English
新闻公告
More
化学进展 2003, Vol. 15 Issue (03): 215- 前一篇   后一篇

• 综述与评论 •

甲醇羰基化制乙酸

王玉和;贺德华;徐柏庆*   

  1. (清华大学化学系 一碳化学与化工国家重点实验室 北京 100084)
  • 收稿日期:2002-06-01 修回日期:2002-08-01 出版日期:2003-05-24 发布日期:2003-05-24
  • 通讯作者: 徐柏庆

Studies of Producing Acetic Acid by Carbonylation of Methanol

Wang Yuhe;He Dehua;Xu Boqing*   

  1. (State Key Laboratory of Cl Chemistry and Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China)
  • Received:2002-06-01 Revised:2002-08-01 Online:2003-05-24 Published:2003-05-24
  • Contact: Xu Boqing
Monsanto公司的甲醇羰基化制乙酸工艺具有甲醇转化率高、产物产率高等优点,但也存在着主催化剂铑价格昂贵、助催化剂碘化物腐蚀设备等缺点.本文重点从催化机理研究方面介绍了国内外对Monsanto技术的最新改进研究工作、英国石油(BP)公司的甲醇羰基化制乙酸铱基催化体系(名为CativaTM工艺),并介绍了无碘化物促进的甲醇羰基化催化体系,分析了不同催化体系的优缺点及研究发展趋势.
The Monsanto process for the carbonylation of methanol to acetic acid has many advantages such as high conversion of reactants and high yield of the product, but the disadvantages are also apparent, which include the high cost of the catalyst (rhodium) and the severe corrosion to equipment by the co-catalyst iodide. The improvement of Monsanto's technology, the Ir-based catalyst of BP (CativaTM technology) and especially the catalytic mechanism are reviewed. In addition, the advantages and disadvantages of different catalytic systems and the progress tendencies of those systems in the future are also introduced.

中图分类号: 

()

[ 1 ] Yoneda N , Kusano S, Yasui M , et al. Applied Catalysis A , General, 2001, 221: 253—265
[ 2 ] Sunley G J. Watson D J. Catal. Today, 2000, 58: 293—307
[ 3 ] 殷元骐. 羰基合成化学. 北京: 化学工业出版社, 1996.143—178
[ 4 ] Howard M J , Jones M D, Roberts M S, et al. Catal. Today, 1993, 18: 325—354
[ 5 ] Carra S C. Catal. Rev. Sci. Eng. , 1980, 22 (1) : 75—140
[ 6 ] Maitlis P M , Haynes A , Sunley G J , et al. J. Chem.Soc. , Dalton Trans. 1996, 2187—2196
[ 7 ] Howard M J , Sunley G J , Poole A D, et al. Science and Technology in Catalysis, 1998: 61—68
[ 8 ] Baker M J , Giles M F, Orpen A G, et al. J. Chem. Soc. ,Chem. Commun. , 1995, 197—198
[ 9 ] Rankin J , Poole A D, Benyei A C, et al. , Chem. Commun. , 1997: 1835—1836
[ 10 ] Agrawal P, Cheung H, Fisher D A , et al. , AU 200 065 276, 2001
[ 11 ] Hinnenkamp J A , Hallinan N , U S 5 817 869, 1998
[ 12 ] Yoneda N , Minami T, Weiszmann J , et al. Science and Technology in Catalysis, 1998, 93—98
[ 13 ] Chem. Ind. , 1996, 483
[ 14 ] Garland C S, Giles M F, Sunley J G, U S 5 672 743, 1997
[ 15 ] Pearson J M , Haynes A , Morris G E, et al. J. Chem.Soc. , Chem. Commun. , 1995, 1045—1046
[ 16 ] Haynes A , Pearson J M , Vickers P W , et al. , Inorganic Chimica Acta, 1998, 270: 382—391
[ 17 ] Lee H S, Bae J Y, Ko J J , et al. Chemistry Letters, 2000,602—603
[ 18 ] Süss-Fink G, Haak S, Ferrand V , et al. J. Mo l. Catal.A: Chemical, 1999, 143: 163—170
[ 19 ] Baker M J , Garland C S, Giles M F, et al. U S 5 696 284,1997
[ 20 ] Baker M J , Giles M F, Muskett M J , et al. EP 752 406,1997
[ 21 ] Cheung H C , Sibrel E C, Tanke R S, et al. U S 6 211 405 B1, 2001
[ 22 ] Hunt A , Sunley J G. GB 2 337 751, 1999
[ 23 ] Giles M F, Sunley J G. GB 2 298 200, 1996
[ 24 ] Moser W R, M arshik-Guerts B J , Okrasinski S J. J. Mol.Catal. A , 1999, 143: 57
[ 25 ] Minam i T, Shimokawa K, Hamato K, et al. U S 5 364 963, 1994
[ 26 ] Howard M J , Jones M D. U S 6 127 574, 2000
[ 27 ] 柳忠阳(Liu Z Y) , 潘平来(Pan P L ) , 蒋华(Jiang H) 等.科学通报(Chinese Science Bulletin ) , 1999, 44 ( 12) :1236—1248
[ 28 ] 蒋华(Jiang H) , 潘平来(Pan P L ) , 袁国卿(Yuan G Q ).分子催化(Journal of Molecular Catalysis) , 1999, 13 (3) :161—164
[ 29 ] Blasio N D, Wright M R, Tempesti E, et al. J.Organometallic Chemistry, 1998, 551: 229—234
[ 30 ] Mueller F J , Matt D. U S 4 918 218, 1990
[ 31 ] Jiang H, Liu Z Y, Pan P L , et al. J. Mol. Catal. A ,1999, 148: 215—225
[ 32 ] Merenov A S, Abraham M A. Catal. Today, 1998, 40:397—404
[ 33 ] Liu T C, Chiu S J. Ind. Eng. Chem. Res. , 1994, 33:488—492
[ 34 ] 杨彩虹(Yang C H) , 韩怡卓(Han Y Z) , 李文彬(Li W B) ,燃料化学学报( Journal of Fuel Chemistry and Technology) , 1999, 27 (4) : 323—327
[ 35 ] Levis R J , Jiang Z C, Winograd N. J. Am. Chem. Soc. ,1988, 110: 4431—4432
[ 36 ] Fujimo to K, Shikada T, Omata K, et al. Chem. Letters,1984, 2047—2050
[ 37 ] Feitler D. U S 4 612 387, 1986
[ 38 ] Ellis B , Howard M J , Joyner R W , et al. 11th International Congress on Catalysis 240th A nniversary: Studies in Surface Science and Catalysis, Vo l. 101, 1996 Elsevier Science B. V. , 1996: 771—779

[1] 黄鹤, 宋传君, 常俊标. 以羧酸作为酰化剂的酰化反应及其在有机合成中的应用[J]. 化学进展, 2019, 31(1): 1-9.
[2] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[3] 刘焕君, 高腾飞, 施达, 刘健, 季生福. 甲醇一步催化转化制甲缩醛和甲酸甲酯的双功能催化剂[J]. 化学进展, 2016, 28(6): 942-953.
[4] 林玲, 朱青, 徐安武. 直接甲醇燃料电池的阳极和阴极催化剂[J]. 化学进展, 2015, 27(9): 1147-1157.
[5] 陈兆旭*, 黄玉成, 何翔. Pd/ZnO催化甲醇水蒸气重整理论研究[J]. 化学进展, 2012, 24(06): 873-878.
[6] 王新东, 谢晓峰, 王萌, 刘桂成, 苗睿瑛, 王一拓, 阎群. 直接甲醇燃料电池关键材料与技术[J]. 化学进展, 2011, 23(0203): 509-519.
[7] 樊博 郭玉国 万立骏. Pt基电催化材料*[J]. 化学进展, 2010, 22(05): 852-860.
[8] 王连鸳 徐文浩 杨基础. 超临界甲醇在化学反应中的应用[J]. 化学进展, 2010, 22(05): 796-802.
[9] 李涛 钟贵明 杨勇. 直接甲醇燃料电池用阻醇全氟磺酸复合质子交换膜*[J]. 化学进展, 2010, 22(0203): 522-536.
[10] 赵东江 尹鸽平 魏杰. 聚合物膜燃料电池阴极非Pt催化剂[J]. 化学进展, 2009, 21(12): 2753-2759.
[11] 虞贤波,刘烨,阳永荣,王靖岱. 甲醇制烯烃反应机理[J]. 化学进展, 2009, 21(09): 1757-1762.
[12] 索春光,刘晓为,张宇峰,张博,张鹏,王路文. 直接甲醇燃料电池膜电极的研究与进展*[J]. 化学进展, 2009, 21(0708): 1662-1671.
[13] 王荣蓉,金宝舵,李春文,王泽,谢晓峰,丁青青. 直接甲醇燃料电池的甲醇浓度控制方法* [J]. 化学进展, 2009, 21(0708): 1655-1661.
[14] 何品晶,吕凡,邵立明,章骅. 稳定同位素表征有机物甲烷化代谢动力学*[J]. 化学进展, 2009, 21(0203): 540-549.
[15] 齐亮,谢晓峰,金宝舵,郭建伟,徐景明. 直接甲醇燃料电池的交流阻抗谱分析*[J]. 化学进展, 2008, 20(12): 2083-2092.
阅读次数
全文


摘要

甲醇羰基化制乙酸