English
新闻公告
More
化学进展 2009, Vol. 21 Issue (05): 866-872 前一篇   后一篇

• 金属药物专辑 •

稀土氨基酸配合物与核酸的相互作用*

耿杰1,2; 于海佳1,2; 张海元1,2; 徐海霞1,2; 曲晓刚1**   

  1. (1. 稀土资源利用国家重点实验室  中国科学院长春应用化学研究所    长春 130022; 2. 中国科学院研究生院 北京 100049)
  • 收稿日期:2009-01-21 修回日期:2009-01-27 出版日期:2009-05-24 发布日期:2009-05-05
  • 通讯作者: 曲晓刚 E-mail:xqu@ciac.jl.cn
  • 基金资助:

    国家自然科学基金

Interactions of Rare Earth-Amino Acid Complexes with Nucleic Acids

Geng Jie1,2; Yu Haijia1,2; Zhang Haiyuan1,2; Xu Haixia1,2; Qu Xiaogang1**   

  1. (1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;2. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China) 
  • Received:2009-01-21 Revised:2009-01-27 Online:2009-05-24 Published:2009-05-05
  • Contact: Qu Xiaogang E-mail:xqu@ciac.jl.cn

很多抗癌金属药物是以核酸为靶标。阐明小分子与核酸之间的相互作用对筛选具有高效选择性和低毒副作用的抗癌药物有重要意义。近年来,开发新型的具有对核酸序列特异性识别能力的抗癌药物己成为本领域的研究热点。稀土离子具有良好的磁学、光学、电学特性和配位能力,使稀土配合物成为新型药物试剂。然而,稀土离子在中性条件下易水解的特性极大地阻碍了稀土配合物对核酸分子识别的研究。近年来在近生理条件下合成的一系列镧系氨基酸配合物具有结构稳定、溶解性好等优点,解决了镧系离子易水解的问题。本文总结了目前关于镧系氨基酸配合物与核酸的相互作用及其序列选择性等方面的研究进展。

A number of metal-based anticancer drugs are designed to target nucleic acids. Therefore, the elucidation of their interactions with nucleic acids is important for rational design of new anticancer agents with high selectivity and low toxicity, which has been received much attention in this field. Lanthanide complexes have the potential to be therapeutic agents due to their unique magnetic, optical, electronic, and coordinate characteristics. However, lanthanide ions are easy to hydrolysis under physiological pH, which makes it difficult to study rare earth complexes nucleic acids selectivity. Recent studies have shown that natural amino acids can form stable complexes with rare earth ions under near physiological condition and the complexes have high solubility. This review summarizes the current progress in rare earth-amino acid complexes binding to nucleic acids and their selectivity.

Contents
1 Introduction
2 Structural diversity of rare earth-amino acid complexes
3 Molecular recognition of DNA by rare earth-amino acid complexes
3.1 Molecular recognition between rare earth-amino acid complexes and single-stranded DNA
3.2 Molecular recognition between rare earth-amino acid complexes and duplex DNA
3.3 Molecular recognition between rare earth-amino acid complexes and quadruplex DNA
4 Prospects

中图分类号: 

()

[ 1 ]  Wong E , Giandomenico C M. Chem. Rev. , 1999 , 99 (9) : 2451 —2466
[ 2 ]  孙红哲(Sun H Z) , 陈嵘(Chen R) , 支志明(Zhi Z M) . 化学进展(Progress in Chemistry) , 2002 , 14 (4) : 257 —262
[ 3 ]  Zhang C X, Lippard S J . Curr. Opin. Chem. Biol . , 2003 , 7 (4) :481 —489
[ 4 ]  Boerner L J , Zaleski J M. Curr. Opin. Chem. Biol . , 2005 , 9 (2) :135 —144
[ 5 ]  Wang R Y, Zheng Z P , Jin T Z, et al . Angew. Chem. Int . Ed. ,1999 , 38 (12) : 1813 —1815
[ 6 ]  Ma B Q , Zhang D S , Gao S , et al . Angew. Chem. Int . Ed. ,2000 , 39 (20) : 3644 —3646
[ 7 ]  Ma B Q , Zhang D S , Gao S , et al . NewJ . Chem. , 2000 , 24 (5) :251 —252
[ 8 ]  Wang R Y, Liu H , Carducci MD , et al . Inorg. Chem. , 2001 , 40(12) : 2743 —2750
[ 9 ]  Zheng Z P. Chem. Commun. , 2001 , 2521 —2529
[10 ]  Wang R Y, Selby H D , Liu H , et al . Inorg. Chem. , 2002 , 41 (2) :278 —286
[11 ]  Ma A Z, Li L M, Lin YH , et al . J . Coord. Chem. , 1994 , 33 (1) :59 —67
[12 ]  王瑞瑶(Wang R Y) ,高峰(Gao F) ,金天柱(Jin T Z) . 化学通报(Chemistry) , 1996 , 10 : 14 —20
[13 ]  Legendziewicz J , Ciunik Z, Gawryszewska P , et al . Polyhedron ,1999 , 18 (21) : 2701 —2709
[14 ]  Zhang H Y, Yu H J , Ren J S , et al . Biophys. J . , 2006 , 90 (9) :3203 —3207
[15 ]  Zhang H Y, Yu H J , Ren J S , et al . FEBSLett . , 2006 , 580 (15) :3726 —3730
[16 ]  Xu H X, Zhang H Y, Qu X G. J . Inorg. Biochem. , 2006 , 100(10) : 1646 —1652
[17 ]  Zhang H Y, Yu H J , Xu H X, et al . Polyhedron , 2007 , 26 (18) :5250 —5256
[18 ]  Qu X G, Trent T O , Fokt I , et al . Proc. Natl . Acad. Sci . USA ,2000 , 97 (22) : 12032 —12037
[19 ]  Bukowiecka-Matusiak M, Wozniak L A. Postepy Biochem. , 2006 ,52 (3) : 229 —238
[20 ]  张海元(Zhang H Y) . 长春应用化学研究所博士论文(Doctoral Dissertation of Changchun Institute of Applied Chemistry) , 2005
[21 ]  Wickens M, Anderson P , Jackson R J . Curr. Opin. Genet . Dev. ,1997 , 7 (2) : 220 —232
[22 ]  Dower K, Kuperwasser N , Merrikh H , et al . RNA , 2004 , 10 (12) :1888 —1899
[23 ]  Topalian S L , Kaneko S , Gonzales M I , et al . Mol . Cell . Biol . ,2001 , 21 (16) : 5614 —5623
[24 ]  Topalian S I , Gonzales M I , Ward Y, et al . Cancer Res. , 2002 , 62(19) : 5505 —5509
[25 ]  Persil O , Santai C T, Jain S S , et al . J . Am. Chem. Soc. , 2004 ,126 (28) : 8644 —8645
[26 ]  Xing F F , Song G T, Ren J S , et al . FEBSLett . , 2005 , 579 (22) :5035 —5039
[27 ]  Rich A , Zhang S G. Nature Reviews Genet . , 2003 , 4 (7) : 566 —572
[28 ]  Herbert A , Rich A. J . Biol . Chem. , 1996 , 271 (20) : 11595 —11598
[29 ]  Fu P KL , Turro C. J . Am. Chem. Soc. , 1999 , 121 (1) : 1 —7
[30 ]  Lee J H , Park M, Son H S , et al . Biopolymers ,2002 , 67 (6) :413 —420
[31 ]  Makarov V L , Hirose Y, Langmore J P. Cell , 1997 , 88 (5) : 657 —666
[32 ]  Phan A T, Mergny J L. Nucleic Acids Res. , 2002 , 30 ( 21) :4618 —4625
[33 ]  Neidle S , Parkinson GN. Nat . Rev. Drug Discovery , 2002 , 1 (5) :383 —393
[34 ]  Li X, Peng Y H , Ren J S , et al . Proc. Natl . Acad. Sci . USA ,2006 , 103 (52) : 19658 —19663
[35 ]  Zahler A M, Williamson J R , Cech T R , et al . Nature , 1991 , 350(6320) : 718 —720
[36 ]  Mergny J L , Helene C. Nat . Med. , 1998 , 4 (12) : 1366 —1367
[37 ]  Gilbert D E , Feigon J . Curr. Opin. Struct . Biol . , 1999 , 9 (3) :305 —314
[38 ]  Ren J S , Qu X G, Trent J O , et al . Nucleic Acids Res. , 2002 , 30(11) : 2307 —2315

[1] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[2] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[3] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[4] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[5] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[6] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[7] 张丹维, 王辉, 黎占亭. 芳香大分子和超分子螺旋管构筑及其功能[J]. 化学进展, 2020, 32(11): 1665-1679.
[8] 王童, 文姣, 李良春, 郑仁林, 孙德群. 脱氢氨基酸的合成及其在药物研发中的应用[J]. 化学进展, 2020, 32(1): 55-71.
[9] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[10] 张聪, 岳巧丽, 陶丽霞, 胡莹莹, 李晨钟, 唐波. 基于核酸探针的光学传感方法和细胞成像研究[J]. 化学进展, 2019, 31(6): 858-871.
[11] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[12] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[13] 单艳群, 王晓英*. 赭曲霉毒素A的电化学适体传感检测[J]. 化学进展, 2018, 30(6): 797-808.
[14] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[15] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.