English
新闻公告
More
化学进展 2024, Vol. 36 Issue (2): 204-223 DOI: 10.7536/PC230616 前一篇   后一篇

• 综述 •

大尺寸有机分子晶体的生长及光电应用

崔靖愉1, 姜辉2, 李荣金1, 朱伟钢1,*()   

  1. 1 天津大学有机集成电路教育部重点实验室 天津市分子光电科学重点实验室 理学院化学系 天津 300072
    2 天津大学材料科学与工程学院 天津 300072
  • 收稿日期:2023-06-21 修回日期:2023-09-21 出版日期:2024-02-24 发布日期:2024-01-06
  • 作者简介:

    朱伟钢 天津大学英才副教授、特聘研究员、博士生导师。2011年本科毕业于电子科技大学,2016年博士毕业于中国科学院化学研究所,2016~2019年在美国西北大学化学系进行博士后研究,2020年起在天津大学理学院化学系开展教学科研工作,研究方向包括超快时间分辨光谱、电子顺磁共振、有机电子学器件、非线性光学和金属氧化物。

  • 基金资助:
    国家自然科学基金项目(U21A6002)

Growth of Large-Size Organic Molecular Crystals for Optoelectronic Applications

Jingyu Cui1, Hui Jiang2, Rongjin Li1, Weigang Zhu1()   

  1. 1 Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
    2 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
  • Received:2023-06-21 Revised:2023-09-21 Online:2024-02-24 Published:2024-01-06
  • Contact: *e-mail: w_zhu10@tju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U21A6002)

有机分子晶体通过非共价相互作用结合在一起,具有三维长程有序、热力学稳定、缺陷密度低等特点,在有机场效应晶体管、X射线成像、非线性光学、光波导、柔性可穿戴器件和激光器等领域有广阔的应用前景。以往的研究主要是基于有机块状晶体或小尺寸的有机微/纳米晶体,对大尺寸的有机分子晶体研究较少,而实际应用场景往往需要大尺寸的有机分子晶体,如晶体管阵列及电路需要英寸级晶体膜,X射线成像和非线性光学变频需要厘米级晶体。然而,获得高质量大尺寸的有机分子晶体极具挑战,国内外尚未有关于大尺寸有机分子晶体生长与光电性能研究的总结和综述。本文首先介绍了分子晶体的生长机理和生长方法,然后介绍了大尺寸有机分子晶体的材料,接着总结了大尺寸有机分子晶体在长余辉发光、非线性光学、X射线成像、快中子探测、场效应晶体管、光电探测器等光电方面的应用,最后讨论了这一领域存在的挑战并对未来发展进行了展望。

Organic molecular crystals, bounded together by non-covalent interactions, are three-dimensional long-range ordering and thermodynamic stable, and have low defect density and show rich prospects for applications in organic field effect transistors (OFETs), X-ray imaging, nonlinear optics, optical waveguides, flexible wearable devices, and lasers. However, previous research is mainly based on organic bulk crystals or small-size crystals, and there is less research on large-size organic molecular crystals while practical application scenarios often require large-size organic molecular crystals, such as transistor arrays and circuits requiring inch-level crystal films, X-ray imaging and nonlinear optical frequency conversion require centimeter-level crystals. However, it is difficult to obtain high-quality large-size organic molecular crystals, and there is no summary and review on the growth and optoelectronic properties of large-size organic molecular crystals at home and abroad. In this review, we first introduce the growth mechanism and growth method of molecular crystals, followed by the materials for growing large-size organic molecular crystals. Then we summarize the applications of large-size organic molecular crystals in optoelectronic aspects, such as long-persistent luminescence, nonlinear optics, X-ray imaging, fast neutron detection, field-effect transistors, and photodetectors. Finally, the challenges in this field are discussed and an outlook on future development is provided.

Contents

1 Introduction

2 Growth mechanism and method

2.1 Theory of crystal growth

2.2 Growth methods

3 Classical organic molecular materials

3.1 Materials for Bulk single crystals

3.2 Materials for single crystal films

4 Optoelectronic applications

4.1 Long-Persistent Luminescence

4.2 Non-linear optical response

4.3 X-Ray Imaging

4.4 Fast neutron detection

4.5 Ferroelectricity

4.6 Field-Effect Transistors and Circuits

4.7 Photodetectors

5 Conclusion and outlook

()
图1 光电功能晶体材料发展趋势:从无机晶体到有机晶体,从微纳米晶体到大尺寸晶体
Fig. 1 Development trend of optoelectronic functional crystal materials: From inorganic crystals to organic crystals, from micro and nano crystals to large size crystals
图2 非经典结晶在:a)成核,b~d)融合,e)生长阶段的光学显微镜图像。f, g)融合阶段凹形晶体的偏光显微镜图像。h, i)对应的AFM图像。j)典型浓度 - 温度曲线示意图。k)过饱和度作为时间的函数,通过两步法引入了S的阶跃变化[30]
Fig.2 Optical microscope images of the nonclassical crystallization in the: a) nucleation, b~d) fusion, and e) growth stage. f, g) Polarizing microscope images of a concave-shaped crystal in the fusion stage. h, i) The corresponding AFM images. j) A schematic of a typical concentration-temperature curve. k) Supersaturation ratio as a function of time, by which a step-change of S was introduced by the two-step procedure[30]. Copyright ? 2022 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
表1 晶体生长技术总结
Table 1 Summary of Crystal Growth Techniques
图3 Bridgman法晶体生长的原理(a)基本结构;(b)温度分布。Tm为晶体的熔点
Fig. 3 Principle of Crystal Growth by Bridgman Method (a) Basic structure; (b) Temperature distribution. Tm is the melting point of the crystal.
图4 经切割抛光的苯并咪唑单晶[33]
Fig. 4 Cut and polished single crystal of benzimidazole[33]. Copyright ? 2004 Elsevier B.V. All rights reserved.
图5 二维分子晶体生长和转移的空间限制自组装法示意图。(a) 将液滴溶液置于去离子水表面形成漂浮透镜。(b) 在去离子水中使用表面活性剂增强扩散。(c) 二维结晶导致二维分子晶体的生长。(d) 二维分子晶体转移到目标基板[38]
Fig. 5 Sketches of the SCS method for the growth and transfer of 2DMC. (a) A floating lens was formed when a droplet of solution was placed on the surface of DI water. (b) Enhanced spreading with surfactant in the DI water. (c) 2D crystallization resulted in the growth of 2DMC. (d) Transfer of the 2DMC to the target substrate[38]. Copyright ? 2018, American Chemical Society
图6 气相法生长晶体的四个主要环节
Fig. 6 Four main steps of crystal growth by vapor phase meth
图7 物理气相传输生长方法 (a) 开放系统,材料在区域 1 中加热,并在几托(几百帕)到大气压的压力下在载气流中升华。分子蒸气在下游区域 2 中以较低的温度结晶,由于温度梯度和载气的流动,纯晶体与杂质分离。 (b) 封闭系统,材料(杂质和化合物)在密封的玻璃/石英安瓿中加热。 (c) 半封闭系统,这些材料密封在玻璃安瓿中,但安瓿中的小孔允许杂质和一部分结晶材料从安瓿中逸出。 1区:升华区; 2区:晶体生长区[48]
Fig. 7 Scheme of the physical vapor transport growth method. (a) Open system. The material is heated in zone 1 and sublimed in a flow of carrier gas under pressures ranging from a few Torr (few hPa) to atmospheric pressure. The molecular vapor crystallizes downstream at a lower temperature in zone 2, with pure crystals separated from impurities due to the temperature gradient and the flow of the carrier gas. (b) Closed system. The material (impurities and the compound of interest) is heated in a sealed glass/quartz ampoule. (c) Semi-closed system. The materials are sealed in a glass ampoule, but a small orifice in the ampoule allows impurities and a portion of the crystallizing material to escape from the ampoule. Zone 1: Sublimation zone; zone 2: Crystal growth zone[48]. Copyright ? 2013, The Materials Research Society
图8 掺杂并五苯的对三联苯晶体[52]
Fig. 8 Pentacene-doped p-terphenyl crystals[52]. Copyright ? 2020, American Chemical Society
图9 a) CuPc、b) F4CuPc、c) F8CuPc、d) F16CuPc的单晶光学图像[54]
Fig. 9 Optical images of a) CuPc, b) F4CuPc, c) F8CuPc, d) F16CuPc single crystals[54]. Copyright ? 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
图10 (a) 尿素掺杂(10 mol%)L-半胱氨酸盐酸盐单晶[55] (b) OHB-T晶体照片[56]
Fig. 10 (a) Urea doped (10 mol%) L-cysteine hydrochlorid- emonohydrate single crystal[55] Copyright ? 2015 Elsevier B.V. All rights reserved. (b) Photograph of OHB-T crystal[56]. Copyright ? 2020 Elsevier B.V. All rights reserved.
图11 在本文中主要提到的生长大尺寸有机分子晶体的材料
Fig. 11 The main materials mentioned in this paper for growing large-size organic molecular crystals
图12 a) 载流子在电极/Cn-DNTT 界面传输的示意图。b) 沉积在 SiO2 晶圆上的英寸大小的单层晶体。 c~f) n 分别为 6、8、10 和 12的Cn-DNTT 的单层晶体的 CPOM 图像。白色交叉箭头表示偏振器和分析器的位置[58]
Fig. 12 a) Schematic process of carrier transport at the electrode/Cn-DNTT interface. b) Inch-sized 1L-crystals deposited on a SiO2 wafer. c~f) CPOM images of 1L-crystals of Cn-DNTTs, n = 6, 8,10, and 12, respectively. White crossed arrows denote the position of the polarizer and analyzer[58]. Copyright ? 2022 Wiley‐VCH GmbH
图13 a) 水滴浇铸水面示意图。b) ZCC共晶膜的光学显微镜图像。c)、d) ZCC共晶膜的偏光显微镜图像。e) 典型ZCC胶片的AFM图像。f) ZCC薄膜的TEM及其对应的SAED图像[64]
Fig. 13 a) Diagram of drop-casting onto water surface. b) Optical microscope image of a ZCC cocrystal film. c), d) Polarized optical microscope images of the ZCC cocrystal film. e) AFM image of a typical ZCC film. f) TEM and its corresponding SAED images of a ZCC film[64]. Copyright ? 2020 Wiley‐VCH GmbH
图14 在本文中主要提到的生长大面积有机分子晶体薄膜的材料
Fig. 14 The main materials mentioned in this paper for growing large-area organic molecular crystal films
图15 X射线成像在医疗诊断中的原理示意图
Fig. 15 Schematic diagram of the principle of X-ray imaging in medical diagnosis
图16 有机半导体单晶在X射线成像中的实际应用。a) 由9,10-DPA晶体拍摄的线性掩膜的X射线图像。b) 像素的光强函数(沿上面的红线,FWHM作为分辨率)图案的毫米级掩模。 c, d) 基于9,10-DPA单晶的X射线探测器为大学标志拍摄的X射线图像。e)由X射线同步辐射源激发的系统示意图。f) 电路板的X射线成像;红色数字表示相应的位置照片和X射线成像。g) 小虾米干的X射线成像。h) 小虾干的SEM图像。i) 虾尾的钙元素图谱和j) 氧元素图谱[71]
Fig. 16 Practical application of the organic semiconductor single crystals for X-ray imaging. a) X-ray images of linear mask taken by 9,10-DPA crystals. b) Light-intensity function of pixels (along the red line above and FWHM is taken as the resolution) patterned millimeter-scale mask. c, d) X-ray images taken by 9,10-DPA single-crystal-based X-ray detector for the university logo. e) System schematic excited by an X-ray synchrotron radiation source. f) X-ray imaging for the circuit board; the red numbers indicate the corresponding position photos and X-ray imaging. g) X-ray imaging for dried small shrimp. h) SEM image of dried small shrimp. i) Calcium mapping and j) oxygen mapping of the shrimp tail[71]. Copyright ? 2021 Wiley‐VCH GmbH
图17 Cs-137和Cf-252照射下的代表性脉冲(a)和脉冲高度谱(b)。(b)的插图是TPE的部分放大图[74]
Fig. 17 Representative pulses (a) and pulse-height spectra (b) under Cs-137 and Cf-252 irradiation. The inset of (b) is a partial enlargement for TPE[74]. Copyright ? 2022 Elsevier Inc.
图18 2DCOS的晶体管特性。基于OTS SAM改性Si/SiO2衬底上的2DCOS,a)、b)苝,c)、d) C6-DPA,e)、f) C6-PTA,g),h) C6-DBTDT的OFET的典型传输和输出特性。(a)(c)(e)和(g)中的不同颜色的线对应于不同的栅极电压[81]
Fig. 18 Transistor characteristics of the 2DCOS. Typical transfer and output characteristics of the OFETs based on the 2DCOS, a), b) perylene, c), d) C6-DPA, e), f) C6-PTA, g), h) C6-DBTDT on OTS SAM modified Si/SiO2 substrates. The different colored lines in (a) (c) (e), and (g) correspond to the different gate voltages[81]. Copyright ? 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
图19 (a) (TMHD)BiBr5的大块单晶照片。(b) 基于高取向(TMHD)BiBr5单晶的平面型单晶光电探测器器件示意图[83]。
Fig. 19 (a) Photograph of a bulk single crystal of (TMHD)BiBr5. (b) Diagram of planar-type single-crystal photodetector device based on highly oriented (TMHD)BiBr5 single crystal[83]. Copyright ? 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
[1]
Cheng Y, Zhang X, Qin Y X, Dong P, Yao W, Matz J, Ajayan P M, Shen J F, Ye M X. Nat. Commun., 2021, 12: 4092.

doi: 10.1038/s41467-021-24388-y    
[2]
Jiang T, Wang Y R, Zheng Y S, Wang L, He X, Li L Q, Deng Y F, Dong H L, Tian H K, Geng Y H, Xie L H, Lei Y, Ling H F, Ji D Y, Hu W P. Nat. Commun., 2023, 14: 2281.

doi: 10.1038/s41467-023-37973-0    
[3]
Xu X Z, Deng W, Zhang X J, Huang L M, Wang W, Jia R F, Wu D, Zhang X H, Jie J S, Lee S T. ACS Nano, 2019, 13(5): 5910.

doi: 10.1021/acsnano.9b01734     URL    
[4]
Farah S, Doloff J C, Müller P, Sadraei A, Han H J, Olafson K, Vyas K, Tam H H, Hollister-Lock J, Kowalski P S, Griffin M, Meng A, McAvoy M, Graham A C, McGarrigle J, Oberholzer J, Weir G C, Greiner D L, Langer R, Anderson D G. Nat. Mater., 2019, 18(8): 892.

doi: 10.1038/s41563-019-0377-5    
[5]
Im H, Yoon J, Choi J, Kim J, Baek S, Park D H, Park W, Kim S. Adv. Mater., 2021, 33 (44): e2102542.
[6]
Marinkas P L. Nature, 1966, 211(5055): 1288.

doi: 10.1038/2111288a0    
[7]
Lv B L, Liu Z Y, Tian H, Xu Y, Wu D, Sun Y H. Adv. Funct. Mater., 2010, 20(22): 3987.

doi: 10.1002/adfm.v20.22     URL    
[8]
Li Z H, Zeng J H, Li Y D. Small, 2007, 3(3): 438.

doi: 10.1002/smll.v3:3     URL    
[9]
Oh C G, Baek Y, Ihm S K. Adv. Mater., 2005, 17(3): 270.

doi: 10.1002/adma.v17:3     URL    
[10]
Watanabe T, Cho W S, Suchanek W L, Endo M, Ikuma Y, Yoshimura M. Solid State Sci., 2001, 3(1/2): 183.

doi: 10.1016/S1293-2558(00)01126-2     URL    
[11]
Bouaita R, Alombert-Goget G, Ghezal E A, Nehari A, Benamara O, Benchiheub M, Cagnoli G, Yamamoto K, Xu X, Motto-Ros V, Li H, Dujardin C, Lebbou K. CrystEngComm, 2019, 21(28): 4200.

doi: 10.1039/C9CE00510B     URL    
[12]
Feigelson R S. J. Cryst. Growth, 2022, 594: 126800.

doi: 10.1016/j.jcrysgro.2022.126800     URL    
[13]
Zhu W G, Zhu L Y, Zou Y, Wu Y S, Zhen Y G, Dong H L, Fu H B, Wei Z X, Shi Q, Hu W P. Adv. Mater., 2016, 28(28): 5954.

doi: 10.1002/adma.v28.28     URL    
[14]
Cui S Y. Doctoral Dissertation of Shandong University, 2021.
(崔双月. 山东大学博士论文, 2021.)
[15]
Dou Z F, Masteral Dissertation of University of Electronic Science and Technology of China, 2022.
(窦子凡. 电子科技大学硕士论文, 2022.)
[16]
De Yoreo J. A Perspective on Multistep Pathways of Nucleation. In Crystallization via Nonclassical Pathways. Nucleation, Assembly, Observation & Application, American Chemical Society, 2020, 1.
[17]
Tsarfati Y, Biran I, Wiedenbeck E, Houben L, Cölfen H, Rybtchinski B. ACS Cent. Sci., 2021, 7(5): 900.

doi: 10.1021/acscentsci.1c00254     URL    
[18]
Ma T Q, Wei L, Liang L, Yin S, Xu L, Niu J, Xue H D, Wang X G, Sun J L, Zhang Y B, Wang W. Nat. Commun., 2020, 11: 6128.

doi: 10.1038/s41467-020-19858-8    
[19]
Xue D F, Su L B, Xu J. J. Inorg. Mater., 2023, 38(3): 225.
[20]
Wang W H. Prog. Phys., 2013, 33(5): 177.
汪卫华. 物理学进展, 2013, 33(5): 177.)
[21]
Zhao J P. Design and preparation technology of new functional materials. Beijing: Chemical Industry Press, 2003.
(赵九蓬. 新型功能材料设计与制备工艺. 北京: 化学工业出版社, 2003.)
[22]
Jie W Q. Principle and Technology of Crystal Growth. 2nd ed. Beijing: Science Press, 2019.
(介万奇. 晶体生长原理与技术. 2版. 北京: 科学出版社, 2019.)
[23]
Donnay J D H, Harker D. Am Mineral, 1937, 22 (5): 446.
[24]
Hartman P G. P W, On the relations between structure and morphology of crystal II. 1955.
[25]
Parker R. Crystal Growth: An Introduction. P. Hartman North-Holland, Amsterdam, 1973, 531.
[26]
Hartman P, Bennema P. J. Cryst. Growth, 1980, 49(1): 145.

doi: 10.1016/0022-0248(80)90075-5     URL    
[27]
Tocher F E. Mineral. Mag., 1978, 42(321): 165.
[28]
Zheng Y Q, Shi E W, Li W J, Wang B G, Hu X F. Journal of Inorganic Materials, 1999, 03: 321.
(郑燕青, 施尔畏, 李汶军, 王步国, 胡行方. 无机材料学报, 1999, 03: 321.)
[29]
Shi E W, Zhong W Z, Hua S K, Yuan R L, Wang B G, Xia C T, Li W J. Chinese Science, 1998, 01: 37.
施尔畏, 仲维卓, 华素坤, 元如林, 王步国, 夏长泰, 李汶军. 中国科学, 1998, 01: 37.)
[30]
Yao J R, Tian X Z, Li B, Wang Z F, Zhang X L, Jie J S, Yang F X, Li R J, Hu W P. Adv. Electron. Mater., 2023, 9(2): 2201027.
[31]
Scriven L E, Sternling C V. Nature, 1960, 187(4733): 186.

doi: 10.1038/187186a0    
[32]
Fan F Q, Zhang Z H, Guo J, Zhang L Y, Zhang X M, Wang T Q, Fu Y. CrystEngComm, 2023, 25(19): 2877.

doi: 10.1039/D3CE00166K     URL    
[33]
Vijayan N, Balamurugan N, Ramesh Babu R, Gopalakrishnan R, Ramasamy P, Harrison W T A. J. Cryst. Growth, 2004, 267(1/2): 218.

doi: 10.1016/j.jcrysgro.2004.03.064     URL    
[34]
Cui S Y, Zhu T W, Zhang L L, Ye X, Han Q X, Ge C, Guo Q, Zheng X X, Lin Q L, Li C C, Jiang J K, Yuan W Z, Liu Y, Tao X T. Adv. Opt. Mater., 2022, 10(9): 2102355.
[35]
Senthil K, Kalainathan S, Ruban Kumar A. J. Therm. Anal. Calorim., 2014, 118(1): 323.
[36]
Halliwell C A, Dann S E, Ferrando-Soria J, Plasser F, Yendall K, Ramos-Fernandez E V, Vladisavljević G T, Elsegood M R J, Fernandez A. Angew. Chem. Int. Ed., 2022, 61(47): 2208677.
[37]
Mohammed A V, Arulappan J A P, Ganesan S T. Optik, 2015, 126(23): 4322.

doi: 10.1016/j.ijleo.2015.08.026     URL    
[38]
Wang Q Q, Yang F X, Zhang Y, Chen M X, Zhang X T, Lei S B, Li R J, Hu W P. J. Am. Chem. Soc., 2018, 140(16): 5339.

doi: 10.1021/jacs.8b01997     URL    
[39]
Yao J, Zhang Y, Tian X, Zhang X, Zhao H, Zhang X, Jie J, Wang X, Li R, Hu W. Angew. Chem. Int. Ed., 2019, 58 (45): 16082.

doi: 10.1002/anie.v58.45     URL    
[40]
Sele C W, Charlotte Kjellander B K, Niesen B, Thornton M J, van der Putten J B P H, Myny K, Wondergem H J, Moser A, Resel R, van Breemen A J J M, van Aerle N, Heremans P, Anthony J E, Gelinck G H. Adv. Mater., 2009, 21(48): 4926.

doi: 10.1002/adma.v21:48     URL    
[41]
Marszalek T, Nosal A, Pfattner R, Jung J, Kotarba S, Mas-Torrent M, Krause B, Veciana J, Gazicki-Lipman M, Crickert C, Schmidt G, Rovira C, Ulanski J. Org. Electron., 2012, 13(1): 121.

doi: 10.1016/j.orgel.2011.10.001     URL    
[42]
Qi Z, Zhang F J, Di C A, Wang J Z, Zhu D B. J. Mater. Chem. C, 2013, 1(18): 3072.

doi: 10.1039/c3tc30357h     URL    
[43]
Khim D, Han H, Baeg K J, Kim J, Kwak S W, Kim D Y, Noh Y Y. Adv. Mater., 2013, 25(31): 4302.

doi: 10.1002/adma.v25.31     URL    
[44]
Hong S, Yi M J, Kang H, Kong J, Lee W, Kim J R, Lee K. Sol. Energy Mater. Sol. Cells, 2014, 126: 107.

doi: 10.1016/j.solmat.2014.03.042     URL    
[45]
Lee W Y, Oh J H, Suraru S L, Chen W C, Würthner F, Bao Z N. Adv. Funct. Mater., 2011, 21(21): 4173.

doi: 10.1002/adfm.v21.21     URL    
[46]
Kang B, Min H, Seo U, Lee J, Park N, Cho K, Lee H S. Adv. Mater., 2013, 25(30): 4117.

doi: 10.1002/adma.v25.30     URL    
[47]
Park Y, Park J, Cho S, Sung M M. Appl. Surf. Sci., 2019, 494: 1023.

doi: 10.1016/j.apsusc.2019.07.184     URL    
[48]
Jiang H, Kloc C. MRS Bull., 2013, 38(1): 28.

doi: 10.1557/mrs.2012.308     URL    
[49]
Karl N. J. Cryst. Growth, 1990, 99(1/4): 1009.

doi: 10.1016/S0022-0248(08)80072-3     URL    
[50]
Laudise R A, Kloc C, Simpkins P G, Siegrist T. J. Cryst. Growth, 1998, 187(3/4): 449.

doi: 10.1016/S0022-0248(98)00034-7     URL    
[51]
Wang H, Xie Z Q, Yang B, Shen F Z, Li Y P, Ma Y G. CrystEngComm, 2008, 10(9): 1252.

doi: 10.1039/b805512b     URL    
[52]
Cui S Y, Liu Y, Li G L, Han Q X, Ge C, Zhang L L, Guo Q, Ye X, Tao X T. Cryst. Growth Des., 2020, 20(2): 783.

doi: 10.1021/acs.cgd.9b01190     URL    
[53]
Deng W, Lei H, Zhang X, Sheng F, Shi J, Zhang X, Liu X, Grigorian S, Zhang X, Jie J S. Adv. Mater., 2022, 34 (13): e2109818.
[54]
Jiang H, Hu P, Ye J, Li Y, Li H, Zhang X, Li R, Dong H, Hu W, Kloc C. Adv. Mater., 2017, 29 (10): 1605053.
[55]
Verma S, Ramachandra Rao K, Kar S, Bartwal K S. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2016, 153: 16.

doi: 10.1016/j.saa.2015.08.003     URL    
[56]
Xu K, Cao L F, You F, Zhong D G, Wang T H, Yu Z, Hu C, Tang J, Teng B. J. Cryst. Growth, 2020, 547: 125757.

doi: 10.1016/j.jcrysgro.2020.125757     URL    
[57]
Kim G, Kim D, Choi Y, Ghorai A, Park G, Jeong U. Adv. Mater., 2023, 35 (4): e2203373.
[58]
Peng B Y, He Z F, Chen M, Chan P K L. Adv. Funct. Mater., 2022, 32(39): 2202632.
[59]
Saha S, Desiraju G R. J. Am. Chem. Soc., 2018, 140(20): 6361.

doi: 10.1021/jacs.8b02435     URL    
[60]
Wang Y, Zhu W G, Du W N, Liu X F, Zhang X T, Dong H L, Hu W P. Angew. Chem. Int. Ed., 2018, 57(15): 3963.

doi: 10.1002/anie.v57.15     URL    
[61]
Yang F X, Sun L J, Duan Q X, Dong H L, Jing Z K, Yang Y C, Li R J, Zhang X T, Hu W P, Chua L. SmartMat, 2021, 2(1): 99.

doi: 10.1002/smm2.v2.1     URL    
[62]
Zhu W G, Zhu L Y, Sun L J, Zhen Y G, Dong H L, Wei Z X, Hu W P. Angew. Chem. Int. Ed., 2016, 55(45): 14023.

doi: 10.1002/anie.v55.45     URL    
[63]
Zhu W G, Zheng R H, Zhen Y G, Yu Z Y, Dong H L, Fu H B, Shi Q, Hu W P. J. Am. Chem. Soc., 2015, 137(34): 11038.

doi: 10.1021/jacs.5b05586     URL    
[64]
Wang Y, Wu H, Zhu W G, Zhang X T, Liu Z Y, Wu Y S, Feng C F, Dang Y F, Dong H L, Fu H B, Hu W P. Angew. Chem. Int. Ed., 2021, 60(12): 6344.

doi: 10.1002/anie.v60.12     URL    
[65]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J. Nat. Chem., 2011, 3(3): 205.

doi: 10.1038/nchem.984    
[66]
Wang H, Hu R X, Pang X, Gao H Y, Jin W J. CrystEngComm, 2014, 16(34): 7942.

doi: 10.1039/C4CE00813H     URL    
[67]
Cunningham P D, Hayden L M. Opt. Express, 2010, 18(23): 23620.

doi: 10.1364/OE.18.023620     URL    
[68]
Wang W L, Wang M, Huang W D. Opt. Mater., 2004, 27(3): 609.

doi: 10.1016/j.optmat.2004.08.072     URL    
[69]
Lee S H, Lee S J, Jazbinsek M, Kang B J, Rotermund F, Kwon O P. CrystEngComm, 2016, 18(38): 7311.

doi: 10.1039/C6CE00958A     URL    
[70]
Wang J X, Bakr O M, Mohammed O F. Matter, 2022, 5(8): 2547.

doi: 10.1016/j.matt.2022.06.062     URL    
[71]
Chen M, Sun L, Ou X, Yang H, Liu X, Dong H, Hu W, Duan X. Adv. Mater., 2021, 33 (43): e2104749.
[72]
Liu Y C, Xu Z, Yang Z, Zhang Y X, Cui J, He Y H, Ye H C, Zhao K, Sun H M, Lu R, Liu M, Kanatzidis M G, Liu S Z. Matter, 2020, 3(1): 180.

doi: 10.1016/j.matt.2020.04.017     URL    
[73]
Zhao D, Cai P K, Cheng W, Jia W B, Zhang B B, Zhu M H, Liu L Y, Ouyang X, Sellin P, Jie W Q, Xu Y D. Adv. Funct. Mater., 2022, 32(7): 2108857.
[74]
Sun Q S, Hao Z R, Li J, Liu Z Y, Wang H W, Zhang X T, Li L Q, Dong H L, Hu W P. Matter, 2023, 6(1): 274.

doi: 10.1016/j.matt.2022.10.010     URL    
[75]
Wang Z X, Liao W Q. Science, 2022, 375(6587): 1353.

doi: 10.1126/science.abn7440     URL    
[76]
Tressler J F, Alkoy S, Newnham R E. J. Electroceram., 1998, 2(4): 257.

doi: 10.1023/A:1009926623551     URL    
[77]
Lv H P, Liao W Q, You Y M, Xiong R G. J. Am. Chem. Soc., 2022, 144(48): 22325.

doi: 10.1021/jacs.2c11213     URL    
[78]
Tayi A S, Shveyd A K, Sue A C H, Szarko J M, Rolczynski B S, Cao D, Kennedy T J, Sarjeant A A, Stern C L, Paxton W F, Wu W, Dey S K, Fahrenbach A C, Guest J R, Mohseni H, Chen L X, Wang K L, Stoddart J F, Stupp S I. Nature, 2012, 488(7412): 485.

doi: 10.1038/nature11395    
[79]
Briseno A L, Mannsfeld S C B, Ling M M, Liu S H, Tseng R J, Reese C, Roberts M E, Yang Y, Wudl F, Bao Z N. Nature, 2006, 444(7121): 913.

doi: 10.1038/nature05427    
[80]
Du C, Li L Q, Wang W C, Zhang J D, Yan D H, Hu W P, Fuchs H, Chi L F. AIP Adv., 2012, 2(2): 022138.

doi: 10.1063/1.4723851     URL    
[81]
Xu C H, He P, Liu J, Cui A J, Dong H L, Zhen Y G, Chen W, Hu W P. Angew. Chem. Int. Ed., 2016, 55(33): 9443.

doi: 10.1002/anie.v55.33     URL    
[82]
Yamamura A, Watanabe S, Uno M, Mitani M, Mitsui C, Tsurumi J, Isahaya N, Kanaoka Y, Okamoto T, Takeya J. Sci. Adv., 2018, 4(2): eaao5758.
[83]
Ji C, Wang P, Wu Z, Sun Z, Li L, Zhang J, Hu W, Hong M, Luo J. Adv. Funct. Mater., 2018, 28(14): 1705467.

doi: 10.1002/adfm.v28.14     URL    
[84]
Chen Y Z, Wang S W, Su T Y, Lee S H, Chen C W, Yang C H, Wang K Y, Kuo H C, Chueh Y L. Small, 2018, 14(22): 1704052.
[85]
Chen Y Z, You Y T, Chen P J, Li D P, Su T Y, Lee L, Shih Y C, Chen C W, Chang C C, Wang Y C, Hong C Y, Wei T C, Ho J C, Wei K H, Shen C H, Chueh Y L. ACS Appl. Mater. Interfaces, 2018, 10(41): 35477.

doi: 10.1021/acsami.8b11676     URL    
[86]
Ouyang W, Teng F, Fang X. Adv. Funct. Mater., 2018, 28 (16): 1707178.
[87]
Yang W, Chen J, Zhang Y, Zhang Y, He J H, Fang X. Adv. Funct. Mater., 2019, 29 (18): 1808182.

doi: 10.1002/adfm.v29.18     URL    
[88]
Oxborrow M, Breeze J D, Alford N M. Nature, 2012, 488(7411): 353.

doi: 10.1038/nature11339    
[1] 奚清扬, 刘劲松, 李子全, 朱孔军, 台国安, 宋若谷. 二硫化钼薄膜的刻蚀方法及其应用[J]. 化学进展, 2018, 30(6): 847-863.
[2] 陈禹夫, 李祥高, 肖殷, 王世荣. 溶液法大面积制备有机小分子场效应晶体管[J]. 化学进展, 2017, 29(4): 359-372.
[3] 林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*. 高性能的n-型和双极性有机小分子场效应晶体管材料[J]. 化学进展, 2017, 29(11): 1316-1330.
[4] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[5] 宋静怡, 江浪*, 董焕丽, 胡文平*. 有机微纳晶场效应晶体管[J]. 化学进展, 2013, 25(01): 12-27.
[6] 杨柳, 雷霆, 裴坚*, 刘晨江* . 有机微纳米材料的设计策略、加工及应用[J]. 化学进展, 2012, 24(12): 2299-2311.
[7] 蔡晓舟, 江浪, 董焕丽, 李晶泽*, 胡文平* . 有机电路及其基本元器件[J]. 化学进展, 2012, 24(12): 2431-2442.
[8] 刘洁 江浪 胡文平. 蒽及其衍生物在有机场效应晶体管中的应用[J]. 化学进展, 2009, 21(12): 2568-2577.
[9] 李荣金,李洪祥,周欣然,胡文平. 聚合物场效应晶体管材料及其器材[J]. 化学进展, 2007, 19(0203): 325-336.
[10] 刘雅玲,李洪祥,胡文平,朱道本. 有机单晶场效应晶体管[J]. 化学进展, 2006, 18(0203): 189-199.