English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 1-9 DOI: 10.7536/PC181037   后一篇

• 综述 •

以羧酸作为酰化剂的酰化反应及其在有机合成中的应用

黄鹤1, 宋传君1, 常俊标1,2,**()   

  1. 1. 郑州大学化学与分子工程学院 郑州 450001
    2. 河南省有机功能分子与药物创新重点实验室 新乡 453007
  • 收稿日期:2018-10-31 修回日期:2018-12-27 出版日期:2019-01-15 发布日期:2019-01-04
  • 通讯作者: 常俊标
  • 基金资助:
    国家自然科学基金项目资助(81330075)

Acylation Using Carboxylic Acids as Acylating Agents: Applications in Organic Synthesis

He Huang1, Chuanjun Song1, Junbiao Chang1,2,**()   

  1. 1. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
    2. Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Xinxiang 453007, China
  • Received:2018-10-31 Revised:2018-12-27 Online:2019-01-15 Published:2019-01-04
  • Contact: Junbiao Chang
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(81330075)

传统的傅-克酰基化反应以酰氯或酸酐作为酰化剂、路易斯酸作为催化剂。大量路易斯酸催化剂及反应产生的氯化氢都需要后处理,并且酰氯对湿度敏感,储存及使用过程中易发生危险。而以三氟乙酸酐作为活化剂、直接以羧酸作为酰化剂的酰化反应不需要事先将羧酸制成酰氯、酸酐或酰胺,且活化剂三氟乙酸酐及副产物三氟乙酸都能很容易地通过蒸馏回收,因此,这类酰化反应能有效解决传统的傅-克酰基化反应所存在的问题。本文综述了近20年来以三氟乙酸酐作为活化剂、直接以羧酸作为酰化剂的酰化反应方法的发展,以及其在功能有机分子、药物分子和天然产物合成中的应用。

The classic Friedel-Crafts acylation uses acid chloride or anhydride as acylating agents, and Lewis acid as catalysts. The large amount of Lewis acid applied and HCl generated in the acylation reaction must be treated. Acid chlorides are sensitive to moisture, and danger might occur during storage and usage. Acylation using carboxylic acids in the presence of trifluoroacetic anhydride as acylating agents does not require conversion of the acylating agents into acid chloride, anhydride or amide. Furthermore, the trifluoroacetic anhydride and trifluoroacetic acid generated can be easily recovered by distillation. Therefore, it can effectively solve the problems associated with the classic Friedel-Crafts acylation. This review summarizes the developments of the acylation process using carboxylic acids in the presence of trifluoroacetic anhydride as acylating agents, and their applications in the syntheses of organic functional molecules, drug molecules and natural products during the last two decades.

()
图式1 三氟乙酸酐/磷酸作用下的酰化反应[17]
Scheme 1 TFAA / H3PO4 mediated acylations[17]
图式2 三氟乙酸酐/磷酸作用下以磷酰基乙酸作为酰化剂的酰化反应[18]
Scheme 2 TFAA/H3PO4-mediated acylation using phos-phonoacetic acid as acylating agent[18]
图式3 三氟乙酸酐/三氟甲磺酸介导的分子内酰化反应[19]
Scheme 3 TFAA / TfOH mediated intramolecular acylations[19]
图式4 巴豆酸对5-戊基间苯二酚二甲醚的酰化反应[21]
Scheme 4 Acylation of 1,3-dimethoxy-5-pentylbenzene with crotonic acid[21]
图式5 噻吩与苯并噻吩衍生物的分子内酰化反应[22]
Scheme 5 Intramolecular acylations of thiophene and benzothiophene derivatives[22]
图1 酰化产物17[25]
Fig.1 Acylation product 17[25]
图式6 三联噻吩18的酰化反应[26]
Scheme 6 Acylation of tert-thiophene 18[26]
图式7 N-苯磺酰基吡咯的酰化反应[28]
Scheme 7 Acylation of N-phenylsulfonylpyrrole[28]
图式8 吡咯-2-羧酸24在三氟乙酸酐作用下的酰化反应[30]
Scheme 8 Acylation of pyrrole-2-caboxylic acid derivative 24 induced by TFAA[30]
图式9 吡咯-2-羧酸28作酰化剂对吡咯29的酰化反应[31]
Scheme 9 Acylation of pyrrole derivative 29 using pyrrole-2-carboxylic acid derivative 28 as acylating agent[31]
图式10 咔唑31及其N-取代衍生物34的酰化反应[32]
Scheme 10 Acylations of carbazole 31 and its N-substituted derivative 34[32]
图式11 酰化-烷基化串联反应合成2-四氢萘酮38[33]
Scheme 11 Acylation-alkylation cascade for the synthesis of 2-tetralone derivative 38[33]
图式12 化合物46和48的合成[34]
Scheme 12 Synthetic route toward compounds 46 and 48[34]
图2 化合物46可与多种金属形成配合物[35]
Fig.2 Complexation of compound 46 with different metals[35]
图式13 2-苯基-6-吡咯基吡啶54的合成[36]
Scheme 13 Synthetic route toward 2-phenyl-6-(1H-pyrrol-2-yl)pyridine 54[36]
图式14 三吡咯衍生物59的合成[37]
Scheme 14 Synthesis of tripyrrole derivative 59[37]
图式15 9H-吡咯并[1,2-a]吲哚-9-酮63和吲哚并[2,1-b]吡咯-8-酮64的合成[38]
Scheme 15 Synthesis of 9H-pyrrolo[1,2-a]indol-9-ones 63 and indeno[2,1-b]pyrrol-8-ones 64[38]
图式16 二氢吡咯里嗪并[3,2-b]吲哚-10-酮67的生成机理[39]
Scheme 16 Mechanism for the formation of dihydro-pyrrolizino[3,2-b]indol-10-one 67[39]
图式17 通过三氟乙酸酐/磷酸作用下的酰化反应合成化合物69[40]
Scheme 17 Synthesis of compound 69 using TFAA / H3PO4 mediated acylation[40]
图式18 由分子内酰化产物71合成的咔唑类生物碱
Scheme 18 Carbazole alkaloids synthesized from intramolecular acylation product 71
图式19 大麻酚的全合成[21]
Scheme 19 Total synthesis of cannabinol[21]
图式20 酰化-Nazarov环合串联反应生成3-甲基/苯基二氢茚酮78[42]
Scheme 20 Acylation-Nazarov cyclization cascade toward 3-methyl / phenyl-1-hydrindone 78[42]
图式21 酰化-Nazarov环合串联反应生成环戊酮并吡咯[43]
Scheme 21 Acylation-Nazarov cyclization cascade toward 4,5-dihydrocyclopenta[b]pyrrol-6(1H)-ones[43]
图式22 酰化-Nazarov环合串联反应生成环戊酮并吡咯衍生物80、环戊酮并吲哚衍生物82[44]
Scheme 22 Acylation-Nazarov cyclization cascade toward 4,5-dihydrocyclopenta[b]pyrrol-6(1H)-one derivative 80 and 3,4-dihydrocyclopenta[b]indol-1(2H)-one derivative 82[44]
图式23 天然产物bruceolline E的合成[47]
Scheme 23 Synthesis of natural product bruceolline E[47]
图式24 天然产物roseophilin的合成[48]
Scheme 24 Synthesis of natural product roseophilin[48]
图式25 5-epi-taiwaniaquinone G和taiwaniaquinol B的合成路线[51,52,53]
Scheme 25 Synthetic route toward 5-epi-taiwaniaquinone G and taiwaniaquinol B[51,52,53]
[1]
Sartori G, Maggi R. ., Chem.Rev 2006,106:1077.
[2]
Vilsmeier A, Haack A . Ber. Dtsch. Chem.Ges., 1927,60:119.
[3]
Gattermann L, Koch J A . Ber. Dtsch. Chem. Ges., 1897,30:1622.
[4]
Reimer K, Tiemann F . Ber. Dtsch. Chem. Ges., 1876,9:1268.
[5]
Fries K, Finck G . Ber. Dtsch. Chem. Ges., 1908,41:4271.
[6]
Kollarits M, Merz V . Ber. Dtsch. Chem. Ges., 1872,5:447.
[7]
Tedder J M, . Chem. Rev., 1955,55:787.
[8]
(a) Meth-Cohn O, Gronowitz S, Acta Chem . Scand., 1966,20:1577
(b) Prandi C, Occhiato E G, Tabasso S, Bonfante P, Novero M, Scarpi D, Bova M E, Miletto I . Eur. J. Org. Chem. 2011, 2011:3781;
(c) Ewen J A, Elder M J, Jones R L, Rheingold A L, Liable-Sands L M, Sommer R D. . J. Am. Chem. Soc., 2001, 123:4763;, 2017,139:10486.
[9]
Fieser L F, Hershberg E B . J.Am. Chem. Soc., 1939,61:1272.
[10]
(a) Surya Prakash G K, Yan P, Török B, Olah G A . Catal. Lett., 2003, 87:109;
(b) Rendy R, Zhang Y, McElrea A, Gomez A, Klumpp D A . J. Org. Chem., 2004,69:2340
(c) Surya Prakash G K, Paknia F, Vaghoo H, Rasul G, Mathew T, Olah G A . J. Org. Chem., 2010,75:2219,;
(d) Zhao Y, Chen Y, Newhouse T R. . Angew. Chem. Int. Ed., 2017,56:13122.
[11]
(a) van Baar J F, Horton A D, de Kloe K P, Kragtwijk E, Mkoyan S G, Nifant’ev I E, Schut P A, Taidakov I V . Organometallics, 2003,22:2711
(b) Nifant’ev I E, Ivchenko P V, Bagrov V V, Churakov A V, Mercandelli P . Organometallics, 2012,31:4962.
[12]
Kangani C O Day B W. , Org. Lett., 2008,10:2645.
[13]
(a) da Camara e Silva E S, Figueroa-Villar J D, Palermo de Aguiar A . Synth. Commun., 2002,32:3193
(b) Xia Z Y, Zhang Z Y, Su J H, Zhang Q, Fung K M, Lam M K, Li K F, Wong W Y, Cheah K W, Tian H, Chen C H . J. Mater. Chem., 2010,20:3768,;
(c) da Silva Barbosa J, da Silva G V J, Constantino M G . Tetrahedron Lett., 2015,56:4649.
[14]
(a) De Castro C, Primo J, Corma A, J. Mol . Catal. A: Chem., 1998,134:215,;
(b) Chassaing S, Kumarraja M, Pale P, Sommer J . Org. Lett., 2007,9:3889.
[15]
(a) Huang Y C, Majumdar K K, Cheng C H . J.Org. Chem., 2002,67:1682
(b) Takemiya A, Hartwig J F . J. Am. Chem. Soc., ,;
(c) Suchand B, Satyanarayana G . J. Org. Chem., 2016,81:6409, ;, 2017,56:15441.
[16]
Smyth T P, Corby B W . J.Org. Chem., 1998,63:8946.
[17]
Veeramaneni V R, Pal M, Yeleswarapu K R . Tetrahedron, 2003,59:3283.
[18]
Luke G P, Seekamp C K, Wang Z Q, Chenard B L . J. Org. Chem., 2008,73:6397.
[19]
Kim J, Shokova E, Tafeenko V, Kovalev V . Beilstein J. Org. Chem., 2014,10:2270.
[20]
(a) Firouzabadi H, Iranpoor N, Nowrouzi F . Tetrahedron Lett., 2003,44:5343
(b) Firouzabadi H, Iranpoor N, Nowrouzi F . Tetrahedron, 2004,60:10843.
[21]
Fan F, Dong J, Wang J, Song L, Song C, Chang J . Adv. Synth. Catal., 2014,356:1337.
[22]
Galli C, Illuminati G, Mandolini L . J. Org. Chem., 1980,45:311.
[23]
Prado-Prado F, García-Mera X, Abeijón P, Alonso N, Caamaño O, Yáñez M, Gárate T, Mezo M, González-Warleta M, Muiño L, Ubeira F M, González-Díaz H . Eur. J. Med.Chem., 2011,46:1074.
[24]
Bindu P, Naini S R, Rao K S, Dubey P K, Pal S . J.Heterocyclic Chem., 2014,51:586.
[25]
Pal S, Khan M A, Bindu P Dubey P K. , Beilstein J. Org. Chem., 2007,3:35. DOI: 10.1186/1860-5397-3-35.
[26]
Andicsová-Eckstein A, Kozma E, Puterová-Tokárová Z, Végh D . J.Fluorine Chem., 2015,180:272.
[27]
Andicsová-Eckstein A, Kozma E, Végh D . J.Heterocyclic Chem., 2016,53:1945.
[28]
Kakushima M, Hamel P, Frenette R, Rokach J . J.Org. Chem., 1983,48:3214.
[29]
Song C, Knight D Wc Whatton M A. , Tetrahedron Lett., 2004,45:9573.
[30]
Kim S H, Lim J W, Yu J, Kim J N . Bull. Korean Chem.Soc., 2013,34:2604.
[31]
Beshara C S, Thompson A . J.Org. Chem., 2005,70:10607.
[32]
Kolli S K, Prasad B, Babu P V, Ashfaq M A, Ehtesham N Z, Raju R R, Pal M . Org. Biomol. Chem., 2014,12:6080.
[33]
Gray A D, Smyth T P . J.Org. Chem., 2001,66:7113.
[34]
Song C, Zhao P, Liu Y, Liu H, Li W, Shi S, Chang J . Tetrahedron, 2010,66:5378.
[35]
Yang W, Fu L, Wu J, Song C . Synth.Commun, 2016,46:1118.
[36]
Song C, Liu Y, Zhao P, Sun X, Li W, Liu H, Chang J . Synthesis, 2011,45.
[37]
Gałęzowski M, Jazwiński J, Lewtak J P, Gryko D T . J.Org. Chem., 2009,74:5610.
[38]
(a) Wang S, Yang Q, Dong J, Li C, Sun L, Song C, Chang J . Eur.J.Org. Chem., 2013,2013:7631
(b) Chang J, Sun L, Dong J, Shen Z, Zhang Y, Wu J, Wang R, Wang J, Song C . Synlett, 2012,23:2704.
[39]
Zhang Q, Song C, Huang H, Zhang K, Chang J . Org. Chem. Front., 2018,5:80.
[40]
Smyth T P, Corby B W . Org. Process Res.Dev., 1997,1:264.
[41]
(a) Liu Y, Guo Y, Ji F, Gao D, Song C, Chang J . J. Org. Chem., 2016,81:4310
(b) Guo Y, Huang H, Zhang T, Qi S, Liu Y, Li M, Wang P, Song C, Chang J, Asian J . Org. Chem., 2016,5:1269 ;
(c) Ji F, Huang H, Li M, Song C, Chang J . Synjournal, 2018,50:3921.
[42]
Koelsch C F, Hochmann H, Claire C D L . J. Am. Chem. Soc., 1943,65:59.
[43]
Song C, Knight D W, Whatton M A . Org. Lett., 2006,8:163.
[44]
Li E, Li C, Wang J, Wang J, Dong L, Guo X, Song C, Chang J . Tetrahedron, 2014,70:874.
[45]
Głodek M, Makal A, Kłys A, Zakrzewski J Plazuk D , Eur.J. Org. Chem., 2016,4215.
[46]
(a) Huang C, Ding R, Song C, Lu J, Liu L, Han X, Wu J, Hou H, Fan Y . Chem. Eur. J., 2014,20:16156,;
(b) Huang C, Han X, Shao Z, Gao K, Liu M, Wang Y, Wu J, Hou H, Mi L . Inorg. Chem., 2017,56:4874;
(c) Liu M, Gao K, Fan Y, Guo X, Wu J, Meng X, Hou H . Chem. Eur. J,. 2018,24:1416;
(d) Huang C, Zhang Y, Yang H, Wang D, Mi L, Shao Z, Liu M, Hou H . Cryst. Growth Des., 2018,18:56742018, 2018,57:10224.
[47]
Jordan J A, Gribble G W, Badenock J C . Tetrahedron Lett., 2011,52:6772.
[48]
Hong M, Liu H, Sun L, Jia F, Liu Y, Jiang Q, Song C, Chang J . Synlett, 2011,2995.
[49]
Song C, Liu H, Hong M, Liu Y, Jia F, Sun L, Pan Z, Chang J . J. Org. Chem., 2012,77:704.
[50]
(a) Fürstner A, Weintritt H . J. Am. Chem. Soc., 1998,120:2817
(b) Fürstner A, Gastner T, Weintritt H . J.Org. Chem., 1999,64:2361.
[51]
(a) Wang J, Wang J, Li C, Meng Y, Wu J, Song C, Chang J . J.Org. Chem., 2014,79:6354
(b) Meng Y, Liu Y, Lv Z, Wang J, Wang Y, Song C, Chang J . Nat. Prod. Commun.; 2015,10:2031.
[52]
Chang J, Wang S, Shen Z, Huang G, Zhang Y, Zhao J, Li C, Fan F, Song C. ., Tetrahedron Lett 2012,53:6755.
[53]
Fillion E, Fishlock D . J. Am. Chem. Soc., 2005 127:13144.
[1] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[2] 贾盈盈, 李洋, 周瑞莎, 宋江锋. 咪唑二羧酸及其衍生物构筑配合物的研究进展[J]. 化学进展, 2016, 28(4): 482-496.
[3] 李晓晖*, 黄美玲, 刘丽娜, 王燕云. 环肽类组蛋白去乙酰化酶抑制剂[J]. 化学进展, 2014, 26(09): 1527-1536.
[4] 王志鹏, 张艳, 王晓青*. 金属酶中双氧活化的模型研究及应用[J]. 化学进展, 2013, 25(06): 915-926.
[5] 冯国栋, 程丽华*, 徐新华, 张林, 陈欢林. 微藻高油脂化基因工程研究策略[J]. 化学进展, 2012, 24(07): 1413-1426.
[6] 任红, 张萍, 吴平, 芦菲. 含三唑-有机羧酸混合配体的配位聚合物[J]. 化学进展, 2012, 24(05): 769-775.
[7] 冯超 刘赛文 彭圣明 易兵 邓国军. 基于脱羧法的C-C键生成反应*[J]. 化学进展, 2010, 22(07): 1403-1413.
[8] 姚茹 程丽华 徐新华 张林 陈欢林. 微藻的高油脂化技术[J]. 化学进展, 2010, 22(06): 1221-1232.
[9] 李晓晖,李建勋,李世荣,修志龙,西野宪和. 环肽类组蛋白去乙酰化酶抑制剂*[J]. 化学进展, 2007, 19(05): 762-768.
[10] 赵东敏,赵继全,赵姗姗. 功能化MCM-41在有机合成中的应用[J]. 化学进展, 2007, 19(04): 510-519.
[11] 魏岚 贺德华. 高碳烯烃氢甲酰化研究[J]. 化学进展, 2005, 17(02): 217-224.
[12] 冯翠兰 王艳华 金子林. 液/液两相催化高碳烯烃氢甲酰化反应*[J]. 化学进展, 2005, 17(02): 209-216.
[13] 任运来,赵文成,吕士杰. 不对称催化氢甲酰化中高效手性配体的进展*[J]. 化学进展, 2004, 16(02): 266-.
[14] 陈华,黎耀忠,李东文,程溥明,李贤均. 水溶性均相络合催化研究进展*[J]. 化学进展, 1998, 10(02): 146-.
[15] 郑晓来,蒋景阳,王兵,金子林. 两相催化--均相催化多相化新进展*[J]. 化学进展, 1997, 9(02): 111-.