English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 902-912 DOI: 10.7536/PC171118 前一篇   后一篇

• 综述 •

阴离子-萘四酸双酰亚胺相互作用及其应用

闫吉军, 康传清*, 高连勋   

  1. 中国科学院长春应用化学研究所 长春 130022
  • 收稿日期:2017-11-17 修回日期:2018-02-28 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 康传清 E-mail:kangcq@ciac.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21574126)资助

Anion-Naphthalenediimide Interactions and Their Applications

Lianxun Gao, Chuanqing Kang*, Lianxun Gao   

  1. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2017-11-17 Revised:2018-02-28 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21574126).
萘四酸双酰亚胺(NDI)具有较大的正四极矩,是探索阴离子-π相互作用的理想π酸性芳香体系。阴离子-NDI相互作用的机制和应用受到了广泛关注,利用阴离子-NDI电子转移导致的NDI体系的颜色变化或光谱学变化实现阴离子识别,已经成为一种有效的离子识别传感器设计策略,尤其在强碱性阴离子识别方面,由于形成易于辨识的自由基阴离子相关UV谱带而展现出了独特的优势。本文综述了近年来阴离子-NDI相互作用的机制、作用模式及其在阴离子识别、对映体识别、有机催化和离子通道构建中的应用研究进展,兼顾基于孤对电子-π相互作用的中性分子-NDI相互作用研究,讨论了NDI结构与阴离子-π相互作用及应用的功能相关性。本文最后展望了阴离子-NDI体系构建及应用研究面临的挑战与未来发展趋势。
Electron-poor naphthalenediimides(NDIs) with large quadrupole moments and strong π-acidity have been extensively studied as ideal models to gain deep insights into anion-π interactions. The development of anion-NDI systems have attracted considerable attention with efforts on mechanisms and applications of the systems. Anion-to-NDI electron transfer induced by anion-π interactions in the system usually results in colorimetric change or the formation of characteristic spectra bands, which have become a convenient and efficient tactic for the design of anion sensors. Particularly, NDIs have shown distinct advantages in recognition of strong Lewis basic anions with the formation of easily identified UV bands corresponding to radical anions of NDIs. The paper surveys researches on anion-DNI interactions in recent years. The paper firstly presents the interactions and structures of anion-NDI systems, then extensively reviews the applications of anion-NDI interations in anion recognition, enantiomer recognition, organocatalysis, and construction of anion channel. The interactions of NDI with neutral molecules based on lone electron pair-π interactions are also included. The functional relevance of anion-π interactions is demonstrated upon the discussion of the developments and wide applications of anion-NDI systems. Finally, this paper summarizes the strategies and challenges in development of application-oriented anion-NDI systems and draws perspectives of anion-NDI interactions in fundamental studies and wide applications.
Contents
1 Introduction
2 Anion-NDI interactions
3 Applications of anion-NDI interactions in molecular recognition
3.1 Anion recognition and sensing
3.2 Recogntion of neutral molecules
3.3 pH responsiveness based on lone pair-NDI interactions
3.4 NDIs used for molecular electronics material
3.5 Enantiomer recognition
4 Applications of anion-NDI interactions in organocatalysis
5 Construction of anion channel with anion-NDI system
6 Conclusion and outlook

中图分类号: 

()
[1] 沈家骢(Shen J C), 孙俊奇(Sun J Q).中国科学院院刊(Bull. Chin. Acad. Sci.), 2004, 19(6):420.
[2] Seiffert S, Sprakel J. Chem. Soc. Rev., 2012, 41(2):909.
[3] Li S L, Xiao T, Lin C, Wang L. Chem. Soc. Rev., 2012, 41(18):5950.
[4] Brunsveld L, Folmer B, Meijer E, Sijbesma R. Chem. Rev., 2001, 101(12):4071.
[5] 沈家骢(Shen J C), 张希(Zhang X). 科技导报(Sci. Technol. Rev.), 1994, 12(9410):6.
[6] Mathew S, Paul G, Shivasankar K, Choudhury A, Rao C N R. J. Mol. Struct., 2002, 641(2):263.
[7] Beale T M, Chudzinski M G, Sarwar M G, Taylor M S. Chem. Soc. Rev., 2013, 42(4):1667.
[8] Kaliyappan T, Kannan P. Prog. Polym. Sci., 2000, 25(3):343.
[9] Das A, Ghosh S. Angew. Chem. Int. Ed., 2014, 53(8):2038.
[10] Hayes W, Greenland B W. Supramolecular Polymer Networks and Gels. Springer. 2015. 143.
[11] Meyer E A, Castellano R K, Diederich F. Angew. Chem. Int. Ed., 2003, 42(11):1210.
[12] Kumpf R A, Dougherty D A. Science, 1993, 261(5129):1708.
[13] Tedesco M M, Ghebremariam B, Sakai N, Matile S. Angew. Chem. Int. Ed., 1999, 38(4):540.
[14] Dougherty D A. Acc. Chem. Res., 2012, 46(4):885.
[15] Mahadevi A S, Sastry G N. Chem. Rev., 2012, 113(3):2100.
[16] Mccurdy A, Jimenez L, Stauffer D A, Dougherty D A. J. Am. Chem. Soc., 1992, 114(26):10314.
[17] Lin S, Jacobsen E N. Nat. Chem., 2012, 4(10):817.
[18] Chifotides H T, Dunbar K R. Acc. Chem. Res., 2013, 46(4):894.
[19] Dawson R E, Hennig A, Weimann D P, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley C A, Matile S. Nat. Chem., 2010, 2(7):533.
[20] Zhao Y, Beuchat C, Domoto Y, Gajewy J, Wilson A, Mareda J, Sakai N, Matile S. J. Am. Chem. Soc., 2014, 136(5):2101.
[21] Bhosale S V, Bhosale S V, Kalyankar M B, Langford S J. Org. Lett., 2009, 11(23):5418.
[22] Guha S, Goodson F S, Corson L J, Saha S. J. Am. Chem. Soc., 2012, 134(33):13679.
[23] Gorteau V, Bollot G, Mareda J, Perez-Velasco A, Matile S. J. Am. Chem. Soc., 2006, 128(46):14788.
[24] Guha S, Saha S. J. Am. Chem. Soc., 2010, 132(50):17674.
[25] Guha S, Goodson F S, Roy S, Corson L J, Gravenmier C A, Saha S. J. Am. Chem. Soc., 2011, 133(39):15256.
[26] Guha S, Goodson F S, Clark R J, Saha S. CrystEngComm, 2012, 14(4):1213.
[27] Li Y, Zhao Y, Jiang R, Liu H, Li Y. Inorg. Chem. Front., 2014, 1(9):661.
[28] Gorteau V, Bollot G, Mareda J, Matile S. Org. Biomol. Chem., 2007, 5(18):3000.
[29] Sakai N, Mareda J, Matile S. Acc. Chem. Res., 2005, 38(2):79.
[30] Zhao Y, Cotelle Y, Avestro A J, Sakai N, Matile S. J. Am. Chem. Soc., 2015, 137(36):11582.
[31] Kobaisi M A, Bhosale S V, Latham K, Raynor A M. Chem. Rev., 2016, 116(19):11685
[32] Takeuchi M, Shioya T, Swager T M. Angew. Chem. Int. Ed., 2001, 113(18):3476.
[33] Kang S O, Llinares J M, Powell D, Vandervelde D, Bowman-James K. J. Am. Chem. Soc., 2003, 125(34):10152.
[34] Sokkalingam P, Kee S, Kim Y, Kim S, Lee P H, Lee C. Org. Lett., 2012, 14(24):6234.
[35] Kim S Y, Park J, Koh M, Park S B, Hong J I. Chem. Commun., 2009,(31):4735.
[36] Garau C, Quinonero D, Frontera A, Ballester P, Costa A, Deya P M. J. Phys. Chem. A, 2005, 109(41):9341.
[37] Bobe S R, Bhosale S V, Jones L, Puyad A L, Raynor A M, Bhosale S V. Tetrahedron Lett., 2015, 56(33):4762.
[38] Rananaware A, Samanta M, Bhosale R S, Kobaisi M A, Roy B, Bheemireddy V, Bhosale S V, Bandyopadhyay S, Bhosale S V. Sci. Rep., 2016, 6:22928.
[39] Nath J K, Baruah J B. New J. Chem., 2013, 37(5):1509.
[40] Yan J, Kang C, Ma X, Du Z, Bian Z, Jin R, Gao L. Asian J. Org. Chem., 2017, 6:1531.
[41] Luo H, Liu Z, Cai Z, Wu L, Zhang G, Liu C, Zhang D. Chin. J. Chem., 2012, 30(7):1453.
[42] Shen L, Lu X, Tian H, Zhu W. Macromolecules, 2011, 44(14):5612.
[43] Ghule N V, Kharat K, Bhosale R S, Puyad A L, Bhosale S V, Bhosale S V. RSC Adv., 2016, 6(2):1644.
[44] Katz E. Molecular and Supramolecular Information Processing:from Molecular Switches to Logic Systems. John Wiley & Sons, 2013.
[45] Gundlach D J. Nat. Mater., 2007, 6(3):173.
[46] Lukas A S, Bushard P J, Wasielewski M R. J. Am. Chem. Soc., 2001, 123(10):2440.
[47] Jiang W, Han M, Zhang H Y, Zhang Z J, Liu Y. Chem. Eur. J., 2009, 15(38):9938.
[48] Ajayakumar M R, Hundal G, Mukhopadhyay P. Chem. Commun., 2013, 49(70):7684.
[49] Yan J, Kang C, Bian Z, Ma X, Jin R, Du Z, Gao L. Chem. Eur. J., 2017, 23(24):5824.
[50] Yan J, Kang C, Bian Z, Jin R, Ma X, Du Z, Yao H, Gao L. Chem. Asian. J., 2017, 12(8):841.
[51] Mascal M, Armstrong A, Bartberger M D. J. Am. Chem. Soc., 2002, 124(22):6274.
[52] Perez V A, Gorteau V, Matile S. Angew. Chem. Int. Ed., 2008, 120(5):935.
[53] Shaller A D, Wang W, Gan H, Li A D. Angew. Chem. Int. Ed., 2008, 120(40):7819.
[54] Wright E M, Diamond J M. Physiol. Rev., 1977, 57(1):109.
[55] Miller C. J. Gen. Physiol., 1999, 113(6):783.
[1] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[2] 张丹维, 王辉, 黎占亭. 芳香大分子和超分子螺旋管构筑及其功能[J]. 化学进展, 2020, 32(11): 1665-1679.
[3] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[4] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.
[5] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[6] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[7] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[8] 张金帅, 于凤丽, 袁冰, 解从霞, 于世涛. 溶剂在反应控制相转移催化反应中的影响[J]. 化学进展, 2018, 30(2/3): 304-313.
[9] 余响林, 陈小姣, 张碧玉, 饶聪, 何源, 黎俊波. 基于有序介孔材料的荧光探针及其应用[J]. 化学进展, 2016, 28(6): 896-907.
[10] 喻娜, 丁慧敏, 汪成. 有机分子笼的合成及应用[J]. 化学进展, 2016, 28(12): 1721-1731.
[11] 伍宏伟, 陈亚运, 饶才辉, 刘传祥*. 含CH基的阴离子受体[J]. 化学进展, 2016, 28(10): 1501-1514.
[12] 钟克利, 郭宝峰, 周雪, 蔡克迪, 汤立军, 金龙一. 基于芘的离子荧光化学传感器[J]. 化学进展, 2015, 27(9): 1230-1239.
[13] 王辉, Ponmani Jeyakkumar, Sangaraiah Nagarajan, 孟江平, 周成合. 苝类化合物研究与应用[J]. 化学进展, 2015, 27(6): 704-743.
[14] 李敏睿, 郭永亮, 杨保平, 郭军红, 崔锦峰. 基于脲衍生物阴离子识别的电化学检测[J]. 化学进展, 2015, 27(5): 559-570.
[15] 桂珍, 严枫, 李金昌, 葛梦圆, 鞠熀先. 锁核酸分子信标在分子识别与生物分析中的应用[J]. 化学进展, 2015, 27(10): 1448-1458.