
[95] |
Pan H, Wang S F, Dao X Y, Ni Y H. Inorg. Chem., 2018, 57(3): 1417.
|
[96] |
Tu Y J, Wang S P, Yuan X T, Wei Y L, Qin K H, Zhang Q, Chen X M, Ji X L. Dyes Pigments, 2020, 178: 108316.
|
[97] |
Hu Y P, Gao Z J. J. Hazard. Mater., 2020, 382: 121048.
|
[98] |
Yang H W, Lu F N, Sun Y, Yuan Z Q, Lu C. Anal. Chem., 2018, 90(21): 12846.
|
[99] |
Shu T, Wang J X, Lin X F, Zhou Z P, Liang F, Su L, Zhang X J. J. Mater. Chem. C, 2018, 6(18): 5033.
|
[100] |
Li Y L, Feng L Y, Yan W, Hussain I, Su L, Tan B E. Nanoscale, 2019, 11(3): 1286.
|
[101] |
Han Y X, Chen Y L, Feng J, Na M, Liu J J, Ma Y X, Ma S D, Chen X G. Talanta, 2019, 194: 822.
|
[102] |
Ning K K, Xiang G Q, Wang C C, Wang J X, Qiao X H, Zhang R F, Jiang X M, He L J, Zhao W J. Can. J. Chem., 2020, 98(5): 222.
|
[103] |
Qu B H, Mu Z Y, Liu Y, Liu Y S, Yan R, Sun J H, Zhang Z S, Li P, Jing L Q. Environ. Sci.: Nano, 2020, 7(1): 262.
|
[104] |
Tawfik S M, Sharipov M, Kakhkhorov S, Elmasry M R, Lee Y I. Adv. Sci., 2019, 6(2): 1801467.
|
[105] |
Peng D, Zhang L, Li F F, Cui W R, Liang R P, Qiu J D. ACS Appl. Mater. Interfaces, 2018, 10(8): 7315.
|
[106] |
Han L, Liu S G, Liang J Y, Ju Y J, Li N B, Luo H Q. J. Hazard. Mater., 2019, 362: 45.
|
[107] |
Fang J, Zhuo S J, Zhu C Q. Opt. Mater., 2019, 97: 109396.
|
[108] |
Li C M, Zheng Y K, Ding H W, Jiang H, Wang X M. Microchimica Acta, 2019, 186(6): 1.
|
[109] |
Wang X F, Hou J Z, Lan S Y, Shen C H, Huo D Q, Ji Z, Ma Y, Luo H B, Zhang S Y, He Q, Hou C J. Anal. Chimica Acta, 2020, 1108: 152.
|
[110] |
Saleh S M, Alminderej F M, Ali R, Abdallah O I. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 229: 117971.
|
[111] |
Jin R, Kong D S, Yan X, Zhao X, Li H X, Liu F M, Sun P, Lin Y H, Lu G Y. ACS Appl. Mater. Interfaces, 2019, 11(31): 27605.
|
[112] |
Khatun M N, Tanwar A S, Meher N, Iyer P K. Chem. Asian J., 2019, 14(24): 4725.
|
[113] |
Aparna R S, Anjali Devi J S, Sachidanandan P, George S. Sens. Actuat. B: Chem., 2018, 254: 811.
|
[114] |
Baheti A, Vigalok A. J. Am. Chem. Soc., 2019, 141(31): 12224.
|
[115] |
Wang H T, Na X K, Liu S, Liu H F, Zhang L J, Xie M Z, Jiang Z C, Han F, Li Y, Cheng S S, Tan M Q. Talanta, 2019, 201: 388.
|
[116] |
Wang J, Du R, Liu W, Yao L, Ding F, Zou P, Wang Y Y, Wang X X, Zhao Q B, Rao H B. Sens. Actuat. B: Chem., 2019, 290: 125.
|
[117] |
Yue G Z, Li S Y, Liu W, Ding F, Zou P, Wang X X, Zhao Q B, Rao H B. Sens. Actuat. B: Chem., 2019, 287: 408.
|
[118] |
Hu Q, Gao L, Rao S Q, Yang Z Q, Li T, Gong X J. Food Chem., 2019, 280: 195.
|
[119] |
Li C, Li W J, Sun X B, Pan W, Yu G F, Wang J P. Sensor. Actuat. B-Chem., 2018, 263: 1.
|
/
〈 |
|
〉 |