English
新闻公告
More
化学进展 DOI: 10.7536/PC120818 前一篇   后一篇

• 综述与评论 •

有机微纳晶场效应晶体管

宋静怡1,2, 江浪*1, 董焕丽1, 胡文平*1   

  1. 1. 中国科学院化学研究所有机固体研究室 北京分子科学国家实验室 北京 100190;
    2. 北京师范大学化学学院 北京 100875
  • 收稿日期:2012-08-01 修回日期:2012-09-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 江浪, 胡文平 E-mail:ljiang@iccas.ac.cn; huwp@iccas.ac.cn

Organic Micro- and Nano-Crystal Field-Effect Transistors

Song Jingyi1,2, Jiang Lang*1, Dong Huanli1, Hu Wenping*1   

  1. 1. Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received:2012-08-01 Revised:2012-09-01 Online:2013-01-24 Published:2012-12-27

有机单晶中分子排列长程有序、无晶界且杂质和缺陷很少,是揭示有机半导体材料本征性能和制备高迁移率器件的最佳选择。因此,有机单晶材料对于构筑高性能电子器件和电路等方面具有无可比拟的优势。同时,有机单晶材料也为揭示半导体材料微观分子堆积与宏观电性能关系提供了重要手段。有机分子间以弱的范德华力相结合,因此,有机半导体单晶多以微纳晶形式存在。目前,种类繁多的有机微纳晶半导体材料被广泛应用于高性能场效应晶体管器件,这些器件的研究不仅可以筛选出高性能的有机半导体材料,也为科研人员提供更多的机会来理解有机半导体中电荷传输的物理内涵。本综述介绍了有机单晶场效应晶体管的基本结构和运行机理;微纳晶制备、表征方法以及器件构筑方法;总结了近三年来有机微纳晶半导体材料与器件取得的最新研究进展;探讨了当前有机微纳晶研究的热点和趋势并分析了面临的挑战。

The perfect molecular order, the absence of grain boundaries and the minimized concentration of charge traps in organic single crystals make them extremely promising for the study of intrinsic properties of organic materials and fabrication of high performance devices and circuits. It also provides the opportunity for revealing the relationship between the microscopic molecular packing and the macroscopic charge transport of the organic semiconductor materials. Due to the weak intermolecular interaction of Van der Waals' force, organic single crystals mostly exist as micro- and nano-crystals. Currently, various material systems have been applied in the fabrication of micro- and nano-crystal field-effect transistors (FETs) and these devices have enabled both the screen of high-performance materials and a better understanding of the charge transport physics of organic semiconductors. Here the structure and operation modes of the organic single crystal field-effect transistors (OSCFETs), growth methods, characterization methods and device fabrication methods of organic micro- and nano-crystals are introduced respectively. Moreover, the progress made during the past three years on organic micro- and nano-cyrstal semiconductor materials and devices are summarized. Finally, the hot topics, tendency and challenges of the organic micro- and nano-cyrstal studies are discussed as well. Contents
1 Introduction
2 Structures and operation mechanism of organic single crystal field-effect transistors
3 Crystallization methods
3.1 Gas phase methods
3.2 Liquid phase methods
4 Characterization methods
4.1 X-ray diffraction
4.2 Atomic force microscope
4.3 Scanning electron microscope
4.4 Transmission electron microscope and selected area electron diffraction
5 Fabrication methods
5.1 Direct fabrication method
5.2 Lamination method
5.3 Mask method
5.4 Au film gluing method
5.5 Drop-casting method
6 Central issues and tendency of present researches
6.1 Design and synthesis of high performance materials
6.2 Controlled growth of micro- and nano-crystals
6.3 Production of large area crystalline films
6.4 Multifunction of organic micro- and nano-crystals
6.5 Tendency of international cooperation and interdisciplinary development
7 Challenges of micro- and nano-crystal research
7.1 Transport theory of charge carriers in organic micro- and nano-crystals
7.2 Development of air-stable n type micro- and nano-crystal materials
7.3 Standardization of fabrication methods
7.4 Development of high performance and large scale crystal circuits
8 Conclusion and outlook

中图分类号: 

()

[1] Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers J A, Gershenson M E. Phys. Rev. Lett., 2004, 93: art. no. 086602
[2] Jurchescu O D, Popinciuc M, van Wees B J, Palstra T T M. Adv. Mater., 2007, 19: 688-692
[3] Minemawari H, Yamada T, Matsui H, Tsutsumi J Y, Haas S, Chiba R, Kumai R, Hasegawa T. Nature, 2011, 475: 364-367
[4] Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S. Appl. Phys. Lett., 2007, 90: art. no. 102120
[5] Jiang L, Hu W P, Wei Z M, Xu W, Meng H. Adv. Mater., 2009, 21: 3649-3653
[6] Jurchescu O D, Subramanian S, Kline R J, Hudson S D, Anthony J E, Jackson T N, Gundlach D J. Chem. Mater., 2008, 20: 6733-6737
[7] Takahashi Y, Hasegawa T, Horiuchi S, Kumai R, Tokura Y, Saito G. Chem. Mater., 2007, 19: 6382-6384
[8] Yu L, Li X, Smith J, Tierney S, Sweeney R, Kjellander B K C, Gelinck G H, Anthopoulos T D, Stingelin N. J. Mater. Chem., 2012, 22: 9458-9461
[9] Minder N A, Ono S, Chen Z, Facchetti A, Morpurgo A F. Adv. Mater., 2012, 24: 503-508
[10] Li H, Tee B C K, Cha J J, Cui Y, Chung J W, Lee S Y, Bao Z. J. Am. Chem. Soc., 2012, 134: 2760-2765
[11] Lv A, Puniredd S R, Zhang J, Li Z, Zhu H, Jiang W, Dong H, He Y, Jiang L, Li Y, Pisula W, Meng Q, Hu W, Wang Z. Adv. Mater., 2012, 24: 2626-2630
[12] Crone B, Dodabalapur A, Lin Y Y, Filas R W, Bao Z, LaDuca A, Sarpeshkar R, Katz H E, Li W. Nature, 2000, 403: 521-523
[13] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Nature, 2004, 432: 488-492
[14] Klauk H, Zschieschang U, Pflaum J, Halik M. Nature, 2007, 445: 745-748
[15] Sekitani T, Zschieschang U, Klauk H, Someya T. Nat. Mater., 2010, 9: 1015-1022
[16] Gelinck G H, Huitema H E A, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten J B P H, Geuns T C T, Beenhakkers M, Giesbers J B, Huisman B H, Meijer E J, Benito E M, Touwslager F J, Marsman A W, van Rens B J E, de Leeuw D M. Nat. Mater., 2004, 3: 106-110
[17] Huitema H E A, Gelinck G H, van der Putten J B P H, Kuijk K E, Hart C M, Cantatore E, de Leeuw D M. Adv. Mater., 2002, 14: 1201-1204
[18] Forrest S R. Nature, 2004, 428: 911-918
[19] Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T. Nat. Mater., 2009, 8: 494-499
[20] Crone B K, Dodabalapur A, Sarpeshkar R, Gelperin A, Katz H E, Bao Z. J. Appl. Phys., 2002, 91: 10140-10146
[21] Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T. Science, 2009, 326: 1516-1519
[22] Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z. Nat. Mater., 2010, 9: 859-864
[23] Brown A R, Jarrett C P, de Leeuw D M, Matters M. Synth. Met., 1997, 88: 37-55
[24] Dimitrakopoulos C D, Malenfant P R L. Adv. Mater., 2002, 14: 99-117
[25] Laudise R A, Kloc C, Simpkins P G, Siegrist T. J. Cryst. Growth, 1998, 187: 449-454
[26] Jiang H, Tan K J, Zhang K K, Chen X, Kloc C. J. Mater. Chem., 2011, 21: 4771-4773
[27] Kunugi Y, Arai T, Kobayashi N, Otsuki H, Nishinaga T, Okamoto K. J. Photopolym. Sci. Technol., 2011, 24: 345-348
[28] Roberson L B, Kowalik J, Tolbert L M, Kloc C, Zeis R, Chi X, Fleming R, Wilkins C. J. Am. Chem. Soc., 2005, 127: 3069-3075
[29] 李荣金(Li R J). 中国科学院研究生院博士学位论文(Doctoral Dissertation of Graduate University of Chinese Academy of Sciences), 2009
[30] Kim K H, Bae S Y, Kim Y S, Hur J A, Hoang M H, Lee T W, Cho M J, Kim Y, Kim M, Jin J I, Kim S J, Lee K, Lee S J, Choi D H. Adv. Mater., 2011, 23: 3095-3099
[31] Sun Q, Dong G, Zhao H, Qiao J, Liu X, Duan L, Wang L, Qiu Y. Org. Electron., 2011, 12: 1674-1682
[32] Hang J, Geng H, Virk T S, Zhao Y, Tan J, Di C, Xu W, Singh K, Hu W, Shuai Z, Liu Y, Zhu D. Adv. Mater., 2012, 24: 2603-2607
[33] Hoang M H, Choi D H, Lee S J. Synth. Met., 2012, 162: 419-425
[34] Sarker B K, Liu J, Zhai L, Khondaker S I. ACS Appl. Mater. Interface, 2011, 3: 1180-1185
[35] Tian H, Han Y, Bao C, Yan D, Geng Y, Wang F. Chem. Commun., 2012, 48: 3557-3559
[36] Akkerman H B, Chang A C, Verploegen E, Bettinger C J, Toney M F, Bao Z. Org. Electron., 2011, 13: 235-243
[37] Liu C, Minari T, Lu X, Kumatani A, Takimiya K, Tsukagoshi K. Adv. Mater., 2011, 23: 523-526
[38] Sun Q J, Dong G F, Zheng H Y, Zhao H Y, Qiao J, Duan L, Wang L D, Zhang F S, Qiu Y. Acta Phys. Chem. Sin., 2011, 27: 1893-1899
[39] Chien C T, Lin C C, Watanabe M, Lin Y D, Chao T H, Chiang T, Huang X H, Wen Y S, Tu C H, Sun C H, Chow T J. J. Mater. Chem., 2012, 22: 13070-13075
[40] Jiang H, Yang X, Wang E, Fu Y, Liu Y, Li H, Cui Z, Liu Y, Hu W. Synth. Met., 2010, 161: 136-142
[41] Li R, Dong H, Zhan X, Li H, Wen S, Deng W, Han K, Hu W. J. Mater. Chem., 2011, 21: 11335-11339
[42] Oton F, Pfattner R, Oxtoby N S, Mas-Torrent M, Wurst K, Fontrodona X, Olivier Y, Cornil J, Veciana J, Rovira C. J. Org. Chem., 2011, 76: 154-163
[43] Inada Y, Yamao T, Inada M, Itami T, Hotta S. Synth. Met., 2011, 161: 1869-1877
[44] Katagiri T, Shimizu Y, Terasaki K, Yamao T, Hotta S. Org. Electron., 2011, 12: 8-14
[45] Oton F, Pfattner R, Pavlica E, Olivier Y, Moreno E, Puigdollers J, Bratina G, Cornil J, Fontrodona X, Mas-Torrent M, Veciana J, Rovira C. Chem. Mater., 2011, 23: 851-861
[46] Zhang X, Coleman A C, Katsonis N, Browne W R, van Wees B J, Feringa B L. Chem. Commun., 2010, 7539-7541
[47] Maples R D, Hilburn M E, Murdianti B S, Hikkaduwa Koralege R S, Williams J S, Kuriyavar S I, Ausman K D. J. Colloid Interface Sci., 2012, 370: 27-31
[48] Liu S Z, Wu X, Zhang A Q, Qiu J J, Liu C M. Langmuir, 2011, 27: 3982-3990
[49] Wang C, Liang Z, Liu Y, Wang X, Zhao N, Miao Q, Hu W, Xu J. J. Mater. Chem., 2011, 21: 15201-15204
[50] Ashizawa M, Niimura T, Yu Y, Tsuboi K, Matsumoto H, Yamada R, Kawauchi S, Tanioka A, Mori T. Tetrahedron, 2012, 68: 2790-2798
[51] Hur J A, Shin J, Lee T W, Kim K H, Cho M J, Choi D H. Bull. Korean Chem. Soc., 2012, 33: 1653-1658
[52] Wang S, Gao P, Liebewirth I, Kirchhoff K, Pang S, Feng X, Pisula W, Muellen K. Chem. Mater., 2011, 23: 4960-4964
[53] Hoang M H, Kim Y, Kim S J, Choi D H, Lee S J. Chem. Eur. J., 2011, 17: 7772-7776
[54] Morita S. J. Electron. Microsc., 2011, 60: S199-S211
[55] Binnig G, Quate C F, Gerber C. Phys. Rev. Lett., 1986, 56: 930-933
[56] Jiang H, Zhao H, Zhang K K, Chen X, Kloc C, Hu W. Adv. Mater., 2011, 23: 5075-5080
[57] Crewe A V, Park P. US 3191028, 1963
[58] Wang Z L. J. Phys. Chem. B, 2000, 104: 1153-1175
[59] Li R, Dong H, Zhan X, He Y, Li H, Hu W. J. Mater. Chem., 2010, 20: 6014-6018
[60] Hoesterey D C, Letson G M. J. Phys. Chem. Solids, 1963, 24: 1609-1615
[61] Warta W, Karl N. Phys. Rev. B, 1985, 32: 1172-1182
[62] Campbell I H, Smith D L, Neef C J, Ferraris J P. Appl. Phys. Lett., 1999, 74: 2809-2811
[63] De Boer R W I, Jochemsen M, Klapwijk T M, Morpurgo A F, Niemax J, Tripathi A K, Pflaum J. J. Appl. Phys., 2004, 95: 1196-1202
[64] Podzorov V, Sysoev S E, Loginova E, Pudalov V M, Gershenson M E. Appl. Phys. Lett., 2003, 83: 3504-3506
[65] Islam M M, Pola S, Tao Y T. Chem. Commun., 2011, 6356-6358
[66] Islam M M, Valiyev F, Lu H F, Kuo M Y, Chao I, Tao Y T. Chem. Commun., 2011, 2008-2010
[67] Nakanotani H, Kakizoe H, Adachi C. Solid State Commun., 2011, 151: 93-96
[68] Nishinaga T, Miyata T, Tateno M, Koizumi M, Takase M, Iyoda M, Kobayashi N, Kunugi Y. J. Mater. Chem., 2011, 21: 14959-14966
[69] Yi H T, Chen Y, Czelen K, Podzorov V. Adv. Mater., 2011, 23: 5807-5811
[70] De Boer R W I, Klapwijk T M, Morpurgo A F. Appl. Phys. Lett., 2003, 83: 4345-4347
[71] Newman C R, Chesterfield R J, Merlo J A, Frisbie C D. Appl. Phys. Lett., 2004, 85: 422-424
[72] Takeya J, Goldmann C, Haas S, Pernstich K P, Ketterer B, Batlogg B. J. Appl. Phys., 2003, 94: 5800-5804
[73] Zaumseil J, Someya T, Bao Z, Loo Y L, Cirelli R, Rogers J A. Appl. Phys. Lett., 2003, 82: 793-795
[74] Sokolov A N, Atahan-Evrenk S, Mondal R, Akkerman H B, Sanche-Carrera R S, Granados-Focil S, Schrier J, Mannsfeld S C B, Zoombelt A P, Bao Z, Aspuru-Guzik A. Nature Commun., 2011, 2: 1-8
[75] Horowitz G, Garnier F, Yassar A, Hajlaoui R, Kouki F. Adv. Mater., 1996, 8: 52-54
[76] Tang Q, Li H, He M, Hu W, Liu C, Chen K, Wang C, Liu Y, Zhu D. Adv. Mater., 2006, 18: 65-68
[77] Tang Q X, Jiang L, Tong Y H, Li H X, Liu Y L, Wang Z H, Hu W P, Liu Y Q, Zhu D B. Adv. Mater., 2008, 20: 2947-2951
[78] Jiang L, Gao J, Wang E, Li H, Wang Z, Hu W, Jiang L. Adv. Mater., 2008, 20: 2735-2740
[79] Li R, Jiang L, Meng Q, Gao J, Li H, Tang Q, He M, Hu W, Liu Y, Zhu D. Adv. Mater., 2009, 21: 4492-4495
[80] Tang Q, Tong Y, Li H, Ji Z, Li L, Hu W, Liu Y, Zhu D. Adv. Mater., 2008, 20: 1511-1515
[81] Jiang H, Yang X, Cui Z, Liu Y, Li H, Hu W, Liu Y, Zhu D. Appl. Phys. Lett., 2007, 91: art. no. 123505
[82] Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C. J. Am. Chem. Soc., 2004, 126: 984-985
[83] Briseno A L, Mannsfeld S C B, Lu X, Xiong Y, Jenekhe S A, Bao Z, Xia Y. Nano Lett., 2007, 7: 668-675
[84] Zhou Y, Lei T, Wang L, Pei J, Cao Y, Wang J. Adv. Mater., 2010, 22: 1484-1487
[85] Mitsui C, Soeda J, Miwa K, Tsuji H, Takeya J, Nakamura E. J. Am. Chem. Soc., 2012, 134: 5448-5451
[86] He T, Zhang X, Jia J, Li Y, Tao X. Adv. Mater., 2012, 24: 2171-2175
[87] Tan L, Jiang W, Jiang L, Jiang S, Wang Z, Yan S, Hu W. Appl. Phys. Lett., 2009, 94: art. no. 153306
[88] Wei Z M, Hong W, Geng H, Wang C L, Liu Y L, Li R J, Xu W, Shuai Z G, Hu W P, Wang Q R, Zhu D B. Adv. Mater., 2010, 22: 2458-2462
[89] Haas S, Takahashi Y, Takimiya K, Hasegawa T. Appl. Phys. Lett., 2009, 95: art. no. 022111
[90] Jiang L, Dong H, Meng Q, Li H, He M, Wei Z, He Y, Hu W. Adv. Mater., 2011, 23: 2059-2063
[91] Guo Y, Du C, Yu G, Di C, Jiang S, Xi H, Zheng J, Yan S, Yu C, Hu W, Liu Y. Adv. Funct. Mater., 2010, 20: 1019-1024
[92] Jiang W, Zhou Y, Geng H, Jiang S, Yan S, Hu W, Wang Z, Shuai Z, Pei J. J. Am. Chem. Soc., 2011, 133: 1-3
[93] Li Y, Liu C, Kumatani A, Darmawan P, Minari T, Tsukagoshi K. AIP Advances, 2011, 1: art. no. 022149
[94] Chung D S, Park J W, Park J H, Moon D, Kim G H, Lee H S, Lee D H, Shim H K, Kwon S K, Park C E. J. Mater. Chem., 2010, 20: 524-530
[95] Li H, Tee B C K, Giri G, Chung J W, Lee S Y, Bao Z. Adv. Mater., 2012, 24: 2588-2591
[96] Kumatani A, Liu C, Li Y, Darmawan P, Takimiya K, Minari T, Tsukagoshi K. Sci. Rep. UK, 2012, 2: 393-393
[97] Liu C, Minari T, Li Y, Kumatani A, Lee M V, Pan S H A, Takimiya K, Tsukagoshi K. J. Mater. Chem., 2012, 22: 8462-8469
[98] Nakayama K, Hirose Y, Soeda J, Yoshizumi M, Uemura T, Uno M, Li W, Kang M J, Yamagishi M, Okada Y, Miyazaki E, Nakazawa Y, Nakao A, Takimiya K, Takeya J. Adv. Mater., 2011, 23: 1626-1629
[99] Minari T, Liu C, Kano M, Tsukagoshi K. Adv. Mater., 2012, 24: 299-306
[100] Wang H, Li F, Ravia I, Gao B, Li Y, Medvedev V, Sun H, Tessler N, Ma Y. Adv. Funct. Mater., 2011, 21: 3770-3777
[101] Bae I, Kang S J, Shin Y J, Park Y J, Kim R H, Mathevet F, Park C. Adv. Mater., 2011, 23: 3398-3402
[102] Goto O, Tomiya S, Murakami Y, Shinozaki A, Toda A, Kasahara J, Hobara D. Adv. Mater., 2012, 24: 1117-1122
[103] Kim Y H, Yoo B, Anthony J E, Park S K. Adv. Mater., 2012, 24: 497-502
[104] Zhang C, Zhang X, Zhang X, Fan X, Jie J, Chang J C, Lee C S, Zhang W, Lee S T. Adv. Mater., 2008, 20: 1720
[105] Zhang C, Zhang X, Zhang X, Ou X, Zhang W, Jie J, Chang J C, Lee C S, Lee S T. Adv. Mater., 2009, 21: 4172-4175
[106] Jiang L, Dong H, Hu W. Soft Matter, 2011, 7: 1615-1630
[107] Meng Q, Dong H, Hu W, Zhu D. J. Mater. Chem., 2011, 21: 11708-11721
[108] Zhang Y J, Dong H L, Tang Q X, Ferdous S, Liu F, Mannsfeld S C B, Hu W P, Briseno A L. J. Am. Chem. Soc., 2010, 132: 11580-11584
[109] Kajiwara K, Terasaki K, Yamao T, Hotta S. Adv. Funct. Mater., 2011, 21: 2854-2860
[110] Di C, Zhang F, Zhu D. Adv. Mater., 2012, DOI: 10.1002/adma. 201201502
[111] Li J, Takaishi S, Fujinuma N, Endo K, Yamashita M, Matsuzaki H. J. Mater. Chem., 21: 17662-17666
[112] Molinari A S, Alves H, Chen Z, Facchetti A, Morpurgo A F. J. Am. Chem. Soc., 2009, 131: 2462-2463
[113] Dacuna J, Salleo A. Phys. Rev. B, 2011, 84: art. no. 195209
[114] Ishii H, Honma K, Kobayashi N, Hirose K. Phys. Rev. B, 2012, 85: art. no. 245206
[115] Marumoto K, Arai N, Goto H, Kijima M, Murakami K, Tominari Y, Takeya J, Shimoi Y, Tanaka H, Kuroda S, Kaji T, Nishikawa T, Takenobu T, Iwasa Y. Phys. Rev. B, 2011, 83: art. no. 075302
[116] Nan G, Li Z. Org. Electron., 2012, 13: 1229-1236
[117] Northrup J E. Appl. Phys. Lett., 2011, 99: art. no. 062111
[118] Jiang L, Dong H, Hu W. J. Mater. Chem. 2010, 20: 4994-5007
[119] Li R, Hu W, Liu Y, Zhu D. Acc. Chem. Res., 2010, 43: 529-540
[120] Tang Q, Tong Y, Hu W, Wan Q, Bjrnholm T. Adv. Mater., 2009, 21: 4234-4237

[1] 奚清扬, 刘劲松, 李子全, 朱孔军, 台国安, 宋若谷. 二硫化钼薄膜的刻蚀方法及其应用[J]. 化学进展, 2018, 30(6): 847-863.
[2] 陈禹夫, 李祥高, 肖殷, 王世荣. 溶液法大面积制备有机小分子场效应晶体管[J]. 化学进展, 2017, 29(4): 359-372.
[3] 林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*. 高性能的n-型和双极性有机小分子场效应晶体管材料[J]. 化学进展, 2017, 29(11): 1316-1330.
[4] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[5] 杨柳, 雷霆, 裴坚*, 刘晨江* . 有机微纳米材料的设计策略、加工及应用[J]. 化学进展, 2012, 24(12): 2299-2311.
[6] 蔡晓舟, 江浪, 董焕丽, 李晶泽*, 胡文平* . 有机电路及其基本元器件[J]. 化学进展, 2012, 24(12): 2431-2442.
[7] 刘洁 江浪 胡文平. 蒽及其衍生物在有机场效应晶体管中的应用[J]. 化学进展, 2009, 21(12): 2568-2577.
[8] 陈振宇,叶腾凌,马东阁. 有机半导体中载流子迁移率的测量方法*[J]. 化学进展, 2009, 21(05): 940-947.
[9] 李荣金,李洪祥,周欣然,胡文平. 聚合物场效应晶体管材料及其器材[J]. 化学进展, 2007, 19(0203): 325-336.
[10] 汤庆鑫,李荣金,汪海风,李洪祥,胡文平. 小分子场效应晶体管*[J]. 化学进展, 2006, 18(11): 1538-1553.
[11] 刘雅玲,李洪祥,胡文平,朱道本. 有机单晶场效应晶体管[J]. 化学进展, 2006, 18(0203): 189-199.
阅读次数
全文


摘要

有机微纳晶场效应晶体管