English
新闻公告
More
化学进展 2023, Vol. 35 Issue (1): 119-134 DOI: 10.7536/PC220603 前一篇   后一篇

• 综述 •

基于有机复合材料的近红外和短波红外光探测器

李婧, 朱伟钢*(), 胡文平*()   

  1. 天津市分子光电科学重点实验室 天津大学理学院化学系 天津 300072
  • 收稿日期:2022-06-08 修回日期:2022-08-28 出版日期:2023-01-24 发布日期:2022-09-19
  • 作者简介:

    朱伟钢 天津大学英才副教授,博士生导师,2016年博士毕业于中国科学院化学研究所,2016-2019年在美国西北大学化学系进行博士后研究,2020年起在天津大学工作。研究方向包括超快时间分辨光谱、电子顺磁共振、有机电子学器件、非线性光学和金属氧化物。研制出一维纳米复合结构、光电功能共晶、高性能非富勒烯有机太阳能电池,揭示了复合材料中分子-堆积-光物理-光电性质-稳定性之间的关系规律。

  • 基金资助:
    天津大学自主创新基金项目(2104); 国家自然科学基金项目(U21A6002)

Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection

Jing Li, Weigang Zhu(), Wenping Hu()   

  1. Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University,Tianjin 300072, China
  • Received:2022-06-08 Revised:2022-08-28 Online:2023-01-24 Published:2022-09-19
  • Contact: *e-mail: huwp@tju.edu.cn(Wenping Hu); w_zhu10@tju.edu.cn(Weigang Zhu)
  • Supported by:
    Discretionary Fund of Tianjin University(2104); National Natural Science Foundation of China(U21A6002)

近红外及短波红外光探测器在热成像、夜视、农业视察、生物识别传感和遥感等相关领域具有重要的应用。然而目前大多数商用的红外光探测器需要额外的制冷设备辅助,并且器件不可弯折,很大程度上限制了它的应用。为了解决这些问题,近年来涌现了越来越多有关有机半导体的研究。有机半导体不仅具有可精细调控的带隙、高的吸光系数和机械柔性等优点,并且能够通过“卷对卷”工艺实现大面积制备并与柔性基底兼容。基于有机半导体的红外光探测器无需额外的制冷设备且具有无机红外光探测器所不具备的诸多特点,因而很有希望用于发展下一代红外光探测技术。本综述首先介绍了有机近红外及短波红外光探测光电晶体管、光电二极管器的基本原理,其次介绍了近年来兴起的有机半导体复合材料及其新颖的器件结构,接着总结了有机红外光探测器在电子眼、人工突触、以及可穿戴实时健康监测等应用的最新进展。最后,讨论了这一领域存在的挑战并对其未来发展进行了展望,以期促进该领域的进一步发展。

Near and shortwave infrared organic photodetector (OPDs) is extremely significant for the application as thermal imaging, night vision, agricultural inspection, biometric sensors, remote sensing and related fields. However, most commercial infrared photodetectors generally require extra deep cooling equipment and are unable to bend, which limit their applications seriously. In order to overcome these challenges, more and more researches related with organic semiconductors (OSCs) emerge. OSCs with advantages including easy and elaborate tunability of optical properties, high optical absorption coefficient, and mechanical flexible, are able to fabricate over large areas with roll-to-roll processing and be compatible with flexible substrates. Infrared photodetectors based on OSCs attract more and more attention, which are free with extra deep cooling equipment and possess many advantages beyond inorganic infrared OPDs. They are deemed as attractive candidates for next generation infrared photodetectors. Recently, infrared OPDs have attracted more and more research attention. In this review, we first introduce the basic principles of organic phototransistors and photodiodes, and present development of organic complex materials and novel device configurations. Then we summarize state-of-the-art applications such as electronic eyes, artificial synapse and wearable devices for real-time health monitoring. Finally, we discuss challenges in this field and prospect future development. We believe that this review will promote the developments in the photodetector fields.

Contents

1 Introduction

2 Architectures and fundamentals of OPDs

2.1 Organic phototransistors

2.2 Organic photodiodes

2.3 Organic photoconductors

3 Critical parameters of OPDs

4 Organic complex materials (OCMs) towards infrared

4.1 OCMs for organic phototransistors

4.2 OCMs for organic photodiodes

5 Applications

5.1 Artificial retina

5.2 Artificial synapse

5.3 Logic circuits

5.4 Photoplethysmography

5.5 Upconversion imager

6 Conclusion and prospect

()
图1 光探测器的构型:a) 光电晶体管,b)光电二极管,c)光导,d) 平面异质结,e) 体相异质结
Fig. 1 Configuration of organic photodetectors, a) phototransistor, b) photodiodes, c) photoconductors, d) planar heterojunction (PHJ), e) bulk heterojunction (BHJ)
表1 红外光探测器关键参数的总结
Table 1 Summary of key parameters in infrared detector
图2 a) 所测器件的光学照片,DPPDTT和DCV3T的能级排列和分子结构[12];b~d) 器件中活性层的UV-vis-NIR光谱[31?~33]
Fig. 2 a) Optical image of testing device, molecular structure, and energy level of DPPDTT, and DCV3T[12].Copyright 2021, Royal Society of Chemistry. b) The UV-Vis-NIR absorption spectra of active layers of the device[31?~33]. Copyright 2018, Royal Society of Chemistry. Copyright 2013, Elsevier. Copyright 2017, Elsevier
图3 a) 基于PQT-12/F4-TCNQ活性层的红外光电晶体管的结构示意图[34];b) PC61BM, DPP-DTT, PC71BM, ITIC and PCBM的分子结构图[37] [38],;c) 全聚合物光电晶体管的结构示意图,d)PTB7、P(NDI2OD-T2)的分子结构图[39]
Fig. 3 a) Schematic diagram of organic IR phototransistor based on PQT-12/F4-TCNQ[34]; b) molecular structure of PC61BM, DPP-DTT, PC71BM, ITIC and PCBM[37] [38], c) Schematic diagram of all-polymer phototransistor, d) chemical structures of PTB7 and P(NDI2OD-T2)[39]. Copyright 2021, John Wiley and Sons. Copyright 2013, Royal Society of Chemistry. Copyright 2022, Elsevier. Copyright 2017, American Chemical Society.
图4 a,b) TTF-CA/graphene 混合光电晶体管示意图和光响应时间测试;c) 在暗态和光照下的IDS vs VG 曲线[40];d) 器件的结构示意图以及PolyTPD和 BCF的分子结构示意图;e) 具有不同BCF比例的PolyTPD:BCF薄膜涂覆于石英基底的光学照片[41]
Fig. 4 a,b) Illustration and photoresponse time measurement of a TTF-CA/graphene hybrid phototransistor; c) IDS vs VG curves in the dark and under light[40]; d) Schematic of device structure and the molecular structure of PolyTPD and BCF; e) photographs of PolyTPD:BCF films coated on quartz substrates with different BCF molar ratio[41]. Copyright 2020, John Wiley and Sons. Copyright 2021, Royal Society of Chemistry.
图5 a)柔性In2O3/PTPBT-ET光电晶体管的结构示意图,b)In2O3/PTPBT-ET异质结的能带图[43]
Fig. 5 a) Schematic showing the structure of flexible In2O3/PTPBT-ET phototransistor. the flexible phototransistor. b) Energy band diagram of the In2O3/PTPBT-ET heterostructures.[43] Copyright 2021, John Wiley and Sons.
图6 a,b)VFEPT器件的示意图以及操作机理[44]
Fig. 6 a,b) Structure and operation mechanism of the VFEPT device.[44] Copyright 2020, American Chemical Society
图7 a) 有机薄膜的掠入射X射线衍射图;b) 薄膜在暗态和光照下的暗电流密度以及光电流密度[50]
Fig. 7 a) Grazing incidence X-ray diffraction (GIXRD) patterns of the organic films. b) Dark current densities and photocurrent densities of films in dark and under illumination[50]. Copyright 2018, American Chemical Society
图8 a) 基于PTB7-Th:CO1-4Cl光电二极管的结构示意图;b) 在暗态及光照下的电流密度和电压曲线;c)在-0.1 V测得的短噪音限制的比探测度[51]; d,e) 不同活性层器件的示意图以及相对应的J-V曲线[52]
Fig. 8 a) Device structure of OPDs based on PTB7-Th:CO1-4Cl. b) J-V curves of the OPDs in the dark and under illumination of NIR. c) Shot-noise-limited specific detectivity of the OPDs at -0.1 V[51]. d,e) Schemes and respective J-V curves of devices with different active layers[52]. Copyright 2020, John Wiley and Sons. Copyright 2021, American Chemical Society
图9 a) 3维拓扑绝缘体/有机薄膜异质结光探测器的结构示意图;b) Bi2Te3/有机薄膜异质结器件的线性偏振表征;c,d) 在偏压模式下Bi2Te3/PbPc、Bi2Te3/CuPc、和Bi2Te3 的Ri、EQE曲线[57]
Fig. 9 a) Structure diagram of 3D topological insulators/organics thin film heterojunction photodetectors. b) Linear polarization characteristics of the Bi2Te3/organics thin film heterojunction devices. c,d) Ri, EQE curves of Bi2Te3/PbPc, Bi2Te3/CuPc, and Bi2Te3 photodetectors under Vbias mode[57]. Copyright 2019, American Chemical Society
图10 a) 有机层spiro-TTB在一个有纳米孔Ag电极和一个反射Al电极中间夹层的三明治结构的器件示意图;b) 具有纳米孔电极器件和平面电极器件的EQE图谱,插图是量子效率的平方根随光子能量的函数图[22]
Fig. 10 a) Structure diagram of an organic (spiro-TTB) layer sandwiched between a nanohole Ag electrode and a reflective Al electrode. b) EQE spectra of the nanohole device and of the planar device. The inset is the square root of the quantum yield as a function of photon energy[22].Copyright 2016, John Wiley and Sons
图11 在本文中主要提到的低带隙聚合物、小分子以及其他有机材料
Fig. 11 The main molecular structure of the low-bandgap polymers, small molecules and other organic materials mentioned in this review
图12 a) 有机视网膜类的光传感器示意图以及其活性层组成;b) 光传感器的电路示意图;c) ROT300/VOPc光探测器的随入射波长变化的归一化后的光电流图;d)哈士奇毛绒玩具瞳孔上覆有转移人工视网膜;e) 有一束光照射到哈士奇瞳孔后的图片;f) 用有30个像素的源漏电流测试哈士奇玩偶瞳孔的近红外强度分布[63]
Fig. 12 a) Schematic of the organic, retina-like photosensor with the active layers’ composition. b) Electric diagram of photosensor. c) Normalized photocurrent versus incident wavelength of ROT300/VOPc photodetector. d) The pupil of a husky stuffed toy with transferred artificial retina. e) The husky pupil with a light pulse shedding on. f) The NIR intensity distribution over the husky toy pupil measured by drain-source currents with 30 pixels[63]. Copyright 2017, John Wiley and Sons
图13 a)通过增加脉冲光激发的次数诱导出的短期记忆到长期记忆的转变;b)加密图案示意图;c)在915 nm 刺激 1 次及在1342 nm刺激5次;d)同时在915 nm和1342 nm刺激5 次[64]
Fig. 13 a) The STM (short-term memory)-to-LTM (long-term memory) transition induced by increasing the number of pulsed light stimuli. b) Schematic illustration of image pattern. c) Input image encoded by 915 nm stimulus 1 time and 1342 nm stimulus 5 times. d) Input image encoded by both 915 nm stimulus and 1342 nm stimulus 5 times, respectively.[64] Copyright 2017, Elsevier
图14 a)基于光电晶体管的逻辑电路:“非”门(上)和“或”门(下);b)光电晶体管阵列示意图,可以用于呈现从一个LED灯泡发出的光分布;c)在LED照射下光电晶体管的光电流图[43]
Fig. 14 a) Circuit diagrams based on the phototransistor. NOT gate (top) and OR gate (bottom). b) Schematic illustration of phototransistor array which is for imaging the light distribution from a LED lamp. c) The photocurrent mapping of the phototransistor array under the LED illumination[43]. Copyright 2021, John Wiley and Sons
图15 a)柔性有机光电晶体管的器件结构示意图;b)在手指表皮外包覆hPPG传感器的光学照片(比例尺,5 mm)[66];c) 具有反型结构的BHJ器件结构示意图;在有环境光并且休息状态下,用1050 nm LEDs测得的PPG图[54]
Fig. 15 a) Schematic of the device structure of the flexible OPT. b) Photograph of a finger covered with the epidermal hPPG (hybrid organic/inorganic NIR photoplethysmogram) sensor (scale bar, 5 mm)[66]. c) Schematic of the BHJ device structure with inverted architecture. d) PPG (Photoplethysmograms) taken under normal (resting) conditions and ambient light using 1050 nm LEDs and OPDs[54]. Copyright 2017, John Wiley and Sons. Copyright 2022, John Wiley and Sons.
图16 a) 成像器的材料堆垛示意图以及平衡电路模型;b) 透过硅片后的成像;c) 血管中血流的成像[67]
Fig. 16 a) Material stacks of the imager and the equivalent circuit model. b) Imaging of an object behind a silicon wafer. c) Imaging blood flow in a vein[67].Copyright 2021, John Wiley and Sons
[1]
Liu S, Yao X R, Liu X F, Xu D Z, Wang X D, Liu B, Wang C, Zhai G J, Zhao Q. Opt. Express, 2019, 27(16): 22138.

doi: 10.1364/OE.27.022138     URL    
[2]
Song J, Qu J L, Swihart M T, Prasad P N. Nanomed. Nanotechnol. Biol. Med., 2016, 12(3): 771.

doi: 10.1016/j.nano.2015.11.009     URL    
[3]
Fengliang X, Xia L, Fujimura K. IEEE T. Intell. Transp., 2005, 6: 63.

doi: 10.1109/TITS.2004.838222     URL    
[4]
Park J, Lee C, Kim T, Kim H, Kim Y. Adv. Electron. Mater., 2021, 7(1): 2000932.

doi: 10.1002/aelm.202000932     URL    
[5]
Zhang F L, Zhang X T, Li Z Y, Yi R X, Li Z, Wang N Y, Xu X X, Azimi Z, Li L, Lysevych M, Gan X T, Lu Y R, Tan H H, Jagadish C, Fu L. Adv. Funct. Mater., 2022, 32(3): 2270018.

doi: 10.1002/adfm.202270020     URL    
[6]
Deng J N, Zong L Y, Bao W Z, Zhu M S, Liao F Y, Guo Z X, Xie Y Y, Lu B R, Wan J, Zhu J H, Peng R W, Chen Y F. Adv. Optical Mater., 2019, 7(23): 1901039.

doi: 10.1002/adom.201901039     URL    
[7]
Xie P S, Huang Y L, Wang W, Meng Y, Lai Z X, Wang F, Yip S, Bu X M, Wang W J, Li D J, Sun J, Ho J C. Nano Energy, 2022, 91: 106654.

doi: 10.1016/j.nanoen.2021.106654     URL    
[8]
Zhang Z T, Wang W C, Jiang Y W, Wang Y X, Wu Y L, Lai J C, Niu S M, Xu C Y, Shih C C, Wang C, Yan H P, Galuska L, Prine N, Wu H C, Zhong D L, Chen G, Matsuhisa N, Zheng Y, Yu Z A, Wang Y, Dauskardt R, Gu X D, Tok J B H, Bao Z N. Nature, 2022, 603(7902): 624.

doi: 10.1038/s41586-022-04400-1     URL    
[9]
Jiang Y W, Zhang Z T, Wang Y X, Li D L, Coen C T, Hwaun E, Chen G, Wu H C, Zhong D L, Niu S M, Wang W C, Saberi A, Lai J C, Wu Y L, Wang Y, Trotsyuk A A, Loh K Y, Shih C C, Xu W H, Liang K, Zhang K L, Bai Y H, Gurusankar G, Hu W P, Jia W, Cheng Z, Dauskardt R H, Gurtner G C, Tok J B H, Deisseroth K, Soltesz I, Bao Z N. Science, 2022, 375(6587): 1411.

doi: 10.1126/science.abj7564     URL    
[10]
Xu C H, He P, Liu J, Cui A J, Dong H L, Zhen Y G, Chen W, Hu W P. Angew. Chem. Int. Ed., 2016, 55(33): 9443.

doi: 10.1002/anie.201605080     URL    
[11]
Zhu W G, Zhu L Y, Zou Y, Wu Y S, Zhen Y G, Dong H L, Fu H B, Wei Z X, Shi Q, Hu W P. Adv. Mater., 2016, 28(28): 5954.

doi: 10.1002/adma.201600280    
[12]
Jiang X Y, Lu J, Xue D, Wei Y J, Zhang Y D, Zhang J D, Wang Z, Huang L Z, Chi L F. Chem. Commun., 2021, 57(91): 12123.

doi: 10.1039/D1CC04828G     URL    
[13]
Ma S Q, Zhou K, Hu M X, Li Q Y, Liu Y J, Zhang H T, Jing J B, Dong H L, Xu B, Hu W P, Tian W J. Adv. Funct. Mater., 2018, 28(36): 1802454.

doi: 10.1002/adfm.201802454     URL    
[14]
Fu B B, Sun L J, Liu L, Ji D Y, Zhang X T, Yang F X, Hu W P. Sci. China Mater., 2022, 65(10): 2779.

doi: 10.1007/s40843-022-2035-y     URL    
[15]
Wang C, Zhang X T, Hu W P. Chem. Soc. Rev., 2020, 49(3): 653.

doi: 10.1039/C9CS00431A     URL    
[16]
Fuentes-Hernandez C, Chou W F, Khan T M, Diniz L, Lukens J, Larrain F A, Rodriguez-Toro V A, Kippelen B. Science, 2020, 370(6517): 698.

doi: 10.1126/science.aba2624     pmid: 33154137
[17]
Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H L. Nat. Nanotechnol., 2012, 7(6): 363.

doi: 10.1038/nnano.2012.60     pmid: 22562036
[18]
Jiang W, Jin H, Babazadeh M, Loch A S, Raynor A, Mallo N, Huang D M, Jiao X C, Tan W L, McNeill C R, Burn P L, Shaw P E. Adv. Funct. Mater., 2022, 32(3): 2104259.

doi: 10.1002/adfm.202104259     URL    
[19]
Firdaus Y, Le Corre V M, Karuthedath S, Liu W L, Markina A, Huang W T, Chattopadhyay S, Nahid M M, Nugraha M I, Lin Y B, Seitkhan A, Basu A, Zhang W M, McCulloch I, Ade H, Labram J, Laquai F, Andrienko D, Koster L J A, Anthopoulos T D. Nat. Commun., 2020, 11: 5220.

doi: 10.1038/s41467-020-19029-9     pmid: 33060574
[20]
Feng X Q, He Z Y, Zhu W, Zhao M H, Liu Z D, Yang S W, Tang S W, Guo Q L, Jin Z W, Chen D, Ding G Q, Wang G. J. Mater. Chem. C, 2021, 9(2): 609.

doi: 10.1039/D0TC04932H     URL    
[21]
Mottram A D, Lin Y H, Pattanasattayavong P, Zhao K, Amassian A, Anthopoulos T D. ACS Appl. Mater. Interfaces, 2016, 8(7): 4894.

doi: 10.1021/acsami.5b11210     URL    
[22]
Hou J L, Fischer A, Yang S C, Benduhn J, Widmer J, Kasemann D, Vandewal K, Leo K. Adv. Funct. Mater., 2016, 26(31): 5741.

doi: 10.1002/adfm.201601718     URL    
[23]
Shou M H, Zhang Q L, Li H, Xiong S C, Hu B Y, Zhou J D, Zheng N, Xie Z Q, Ying L, Liu L L. Adv. Opt. Mater., 2021, 9(7): 2002031.

doi: 10.1002/adom.202002031     URL    
[24]
Kudo K, Moriizumi T. Appl. Phys. Lett., 1981, 39(8): 609.

doi: 10.1063/1.92820     URL    
[25]
Chow P C Y, Someya T. Adv. Mater., 2020, 32(15): 1902045.

doi: 10.1002/adma.201902045     URL    
[26]
Weiss D S, Abkowitz M. Chem. Rev., 2010, 110(1): 479.

doi: 10.1021/cr900173r     URL    
[27]
Xie Y, Zhang B, Wang S X, Wang D, Wang A Z, Wang Z Y, Yu H H, Zhang H J, Chen Y X, Zhao M W, Huang B B, Mei L M, Wang J Y. Adv. Mater., 2017, 29(17): 1605972.

doi: 10.1002/adma.201605972     URL    
[28]
Hao D D, Liu D P, Shen Y K, Shi Q Q, Huang J. Adv. Funct. Mater., 2021, 31(21): 2100773.

doi: 10.1002/adfm.202100773     URL    
[29]
Fang Y J, Huang J S. Adv. Mater., 2015, 27(17): 2804.

doi: 10.1002/adma.201500099     URL    
[30]
Bao C X, Chen Z L, Fang Y J, Wei H T, Deng Y H, Xiao X, Li L L, Huang J S. Adv. Mater., 2017, 29(39): 1703209.

doi: 10.1002/adma.201703209     URL    
[31]
Huang F B, Wang X, Xu K, Liang Y L, Peng Y Q, Liu G H. J. Mater. Chem. C, 2018, 6(32): 8804.

doi: 10.1039/C8TC02148A     URL    
[32]
Peng Y Q, Lv W L, Yao B, Fan G Y, Chen D Q, Gao P J, Zhou M Q, Wang Y. Org. Electron., 2013, 14(4): 1045.

doi: 10.1016/j.orgel.2013.02.005     URL    
[33]
Huang F B, Li Y, Xia H Q, Zhang J P, Xu K, Peng Y Q, Liu G H. Carbon, 2017, 118: 666.

doi: 10.1016/j.carbon.2017.03.091     URL    
[34]
Yang B, Wang Y, Li L, Zhang J Y, Wang J L, Jiao H X, Hao D D, Guo P, Zeng S, Hua Z K, Huang J. Adv. Funct. Mater., 2021, 31(40): 2103787.

doi: 10.1002/adfm.202103787     URL    
[35]
Zhou Z L, Liao G M, Song X Y, Dai Q Y, Sun L, Peng Y Q, Wang P. Nanoscale Res. Lett., 2022, 17: 19.

doi: 10.1186/s11671-021-03651-7     URL    
[36]
Peng Y Q, Huang F B, Zhang J P, Luo X, Xu K, Lv W L, Xu S N, Wang Y, Tang Y, Wei Y, Xu Z Q, Yang Y H, Lu F P. Org. Electron., 2017, 43: 27.

doi: 10.1016/j.orgel.2017.01.008     URL    
[37]
Xu H H, Li J, Leung B H K, Poon C C Y, Ong B S, Zhang Y T, Zhao N. Nanoscale, 2013, 5(23): 11850.

doi: 10.1039/c3nr03989g     URL    
[38]
Li N, Lei Y L, Miao Y Q, Zhu F R. iScience, 2022, 25(1): 103711.

doi: 10.1016/j.isci.2021.103711     URL    
[39]
Nam S, Seo J, Han H, Kim H, Bradley D D C, Kim Y. ACS Appl. Mater. Interfaces, 2017, 9(17): 14983.

doi: 10.1021/acsami.7b01983     URL    
[40]
Iqbal M A, Liaqat A, Hussain S, Wang X S, Tahir M, Urooj Z, Xie L M. Adv. Mater., 2020, 32(37): 2002628.

doi: 10.1002/adma.202002628     URL    
[41]
Lee C, Kim H, Kim Y. ACS Appl. Mater. Interfaces, 2021, 13(16): 19064.

doi: 10.1021/acsami.1c00472     URL    
[42]
He Z Y, Han J Y, Du X Y, Cao L Y, Wang J, Zheng C J, Lin H, Tao S L. Adv. Funct. Mater., 2021, 31(37): 2103988.

doi: 10.1002/adfm.202103988     URL    
[43]
Li D W, Du J Q, Tang Y J, Liang K, Wang Y, Ren H H, Wang R, Meng L, Zhu B W, Li Y F. Adv. Funct. Mater., 2021, 31(47): 2105887.

doi: 10.1002/adfm.202105887     URL    
[44]
Subramanian A, Hussain S, Din N, Abbas G, Shuja A, Lei W, Chen J, Khan Q, Musselman K. ACS Appl. Electron. Mater., 2020, 2(12): 3871.

doi: 10.1021/acsaelm.0c00707     URL    
[45]
Zhang G C, Zhong J F, Chen Q Z, Yan Y J, Chen H P, Guo T L. IEEE Trans. Electron Devices, 2019, 66(4): 1815.

doi: 10.1109/TED.2019.2901054     URL    
[46]
Ben-Sasson A J, Azulai D, Gilon H, Facchetti A, Markovich G, Tessler N. ACS Appl. Mater. Interfaces, 2015, 7(4): 2149.

doi: 10.1021/am505174p     URL    
[47]
Cai M K, Li X, Zhao H Y, Liu C, You Y M, Lin F, Tong X, Wang Z M. ACS Appl. Mater. Interfaces, 2021, 13(42): 50046.

doi: 10.1021/acsami.1c15973     URL    
[48]
Liu M, Wang J, Zhao Z J, Yang K X, Durand P, Ceugniet F, Ulrich G, Niu L B, Ma Y, Leclerc N, Ma X L, Shen L, Zhang F J. J. Phys. Chem. Lett., 2021, 12(11): 2937.

doi: 10.1021/acs.jpclett.1c00330     URL    
[49]
Armin A, Jansen-van Vuuren R D, Kopidakis N, Burn P L, Meredith P. Nat. Commun., 2015, 6: 6343.

doi: 10.1038/ncomms7343     URL    
[50]
Choi M S, Chae S M, Kim H J, Kim J J. ACS Appl. Mater. Interfaces, 2018, 10(30): 25614.

doi: 10.1021/acsami.8b08803     URL    
[51]
Huang J F, Lee J, Vollbrecht J, Brus V V, Dixon A L, Cao D X, Zhu Z Y, Du Z F, Wang H B, Cho K, Bazan G C, Nguyen T Q. Adv. Mater., 2020, 32(1): 1906027.

doi: 10.1002/adma.201906027     URL    
[52]
Yang W, Qiu W, Georgitzikis E, Simoen E, Serron J, Lee J, Lieberman I, Cheyns D, Malinowski P, Genoe J, Chen H, Heremans P. ACS Appl. Mater. Interfaces, 2021, 13: 16766.

doi: 10.1021/acsami.1c02080     URL    
[53]
Wadsworth A, Moser M, Marks A, Little M S, Gasparini N, Brabec C J, Baran D, McCulloch I. Chem. Soc. Rev., 2019, 48(6): 1596.

doi: 10.1039/c7cs00892a     pmid: 29697109
[54]
Jacoutot P, Scaccabarozzi A D, Zhang T Y, Qiao Z R, AniÉs F, Neophytou M, Bristow H, Kumar R, Moser M, Nega A D, Schiza A, Dimitrakopoulou-Strauss A, Gregoriou V G, Anthopoulos T D, Heeney M, McCulloch I, Bakulin A A, Chochos C L, Gasparini N. Small, 2022, 18(15): 2200580.

doi: 10.1002/smll.202200580     URL    
[55]
Yao W C, Wu Z H, Huang E, Huang L F, London A E, Liu Z W, Azoulay J D, Ng T N. ACS Appl. Electron. Mater., 2019, 1(5): 660.

doi: 10.1021/acsaelm.9b00009     URL    
[56]
Li W, Xu Y L, Meng X Y, Xiao Z, Li R M, Jiang L, Cui L H, Zheng M J, Liu C, Ding L M, Lin Q Q. Adv. Funct. Mater., 2019, 29(20): 1808948.

doi: 10.1002/adfm.201808948     URL    
[57]
Yang M, Wang J, Zhao Y F, He L, Ji C H, Zhou H X, Gou J, Li W Z, Wu Z M, Wang X R. ACS Nano, 2019, 13(9): 10810.

doi: 10.1021/acsnano.9b05775     URL    
[58]
Zhu W G, Wang Y L, Huang C C, Zhu L Y, Zhen Y G, Dong H L, Wei Z X, Guo D, Hu W P. Sci. China Mater., 2021, 64(1): 169.

doi: 10.1007/s40843-020-1372-6     URL    
[59]
Hiramoto M, Imahigashi T, Yokoyama M. Appl. Phys. Lett., 1994, 64(2): 187.

doi: 10.1063/1.111527     URL    
[60]
Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent E H. Nature, 2006, 442(7099): 180.

doi: 10.1038/nature04855     URL    
[61]
Peng W L, Liu Y C, Wang C X, Hu R, Zhang J P, Xu D S, Wang Y. J. Mater. Chem. C, 2015, 3(19): 5073.

doi: 10.1039/C5TC00376H     URL    
[62]
Daanoune M, Clerc R, Flament B, Hirsch L. J. Appl. Phys., 2020, 127(5): 055502.

doi: 10.1063/1.5126338     URL    
[63]
Wang H L, Liu H T, Zhao Q, Ni Z J, Zou Y, Yang J, Wang L F, Sun Y Q, Guo Y L, Hu W P, Liu Y Q. Adv. Mater., 2017, 29(32): 1701772.

doi: 10.1002/adma.201701772     URL    
[64]
Chen H, Lv L, Wei Y N, Liu T H, Wang S, Shi Q Q, Huang H. Cell Rep. Phys. Sci., 2021, 2(7): 100507.
[65]
Chung E, Chen G, Alexander B, Cannesson M. Front. Med., 2013, 7(1): 91.
[66]
Xu H H, Liu J, Zhang J, Zhou G D, Luo N Q, Zhao N. Adv. Mater., 2017, 29(31): 1700975.

doi: 10.1002/adma.201700975     URL    
[67]
Li N, Eedugurala N, Leem D S, Azoulay J D, Ng T N. Adv. Funct. Mater., 2021, 31(16): 2100565.

doi: 10.1002/adfm.202100565     URL    
[68]
Vella Jarrett H, Huang L, Eedugurala N, Mayer Kevin S, Ng Tse N, Azoulay Jason D. Sci. Adv., 2021, 7(24): eabg2418.

doi: 10.1126/sciadv.abg2418     URL    
[69]
Zheng L Y, Zhu T, Xu W Z, Liu L, Zheng J, Gong X, Wudl F. J. Mater. Chem. C, 2018, 6(14): 3634.

doi: 10.1039/C8TC00437D     URL    
[1] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[2] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[3] 林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*. 高性能的n-型和双极性有机小分子场效应晶体管材料[J]. 化学进展, 2017, 29(11): 1316-1330.
[4] 朱伟钢, 甄永刚, 董焕丽, 付红兵, 胡文平. 有机共晶光电功能材料与器件[J]. 化学进展, 2014, 26(08): 1292-1306.
[5] 刘洁 江浪 胡文平. 蒽及其衍生物在有机场效应晶体管中的应用[J]. 化学进展, 2009, 21(12): 2568-2577.
[6] 陈振宇,叶腾凌,马东阁. 有机半导体中载流子迁移率的测量方法*[J]. 化学进展, 2009, 21(05): 940-947.
[7] 浦侃裔 范曲立 汪联辉 黄维 . POSS聚合物及其新进展[J]. 化学进展, 2006, 18(05): 609-615.
[8] 刘雅玲,李洪祥,胡文平,朱道本. 有机单晶场效应晶体管[J]. 化学进展, 2006, 18(0203): 189-199.