English
新闻公告
More
化学进展 2017, Vol. 29 Issue (11): 1316-1330 DOI: 10.7536/PC170424 前一篇   后一篇

• 综述 •

高性能的n-型和双极性有机小分子场效应晶体管材料

林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*   

  1. 中南大学化学化工学院 长沙 410083
  • 收稿日期:2017-04-14 修回日期:2017-09-22 出版日期:2017-11-15 发布日期:2017-10-27
  • 通讯作者: 徐海,e-mail:xhisaac@csu.edu.cn;梁文杰,e-mail:360043896@qq.com E-mail:xhisaac@csu.edu.cn;360043896@qq.com
  • 基金资助:
    国家自然科学基金项目(No.21290191)和长沙市科技计划(No.kq1606007)资助

High Performance n-Type and Ambipolar Small Organic Semiconductors for Organic Field-Effect Transistors

Gaobo Lin, Ting Luo, Lvbing Yuan, Wenjie Liang*, Hai Xu*   

  1. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received:2017-04-14 Revised:2017-09-22 Online:2017-11-15 Published:2017-10-27
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21290191), the Changsha Science and Technology Plan (No. kq1606007).
作为有机场效应晶体管的关键组成部分,有机半导体材料直接决定了器件的性能和稳定性。相比于p-型有机半导体材料,n-型和双极性有机半导体材料在迁移率和稳定性等方面则显著滞后。因此,n-型和双极性小分子有机半导体材料的设计与合成已成为高性能OFETs的学术研究的焦点。这篇综述重点突出了近十年报道的具有较好性能的n-型和双极性小分子有机半导体材料,并且对其结构和性能的关系进行了归纳,旨在对设计合成高性能、空气稳定的n-型和双极性有机小分子半导体材料提供一些指导帮助。
Organic semiconductors, as the key component of organic feld-effect transistors (OFETs), determine the performance and stability of OFET devices directly. However, the overall development of n-type and ambipolar organic semiconductors still lags behind their p-type counterparts in terms of mobility, ambient stability, and so on. Thus, the design and synthesis of n-type and ambipolar organic semiconductors have become the focus of academic research for high-performance OFETs. In this review, high performance n-type and ambipolar small organic semiconductors are highlighted and their structure-property relationship is analyzed, which is aimed to provide some meaningful guidelines for designing high-performance n-type and ambipolar organic semiconductors.
Contents
1 Introduction
2 n-type small organic semiconductors
2.1 NDI and PDI-based small organic semiconductors
2.2 DPP-based small organic semiconductors
2.3 Small organic semiconductors containing thiophene or thiazole
2.4 Acene-based small organic semiconductors
3 Ambipolar small organic semiconductors
4 The principles for the design of high performance n-type and ambipolar small molecules
4.1 Molecular structure
4.2 HOMO and LUMO energy levels
4.3 Molecular arrangement
4.4 The introduction of substituent group
4.5 Other factors
5 Conclusion

中图分类号: 

()
[1] Jurchescu O D, Popinciuc M, van Wees B J, Palstra T T M. Adv. Mater., 2007, 19:688.
[2] Yuan Y B, Giri G, Ayzner A L, Zoombelt A P, Mannsfeld S C B, Chen J H, Nordlund D, Toney M F, Huang J S, Bao Z N. Nat. Commun., 2014, 5:3005.
[3] Xu H, Lin G B, Zhao S Q, Liang Y, Xiao X W, Xu W, Zhu D B. Synth. Met., 2016, 219:154.
[4] Meng Q, Hu W P. Phys. Chem. Chem. Phys., 2012, 14:14152.
[5] Usta H, Facchetti A, Marks T J. Acc. Chem. Res., 2011, 44:501.
[6] Li H Y, Tee B C K, Cha J J, Cui Y, Chung J W, Lee S Y, Bao Z N. J. Am. Chem. Soc., 2012, 134:2760.
[7] Dou J H, Zheng Y Q, Yao Z F, Yu Z A, Lei T, Shen X X, Luo X Y, Sun J L, Zhang S D, Ding Y F, Han G C, Yi Y P, Wang J Y, Pei J. J. Am. Chem. Soc., 2015, 137:15947.
[8] 张凤娇(Zhang F J).中国科学院大学博士论文(Doctoral Dissertation of University of Chinese Academy of Sciences), 2015.
[9] Takimiya K, Osaka I, Nakano M. Chem. Mater., 2014, 26:587.
[10] Gao Y, Deng Y F, Tian H K, Zhang J D, Yan D, Geng Y H, Wang F S. Adv. Mater., 2017, 29(13):1606217.
[11] Soeda J, Uemura T, Mizuno Y, Nakao A, Nakazawa Y, Facchetti A, Takeya J. Adv. Mater., 2011, 23:3681.
[12] Jones B A, Facchetti A, Wasielewski M R, Marks T J. J. Am. Chem. Soc., 2007, 129:15259.
[13] Anthony J E, Facchetti A, Heeney M, Marder S R, Zhan X W. Adv. Mater., 2010, 22:3876.
[14] See K C, Landis C, Sarjeant A, Katz H E. Chem. Mater., 2008, 20:3609.
[15] Chesterfield R J, McKeen J C, Newman C R, Ewbank P C, da Silva Filho D A, Brédas J L, Miller L L, Mann K R, Frisbie C D. J. Phys. Chem. B, 2004, 108:19281.
[16] Horowitz G, Kouki F, Spearman P, Fichou D, Nogues C, Pan X, Garnier F. Adv. Mater., 1996, 8:242.
[17] Tatemichi S, Ichikawa M, Koyama T, Taniguchi Y. Appl. Phys. Lett., 2006, 89:112108.
[18] Schmidt R, Oh J H, Sun Y S, Deppisch M, Krause A M, Radacki K, Braunschweig H, K nemann M, Erk P, Bao Z N, Würthner F. J. Am. Chem. Soc., 2009, 131:6215.
[19] Jones B A, Ahrens M J, Yoon M H, Facchetti A, Marks T J, Wasielewski M R. Angew. Chem., 2004, 116:6523.
[20] Molinari A S, Alves H, Chen Z H, Facchetti A, Morpurgo A F. J. Am. Chem. Soc., 2009, 131:2462.
[21] Liu C M, Xiao C Y, Li Y, Hu W P, Li Z B, Wang Z H. Chem. Commun., 2014, 50:12462.
[22] Lv A F, Puniredd S R, Zhang J H, Li Z B, Zhu H F, Jiang W, Dong H L, He Y D, Jiang L, Li Y, Pisula W, Meng Q, Hu W P, Wang Z H. Adv. Mater., 2012, 24:2626.
[23] Laquindanum J G, Katz H E, Dodabalapur A, Lovinger A J. J. Am. Chem. Soc., 1996, 118:11331.
[24] Shukla D, Nelson S F, Freeman D C, Rajeswaran M, Ahearn W G, Meyer D M, Carey J T. Chem. Mater., 2008, 20:7486.
[25] Oh J H, Suraru S L, Lee W Y, K nemann M, H ffken H W, R ger C, Schmidt R, Chung Y Y, Chen W C, Würthner F, Bao Z N. Adv. Funct. Mater., 2010, 20:2148.
[26] Stolte M, Gsänger M, Hofmockel R, Suraru S L, Würthner F. Phys. Chem. Chem. Phys., 2012, 14:14181.
[27] He T, Stolte M, Würthner F. Adv. Mater., 2013, 25:6951.
[28] He T, Stolte M, Burschka C, Hansen N H, Musiol T, Kälblein D, Pflaum J, Tao X T, Brill J, Würthner F. Nat. Comun., 2015, 6:5954.
[29] Fan W, Liu C M, Li Y, Wang Z H. Chem. Commun., 2017, 53:188.
[30] Polander L E, Tiwari S P, Pandey L, Seifried B M, Zhang Q, Barlow S, Risko C, Brédas J L, Kippelen B, Marder S R. Chem. Mater., 2011, 23:3408.
[31] Wang Z R, Li X G, Zou Y, Tan J H, Fu X L, Liu J, Xiao C Y, Dong H L, Jiang W, Liu F, Zhen Y G, Wang Z H, Russell T P, Hu W P. J. Mater. Chem. C, 2016, 4:7230.
[32] Zhao Y, Di C A, Gao X K, Hu Y B, Guo Y, Zhang L, Liu Y Q, Wang J Z, Hu W P, Zhu D B. Adv. Mater., 2011, 23:2448.
[33] Zhang F J, Hu Y B, Schuettfort T, Di C A, Gao X K, McNeill C R, Thomsen L, Mannsfeld S C B, Yuan W, Sirringhaus H, Zhu D B. J. Am. Chem. Soc., 2013, 135:2338.
[34] Lee J H, Han A R, Yu H J, Shin T J, Yang C D, Oh J H. J. Am. Chem. Soc., 2013, 135:9540.
[35] Yao J J, Yu C M, Liu Z T, Luo H W, Yang Y, Zhang G X, Zhang D Q. J. Am. Chem. Soc., 2016, 138:173.
[36] Kanimozhi C, Yaacobi-Gross N, Chou K W, Amassian A, Anthopoulos T D, Patil S. J. Am. Chem. Soc., 2012, 134:16532.
[37] Qiao Y L, Guo Y L, Yu C M, Zhang F J, Xu W, Liu Y Q, Zhu D B. J. Am. Chem. Soc., 2012, 134:4084.
[38] Wang C, Qin Y K, Sun Y H, Guan Y S, Xu W, Zhu D B. ACS Appl. Mater. Interfaces, 2015, 7:15978.
[39] Wang C, Zang Y P, Qin Y K, Zhang Q, Sun Y H, Di C A, Xu W, Zhu D B. Chem. -Eur. J., 2014, 20:13755.
[40] Yoon W S, Park S K, Cho I, Oh J A, Kim J H, Park S Y. Adv. Funct. Mater., 2013, 23:3519.
[41] Ando S, Murakami R, Nishida J I, Tada H, Inoue Y, Tokito S, Yamashita Y. J. Am. Chem. Soc., 2005, 127:14996.
[42] Kumaki D, Ando S, Shimono S, Yamashita Y, Umeda T, Tokito S. Appl. Phys. Lett., 2007, 90:053506.
[43] Schols S, Willigenburg L V, Müller R, Bode D, Debucquoy M, Jonge S D, Genoe J, Heremans P, Lu S, Facchetti A. Appl. Phys. Lett., 2008, 93:263303.
[44] Yoon M H, Facchetti A, Stern C E, Marks T J. J. Am. Chem. Soc., 2006, 128:5792.
[45] Yun S W, Kim J H, Shin S, Yang H, An B K, Yang L, Park S Y. Adv. Mater., 2012, 24:911.
[46] Handa S, Miyazaki E, Takimiya K, Kunugi Y. J. Am. Chem. Soc., 2007, 129:11684.
[47] Wu Q H, Li R J, Hong W X, Li H, Gao X K, Zhu D B. Chem. Mater., 2011, 23:3138.
[48] Wu Q H, Ren S D, Wang M, Qiao X L, Li H X, Gao X K, Yang X D, Zhu D B. Adv. Funct. Mater., 2013, 23:2277.
[49] Xiong Y, Tao J W, Wang R H, Qiao X L, Yang X D, Wang D L, Wu H Z, Li H X. Adv. Mater., 2016, 28:5949.
[50] Zhang C, Zang Y P, Gann E, McNeill C R, Zhu X Z, Di C A, Zhu D B. J. Am. Chem. Soc., 2014, 136:16176.
[51] Zhang C, Zang Y P, Zhang F J, Diao Y, McNeill C R, Di C A, Zhu X Z, Zhu D B. Adv. Mater., 2016, 28:8456.
[52] Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Fukai Y, Inoue Y, Sato F, Tokito S. J. Am. Chem. Soc., 2004, 126:8138.
[53] Tang Q, Liang Z X, Liu J, Xu J B, Miao Q. Chem. Commun., 2010, 46:2977.
[54] Liang Z X, Tang Q, Mao R X, Liu D Q, Xu J B, Miao Q. Adv. Mater., 2011, 23:5514.
[55] Xu X M, Yao Y F, Shan B W, Gu X, Liu D Q, Liu J Y, Xu J B, Zhao N, Hu W P, Miao Q. Adv. Mater., 2016, 28:5276.
[56] Xue G B, Wu J K, Fan C C, Liu S, Huang Z T, Liu Y J, Shan B W, Xin H L, Miao Q, Chen H Z, Li H Y. Materials Horizons, 2016, 3:119.
[57] Islam M M, Pola S, Tao Y T. Chem. Commun., 2011, 47:6356.
[58] Di C A, Li J, Yu G, Xiao Y, Guo Y L, Liu Y Q, Qian X H, Zhu D B. Org. Lett., 2008, 10:3025.
[59] Gruntz G, Lee H, Hirsch L, Castet F, Toupance T, Briseno A L, Nicolas Y. Adv. Electron. Mater., 2015, 1:1500072.
[60] Wang C Y, Zhang J, Long G K, Aratani N, Yamada H, Zhao Y, Zhang Q C. Angew. Chem. Int. Ed., 2015, 54:6292.
[61] Li J L, Chang J J, Tan H S, Jiang H, Chen X D, Chen Z K, Zhang J, Wu J S. Chem. Sci., 2012, 3:846.
[62] Haddon R C, Perel A S, Morris R C, Palstra T T M, Hebard A F, Fleming R M. Appl. Phys. Lett., 1995, 67:121.
[63] Anthopoulos T D, Singh B, Marjanovic N, Sariciftci N S, Ramil A M, Sitter H, C lle M, de Leeuw D M. Appl. Phys. Lett., 2006, 89:213504.
[64] Bisri S Z, Piliego C, Gao J, Loi M A. Adv. Mater., 2014, 26:1176.
[65] Chikamatsu M, Mikami T, Chisaka J, Yoshida Y, Azumi R, Yase K, Shimizu A, Kubo T, Morita Y, Nakasuji K. Appl. Phys. Lett., 2007, 91:043506.
[66] Tang M L, Reichardt A D, Miyaki N, Stoltenberg R M, Bao Z N. J. Am. Chem. Soc., 2008, 130:6064.
[67] Tang M L, Oh J H, Reichardt A D, Bao Z N. J. Am. Chem. Soc., 2009, 131:3733.
[68] Yoon M H, DiBenedetto S A, Facchetti A, Marks T J. J. Am. Chem. Soc., 2005, 127:1348.
[69] McGarry K A, Xie W, Sutton C, Risko C, Wu Y F, Young V G, Brédas J L, Frisbie C D, Douglas C J. Chem. Mater., 2013, 25:2254.
[70] Xie W, Prabhumirashi P L, Nakayama Y, McGarry K A, Geier M L, Uragami Y, Mase K, Douglas C J, Ishii H, Hersam M C, Frisbie C D. ACS Nano, 2013, 7:10245.
[71] Riano A, Mayorga Burrezo P, Mancheno M J, Timalsina A, Smith J, Facchetti A, Marks T J, Lopez Navarrete J T, Segura J L, Casado J, Ortiz R P. J. Mater. Chem. C, 2014, 2:6376.
[72] Cai Z X, Luo H W, Chen X, Zhang G X, Liu Z T, Zhang D Q. Chem. Asian J., 2014, 9:1068.
[73] Hwang H, Khim D, Yun J M, Jung E, Jang S Y, Jang Y H, Noh Y Y, Kim D Y. Adv. Funct. Mater., 2015, 25:1146.
[74] Pitayatanakul O, Iijima K, Ashizawa M, Kawamoto T, Matsumoto H, Mori T. J. Mater. Chem. C, 2015, 3:8612.
[75] Lin G B, Qin Y K, Zhang J J, Guan Y S, Xu H, Xu W, Zhu D B. J. Mater. Chem. C, 2016, 4:4470.
[76] Ozdemir R, Choi D, Ozdemir M, Kwon G, Kim H, Sen U, Kim C, Usta H. J. Mater. Chem. C, 2017, 5:2368.
[77] Lim B Y, Sun H B, Noh Y Y. Dyes and Pigments, 2017, 146:520.
[78] Gao X K, Di C A, Hu Y B, Yang X D, Fan H Y, Zhang F, Liu Y Q, Li H X, Zhu D B. J. Am. Chem. Soc., 2010, 132:3697.
[79] Zhou K, Dong H L, Zhang H L, Hu W P. Phys. Chem. Chem. Phys., 2014, 16:22448.
[80] Ma H P, Liu N, Huang J D. Sci. Rep., 2017, 7:331.
[81] Vegiraju S, He G Y, Kim C, Priyanka P, Chiu Y J, Liu C W, Huang C Y, Ni J S, Wu Y W, Chen Z, Lee G H, Tung S H, Liu C L, Chen M C, Facchetti A. Adv. Funct. Mater., 2017, 27:1606761.
[82] Quinn J T E, Zhu J X, Li X, Wang J L, Li Y N. J. Mater. Chem. C, 2017, 5:8654.
[83] Sung A, Ling M M, Tang M L, Bao Z N, Locklin J. Chem. Mater., 2007, 19:2342.
[84] Mondal R, Ko S W, Verploegen E, Becerril H A, Toney M F, Bao Z N. J. Mater. Chem., 2011, 21:1537.
[85] Tuladhar S M, Sims M, Choulis S A, Nielsen C B, George W N, Steinke J H G, Bradley D D C, Nelson J. Org. Electron., 2009, 10:562.
[86] Dhar J, Salzner U, Patil S. J. Mater. Chem. C, 2017, 5:7404.
[87] Li J, Qiao X L, Xiong Y, Li H X, Zhu D B. Chem. Mater., 2014, 26:5782.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[3] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[4] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[5] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[6] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[7] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[8] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[9] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[10] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[11] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[12] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[13] 高玉霞, 梁云, 胡君, 巨勇. 基于天然小分子化合物的超分子手性自组装[J]. 化学进展, 2018, 30(6): 737-752.
[14] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[15] 陈禹夫, 李祥高, 肖殷, 王世荣. 溶液法大面积制备有机小分子场效应晶体管[J]. 化学进展, 2017, 29(4): 359-372.