English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2159-2172 DOI: 10.7536/PC220306 前一篇   后一篇

• 综述与评论 •

低共熔溶剂在高分子合成中的应用

李金涛, 张明祖, 何金林*(), 倪沛红   

  1. 苏州大学材料与化学化工学部 新型功能高分子材料国家地方联合工程实验室 江苏省先进功能高分子材料设计及应用重点实验室 苏州市大分子设计与精密合成重点实验室 苏州 215123
  • 收稿日期:2022-03-07 修回日期:2022-04-19 出版日期:2022-10-24 发布日期:2022-06-25
  • 通讯作者: 何金林
  • 作者简介:

    何金林 教授,硕士生导师。2006年本科毕业于苏州大学化学工程与工艺专业,2010.08~2011.10受国家留学基金管理委员会资助在美国Akron大学程正迪院士课题组学习,2012年获苏州大学高分子化学与物理专业博士学位并留校工作,2015年晋升为副教授,2018年入选苏州大学优秀青年学者,2021年晋升为教授。2018年被J. Mater. Chem. B期刊遴选为Emerging Investigator,2022年担任苏州市化学化工学会秘书长。主要研究方向为活性阴离子聚合及生物可降解高分子的合成,已发表SCI论文40余篇,获授权中国发明专利5项,先后主持国家自然科学基金2项,江苏省自然科学基金及江苏省高等学校自然科学基金等项目6项。

  • 基金资助:
    国家自然科学基金面上项目(21774081); 江苏省高等学校自然科学研究重大项目(20KJA150009); 特种弹性体复合材料北京市重点实验室开放课题和江苏高校优势学科建设工程资助(PAPD)

Application of Deep Eutectic Solvents in Polymer Synthesis

Li Jintao, Zhang Mingzu, He Jinlin(), Ni Peihong   

  1. College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University,Suzhou 215123, China
  • Received:2022-03-07 Revised:2022-04-19 Online:2022-10-24 Published:2022-06-25
  • Contact: He Jinlin
  • Supported by:
    National Natural Science Foundation of China(21774081); Natural Science Foundation of the Jiangsu Higher Education Institutions of China(20KJA150009); Beijing Key Lab of Special Elastomeric Composite Materials, and the Priority Academic Development of Jiangsu Higher Education Institutions.

低共熔溶剂(DES)是由两种或多种物质按一定比例混合而成的低熔点混合溶剂,其熔点显著低于每一个单纯组分的熔点,可被视为一种新的离子液体。与传统有机溶剂相比,DES具有来源广泛、成本低廉、易于制备、毒性低、生物可降解等优点,并已作为一种新型的绿色反应介质被广泛用于萃取分离、无机合成、有机合成和离子凝胶等领域。近年来,DES在高分子合成中的应用也吸引了广泛的研究兴趣。本综述从简述DES及其在有机合成中的应用出发,重点介绍它们用于缩合聚合、自由基聚合、阴离子聚合、电化学聚合、开环聚合和氧化聚合等高分子合成领域的研究进展,并对其发展趋势进行展望。

Deep eutectic solvents (DES) are one kind of low-transition-temperature mixture composed of two or several components mixed in a certain ratio. The melting points of DES are significantly lower than that of each pure component, and they can be considered as a new type of ionic liquid. Compared with traditional organic solvents, DES possess the advantages of broad resource of raw materials, low cost, easy preparation, low toxicity and biodegradability. These characteristics make them become a promising green reaction media, which have been widely used in many areas including extraction and separation, inorganic synthesis, organic synthesis and ion gels. In recent years, the applications of DES in polymer chemistry have attracted broad research interests. Starting from a brief description of DES and their applications in organic synthesis, this review mainly focuses on the applications of DES in polymerizations, such as condensation polymerization, free radical polymerization, anionic polymerization, electrochemical polymerization, ring-opening polymerization and oxidative polymerization. In the meantime, the prospects of DES in polymer synthesis are also discussed.

()
表1 DES的分类及其通式
Table 1 General formula for the classification of DES
图1 制备DES常用的氢键受体(HBA)和氢键供体(HBD)
Fig. 1 Typical structures of hydrogen bond acceptors (HBA) and hydrogen bond donors (HBD) for the preparation of DES
图2 金属有机试剂在DES中进行的亲核加成反应[39,41,42,44]
Fig. 2 Nucleophilic addition reactions of organometallic reagents in DES[39,41,42,44]
图3 DES辅助合成生物可降解型抗菌性聚(辛二醇-co-柠檬酸酯)[57]: (a) 四种DES的制备路线; (b) 抗菌性聚酯弹性体的合成示意图; (c) POC的合成示意图
Fig. 3 DES-assisted synthesis of biodegradable antibacterial poly(octanediol-co-citrate)[57]. (a) Preparation of the different DES; (b) DES-assisted synthesis of POC elastomers containing antibacterial compounds; (c) diagram of the synthesis of POC. Copyright 2013, American Chemical Society
图4 光聚合ChCl/AA型PDES的合成及用于构建导电高分子材料: (a) PDES的紫外光聚合示意图及用于制备导电弹性体[70]; (b) 海星状触觉感应材料[70]; (c) 导电纸[71]; (d) 图案化光电器件[72]; (e) 导电纤维[73]
Fig. 4 Synthesis and application of photopolymerizable ChCl/AA-type DES. (a) One-step synthesis and its rapid, in-situ polymerization as a transparent, stretchable and conductive elastomer and (b) starfish-shaped tactile sensor[70]. Copyright 2017, The Royal Society of Chemistry. (c) Conductive paper[71]. Copyright 2018, The Royal Society of Chemistry. (d) Patterned optoelectronic devices using transparent piezoresistive balls[72]. Copyright 2020, The Royal Society of Chemistry. (e) Conductive fibers[73]. Copyright 2021, American Chemical Society
图5 利用光聚合PDES体系构筑高透明度、可拉伸的自修复导电弹性体[74]: (a) 弹性体的化学结构、实物照片及动态键示意图; (b) 弹性体具有良好低温自修复性能示意图
Fig. 5 All-in-one molecular networks design concept for autonomously self-healable transparent, stretchable, and conducive elastomers[74]. (a) Chemical structure and optical image of the poly(AAm/ChCl-co-MA/ChCl) elastomers; (b) demonstration of the healing process below zero temperature. Copyright 2020, American Chemical Society
图6 将高氢键密度的植酸引入光聚合PDES体系用于构筑具有高透明度、优异拉伸性能的自修复导电弹性体: (a) ChCl/AA/PA型PDES基弹性体的设计理念[75]; (b) TMAC/AA/PA型PDES基弹性体的设计理念[76]
Fig. 6 Fabrication of highly transparent, stretchable, self-healable, and conducive elastomers by the introduction of phytic acid as the hydrogen bonding crosslinker into PDES systems. (a) Design concept for ChCl/AA/PA-type PDES[75]. Copyright 2020, Elsevier. (b) Design concept for TMAC/AA/PA-type PDES[76]. Copyright 2021, The Royal Society of Chemistry
图7 丙烯酸甲酯在DES中的ATRP反应表现出“活性”/可控特征[91]
Fig. 7 The ATRP reaction of methyl acrylate displayed “living”/controlled character[91]. Copyright 2016, Wiley Periodicals, Inc
图8 在ChCl/Urea型DES中实施RAFT聚合: (a) HEMA的均聚; (b) HEMA和MMA的共聚[97]
Fig. 8 RAFT polymerizations conducted in the DES of ChCl/Urea. (a) Homopolymerization of HEMA; (b) block copolymerization of HEMA and MMA[97]. Copyright 2019, Wiley Periodicals, Inc
图9 在ChCl基DES中进行有机锂引发的烯烃阴离子聚合[103]
Fig. 9 Organolithium-initiated anionic polymerization of olefins in ChCl-based DES[103]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图10 吡咯在ChCl/Urea型DES中的电化学聚合机理示意图[117]
Fig. 10 Electrochemical polymerization mechanism of pyrrole in ChCl/Urea-type DES[117]. Copyright 2020, Elsevier B. V
[1]
Dubé M A, Salehpour S. Macromol. React. Eng., 2014, 8(1): 7.

doi: 10.1002/mren.201300103     URL    
[2]
Tomé L I N, Baião V, da Silva W, Brett C. M. A. Appl. Mater. Today, 2018, 10: 30.
[3]
Hallett J P, Welton T. Chem. Rev., 2011, 111(5): 3508.

doi: 10.1021/cr1003248     pmid: 21469639
[4]
Walsh D A, Lovelock K R J, Licence P. Chem. Soc. Rev., 2010, 39(11): 4185.

doi: 10.1039/b822846a     URL    
[5]
Le Bideau J, Viau L, Vioux A. Chem. Soc. Rev., 2011, 40(2): 907.

doi: 10.1039/c0cs00059k     pmid: 21180731
[6]
Kang M R, Jin F X, Li Z, Song H Y, Chen J. Prog. Chem., 2020, 32(9): 1274.
康美荣, 金福祥, 李臻, 宋河远, 陈静. 化学进展, 2020, 32(9): 1274.).

doi: 10.7536/PC200118    
[7]
Romero A, Santos A, Tojo J, Rodriguez A. J. Hazard. Mater., 2008, 151(1): 268.

pmid: 18063302
[8]
Plechkova N V, Seddon K R. Chem. Soc. Rev., 2008, 37(1): 123.

doi: 10.1039/b006677j     pmid: 18197338
[9]
Weaver K D, Kim H J, Sun J Z, MacFarlane D R, Elliott G D. Green Chem., 2010, 12(3): 507.

doi: 10.1039/b918726j     URL    
[10]
Lomba L, Ribate M P, Sangüesa E, Concha J, Garralaga M P, Errazquin D, García C B, Giner B. Appl. Sci., 2021, 11(21): 10061.

doi: 10.3390/app112110061     URL    
[11]
Hessel V, Tran N N, Asrami M R, Tran O D, Van Duc Long N, Escribà-Gelonch M, Tejada J O, Linke S, Sundmacher K. Green Chem., 2022, 24(2): 410.

doi: 10.1039/D1GC03662A     URL    
[12]
Martins M A R, Pinho S P, Coutinho J A P. J. Solution Chem., 2018, 48: 962.

doi: 10.1007/s10953-018-0793-1     URL    
[13]
Hansen B B, Spittle S, Chen B, Poe D, Zhang Y, Klein J M, Horton A, Adhikari L, Zelovich T, Doherty B W, Gurkan B, Maginn E J, Ragauskas A, Dadmun M, Zawodzinski T A, Baker G A, Tuckerman M E, Savinell R F, Sangoro J R. Chem. Rev., 2021, 121(3): 1232.

doi: 10.1021/acs.chemrev.0c00385     URL    
[14]
Hou Y C, Wang Z, Ren S X, Wu W Z. Chin. Sci. Bull., 2015, 60(26): 2490.

doi: 10.1360/N972015-00385     URL    
侯玉翠, 王震, 任树行, 吴卫泽. 科学通报, 2015, 60(26): 2490.).
[15]
Zhang Y Y, Lu X H, Feng X, Shi Y J, Ji X Y. Prog. Chem., 2013, 25(6): 881.
张盈盈, 陆小华, 冯新, 史以俊, 吉晓燕. 化学进展, 2013, 25(6): 881.).
[16]
Zhang T, Doert T, Wang H, Zhang S J, Ruck M. Angew. Chem., Int. Ed., 2021, 60(41): 22148.

doi: 10.1002/anie.202104035     URL    
[17]
Xiong X Q, Han Q, Shi L, Xiao S Y, Bi C. Chin. J. Org. Chem., 2016, 36(3): 480.

doi: 10.6023/cjoc201508004     URL    
熊兴泉, 韩骞, 石霖, 肖上运, 毕成. 有机化学, 2016, 36(3): 480.).

doi: 10.6023/cjoc201508004    
[18]
Fanjul-Mosteirín N, del Amo V. Tetrahedron, 2021, 84: 131967.

doi: 10.1016/j.tet.2021.131967     URL    
[19]
Wang J K, Zhang S Z, Ma Z Z, Yan L F. Green Chem. Eng., 2021, 2(4): 359.

doi: 10.1016/j.gce.2021.06.001     URL    
[20]
Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem. Commun., 2003, (1): 70.
[21]
Smith E L, Abbott A P, Ryder K S. Chem. Rev., 2014, 114(21): 11060.

doi: 10.1021/cr300162p     pmid: 25300631
[22]
Abranches D O, Martins M A R, Silva L P, Schaeffer N, Pinho S P, Coutinho J A P. Chem. Commun., 2019, 55(69): 10253.

doi: 10.1039/C9CC04846D     URL    
[23]
Francisco M, van den Bruinhorst A, Kroon M C. Angew. Chem., Int. Ed., 2013, 52(11): 3074.

doi: 10.1002/anie.201207548     URL    
[24]
Kumar A K, Parikh B S, Pravakar M. Environ. Sci. Pollut. Res. Int., 2016, 23: 9265.

doi: 10.1007/s11356-015-4780-4     URL    
[25]
El Achkar T, Fourmentin S, Greige-Gerges H. J. Mol. Liq., 2019, 288: 111028.

doi: 10.1016/j.molliq.2019.111028     URL    
[26]
Yiin C L, Quitain A T, Yusup S, Sasaki M, Uemura Y, Kida T. Bioresour. Technol., 2016, 199: 258.

doi: 10.1016/j.biortech.2015.07.103     URL    
[27]
Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy K K, Wolcott M, Zhang X. Green Chem., 2016, 18(19): 5133.

doi: 10.1039/C6GC01007E     URL    
[28]
Zhang Q H, De Oliveira Vigier K, Royer S, Jerome F. Chem. Soc. Rev., 2012, 41(21): 7108.

doi: 10.1039/c2cs35178a     URL    
[29]
Hou Y C, Yao C F, Wu W Z. Acta Phys. -Chim. Sin., 2018, 34(8): 873.

doi: 10.3866/PKU.WHXB201802062     URL    
[30]
Abbot A P, Boothby D, Capper G, Davies D L, Rasheed R K. J. Am. Chem. Soc., 2004, 126(29): 9142.

doi: 10.1021/ja048266j     URL    
[31]
Ghaedi H, Ayoub M, Sufian S, Shariff A M, Lal B. J. Mol. Liq., 2017, 241: 500.

doi: 10.1016/j.molliq.2017.06.024     URL    
[32]
Florindo C, Branco L C, Marrucho I M. ChemSusChem, 2019, 12(8): 1549.

doi: 10.1002/cssc.201900147     URL    
[33]
Xu Q, Qin L Y, Ji Y N, Leung P K, Su H N, Qiao F, Yang W W, Shah A A, Li H M. Electrochim. Acta, 2019, 293: 426.

doi: 10.1016/j.electacta.2018.10.063     URL    
[34]
Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Green Chem., 2002, 4(1): 24.

doi: 10.1039/b108431c     URL    
[35]
Calderon Morales R, Tambyrajah V, Jenkins P R, Davies D L, Abbott A P. Chem. Commun., 2004, (2): 158.
[36]
Imperato G, Höger S, Lenoir D, König B. Green Chem., 2006, 8(12): 1051.

doi: 10.1039/B603660K     URL    
[37]
Rodríguez-Álvarez M J, Vidal C, Díez J, García-Álvarez J. Chem. Commun., 2014, 50(85): 12927.

doi: 10.1039/C4CC05904B     URL    
[38]
Wang Y L, Li W H, Song X J, Huang K X, Du C J. Chem. Reagents, 2021, 43(6): 852.
王英磊, 李文欢, 宋晓静, 黄可心, 杜朝军. 化学试剂, 2021, 43(6): 852.).
[39]
Vidal C, García-Álvarez J, Hernín-Gómez A, Kennedy A R, Hevia E. Angew. Chem., Int. Ed., 2014, 53(23): 5969.

doi: 10.1002/anie.201400889     URL    
[40]
Mallardo V, Rizzi R, Sassone F C, Mansueto R, Perna F M, Salomone A, Capriati V. Chem. Commun., 2014, 50(63): 8655.

doi: 10.1039/C4CC03149K     URL    
[41]
Vidal C, García-Álvarez J, Hernín-Gómez A, Kennedy A. R, Hevia E. Angew. Chem., Int. Ed., 2016, 55(52): 16145.

doi: 10.1002/anie.201609929     URL    
[42]
Rodríguez-Álvarez M J, García-Álvarez J, Uzelac M, Fairley M, O’Hara C T, Hevia E. Chem. Eur. J., 2018, 24(7): 1720.

doi: 10.1002/chem.201705577     URL    
[43]
Fairley M, Bole L J, Mulks F F, Main L, Kennedy A R, O’Hara C T, García-Álvarez J, Hevia E. Chem. Sci., 2020, 11(25): 6500.

doi: 10.1039/D0SC01349H     URL    
[44]
Quivelli A F, D’Addato G, Vitale P, García-Álvarez J, Perna F M, Capriati V. Tetrahedron, 2021, 81: 131898.

doi: 10.1016/j.tet.2020.131898     URL    
[45]
Dilauro G, Dell’Aera M, Vitale P, Capriati V, Perna F M. Angew. Chem., Int. Ed., 2017, 56(34): 10200.

doi: 10.1002/anie.201705412     URL    
[46]
García-Álvarez J, Hevia E, Capriati V. Chem. Eur. J., 2018, 24(56): 14854.

doi: 10.1002/chem.201802873     URL    
[47]
Perna F M, Vitale P, Capriati V. Curr. Opin. Green Sustainable Chem., 2021, 30: 100487.
[48]
Kubisa P. Prog. Polym. Sci., 2009, 34(12): 1333.

doi: 10.1016/j.progpolymsci.2009.09.001     URL    
[49]
Gutiérrez M C, Rubio F, del Monte F. Chem. Mater., 2010, 22(9): 2711.

doi: 10.1021/cm9023502     URL    
[50]
Carriazo D, Gutiérrez M C, Ferrer M L, del Monte F. Chem. Mater., 2010, 22(22): 6146.

doi: 10.1021/cm1019684     URL    
[51]
Gutiérrez M C, Carriazo D, Ania C O, Parra J B, Ferrer M L, del Monte F. Energy Environ. Sci., 2011, 4(9): 3535.

doi: 10.1039/c1ee01463c     URL    
[52]
López-Salas N, Gutiérrez M C, Ania C O, Fierro J L G, Luisa Ferrer M, del Monte F. J. Mater. Chem. A., 2014, 2(41): 17387.

doi: 10.1039/C4TA03266G     URL    
[53]
López-Salas N, Gutiérrez M C, Ania C O, Muñoz-Mírquez M A, Luisa Ferrer M, del Monte F. J. Mater. Chem. A., 2016, 4(2): 478.

doi: 10.1039/C5TA08630B     URL    
[54]
Patiño J, Gutiérrez M C, Carriazo D, Ania C O, Fierro J L G, Ferrer M L, del Monte F. J. Mater. Chem. A., 2014, 2(23): 8719.

doi: 10.1039/C4TA00562G     URL    
[55]
Carriazo D, Gutiérrez M C, Jiménez R, Ferrer M L, del Monte F. Part. Part. Syst. Charact., 2013, 30(4): 316.

doi: 10.1002/ppsc.201200157     URL    
[56]
Serrano M C, Gutiérrez M C, Jiménez R, Ferrer M L, del Monte F. Chem. Commun., 2012, 48(4): 579.

doi: 10.1039/C1CC15284J     URL    
[57]
García-Argüelles S, Serrano M C, Gutiérrez M C, Ferrer M L, Yuste L, Rojo F, del Monte F. Langmuir, 2013, 29(30): 9525.

doi: 10.1021/la401353r     pmid: 23808373
[58]
Pradeepkumar P, Elgorban A M, Bahkali A H, Rajan M. New J. Chem., 2018, 42(12): 10366.

doi: 10.1039/C8NJ00901E     URL    
[59]
Hong S, Sun X, Lian H L, Pojman J A, Mota-Morales J D. J. Appl. Polym. Sci., 2020, 137(7): 48385.

doi: 10.1002/app.48385     URL    
[60]
Guo J, Yin X W, Wang T, Feng J, Zeng P, Wu D L. J. Electroanal. Chem., 2021, 903: 115840.

doi: 10.1016/j.jelechem.2021.115840     URL    
[61]
Agostinho B, Silvestre A J D, Sousa A F. Green Chem., 2022, 24(8): 3115.

doi: 10.1039/D2GC00074A     URL    
[62]
Mota-Morales J D, Sínchez-Leija R J, Carranza A, Pojman J A, del Monte F, Luna-Bírcenas G. Prog. Polym. Sci., 2018, 78: 139.

doi: 10.1016/j.progpolymsci.2017.09.005     URL    
[63]
Mota-Morales J D, Gutiérrez M C, Sanchez I C, Luna-Bírcenas G, del Monte F. Chem. Commun., 2011, 47(18): 5328.

doi: 10.1039/c1cc10391a     URL    
[64]
Fazende K F, Phachansitthi M, Mota-Morales J D, Pojman J A. J. Polym. Sci. Part A: Polym. Chem., 2017, 55(24): 4046.

doi: 10.1002/pola.28873     URL    
[65]
Mota-Morales J D, Gutiérrez M C, Ferrer M L, Jiménez R, Santiago P, Sanchez I C, Terrones M, del Monte F, Luna-Bírcenas G. J. Mater. Chem. A, 2013, 1(12): 3970.

doi: 10.1039/c3ta01020a     URL    
[66]
Sínchez-Leija R J, Pojman J A, Luna-Bírcenas G, Mota-Morales J D. J. Mater. Chem. B, 2014, 2(43): 7495.

doi: 10.1039/C4TB01407C     URL    
[67]
Chen Y P, Li S F, Yan S L. Carbohydr. Polym., 2021, 263: 117996.

doi: 10.1016/j.carbpol.2021.117996     URL    
[68]
Isik M, Ruiperez F, Sardon H, Gonzalez A, Zulfiqar S, Mecerreyes D. Macromol. Rapid Commun., 2016, 37(14): 1135.

doi: 10.1002/marc.201600026     URL    
[69]
Fazende K F, Gary D P, Mota-Morales J D, Pojman J A. Macromol. Chem. Phys., 2020, 221(6): 1900511.

doi: 10.1002/macp.201900511     URL    
[70]
Li R A, Chen G X, He M H, Tian J F, Su B. J. Mater. Chem. C, 2017, 5(33): 8475.

doi: 10.1039/C7TC02703F     URL    
[71]
Li R A, Zhang K L, Chen G X, Su B, Tian J F, He M H, Lu F C. Chem. Commun., 2018, 54(18): 2304.

doi: 10.1039/C7CC09209A     URL    
[72]
Tong R P, Cai L, Chen G X, Tian J F, He M H. Chem. Commun., 2020, 56(18): 2771.

doi: 10.1039/C9CC08840G     URL    
[73]
Wang X C, Chen G X, Cai L, Li R A, He M H. ACS Appl. Mater. Interfaces, 2021, 13(7): 8952.

doi: 10.1021/acsami.0c21912     URL    
[74]
Li R A, Fan T, Chen G X, Zhang K L, Su, B, Tian J F, He M H. Chem. Mater., 2020, 32(2): 874.

doi: 10.1021/acs.chemmater.9b04592     URL    
[75]
Li R A, Fan T, Chen G X, Xie H J, Su B, He M H. Chem. Eng. J., 2020, 393: 124685.

doi: 10.1016/j.cej.2020.124685     URL    
[76]
Zhang K L, Li R A, Chen G X, Yang J M, Tian J F, He M H. J. Mater. Chem. A, 2021, 9(8): 4890.

doi: 10.1039/D0TA11508H     URL    
[77]
Zhang K L, Li R A, Chen G X, Wang X H, He M H. Chem. Mater., 2022, 34(8): 3736.

doi: 10.1021/acs.chemmater.2c00074     URL    
[78]
Sang P S, Li R A, Zhang K L, Chen G X, Zhao K, He M H. ACS Appl. Polym. Mater., 2022, 4(5): 3543.

doi: 10.1021/acsapm.2c00133     URL    
[79]
Yang K X, Ge Z Q, Zhang M H, Wang C Y, Peng K, Yang H Y, You Y Z. Chem. Eng. J., 2022, 439: 135646.

doi: 10.1016/j.cej.2022.135646     URL    
[80]
Li X K, Liu J Z, Guo Q Q, Zhang X X, Tian M. Small, 2022, 18(19): 2201012.
[81]
Gill I, Vulfson E. Trends Biotechnol., 1994, 12(4): 118.

pmid: 7764807
[82]
Gorke J T, Srienc F, Kazlauskas R J. Chem. Commun., 2008, (10): 1235.
[83]
Durand E, Lecomte J, Villeneuve P. Eur. J. Lipid Sci. Technol., 2013, 115(4): 379.

doi: 10.1002/ejlt.201200416     URL    
[84]
Monhemi H, Housaindokht M R, Moosavi-Movahedi A A, Bozorgmehr M R. Phys. Chem. Chem. Phys., 2014, 16(28): 14882.

doi: 10.1039/c4cp00503a     pmid: 24930496
[85]
Sínchez-Leija R J, Torres-Lubiín J R, Reséndiz-Rubio A, Luna-Bírcenas G, Mota-Morales J D. RSC Adv., 2016, 6(16): 13072.

doi: 10.1039/C5RA27468K     URL    
[86]
Altundag A, Ünlü A E, Takaç S. J. Chem. Technol. Biotechnol., 2021, 96(4): 1107.
[87]
Matyjaszewski K, Tsarevsky N V. J. Am. Chem. Soc., 2014, 136(18): 6513.

doi: 10.1021/ja408069v     pmid: 24758377
[88]
Perrier S. Macromolecules, 2017, 50(19): 7433.

doi: 10.1021/acs.macromol.7b00767     URL    
[89]
Chen Y G, Ding Y S. Acta Chim. Sinica, 2020, 78(8): 733.

doi: 10.6023/A20040115     URL    
陈友根, 丁远生. 化学学报, 2020, 78(8): 733.).

doi: 10.6023/A20040115    
[90]
Parkatzidis K, Wang H S, Truong N P, Anastasaki A. Chem, 2020, 6(7): 1575.

doi: 10.1016/j.chempr.2020.06.014     URL    
[91]
Maximiano P, Mendonça P. V, Santos M R E, Costa J R C, Guliashvili T, Serra A C, Coelho J F J. J. Polym. Sci. Part A: Polym. Chem., 2017, 55(3): 371.

doi: 10.1002/pola.28415     URL    
[92]
Mendonça P V, Lima M S, Guliashvili T, Serra A C, Coelho J F J. Polymer, 2017, 132: 114.

doi: 10.1016/j.polymer.2017.10.060     URL    
[93]
Wang J R, Han J Y, Khan M Y, He D, Peng H Y, Chen D Y, Xie X L, Xue Z G. Polym. Chem., 2017, 8(10): 1616.

doi: 10.1039/C6PY02066F     URL    
[94]
Tian M Y, Wang J R, Zhou J, Han J Y, Du F P, Xue Z G. J. Polym. Sci., Part A: Polym. Chem., 2018, 56(3): 282.

doi: 10.1002/pola.28893     URL    
[95]
Quirós-Montes L, Carriedo G A, García-Álvarez J, Presa Soto A. Green Chem., 2019, 21(21): 5865.

doi: 10.1039/C9GC02624J     URL    
[96]
Feiz E, Mahyari M, Ghaieni H R, Tavangar S. J. Mol. Liq., 2020, 318: 114320.

doi: 10.1016/j.molliq.2020.114320     URL    
[97]
Santha Kumar A R S, Singha N K. J. Polym. Sci. Part A: Polym. Chem., 2019, 57(23): 2281.

doi: 10.1002/pola.29527     URL    
[98]
Pereira V A, Rezende T C, Mendonça P V, Coelho J F J, Serra A C. Green Chem., 2020, 22(20): 6827.

doi: 10.1039/D0GC01136C     URL    
[99]
Li C Y, Yu S S. Macromolecules, 2021, 54(21): 9825.

doi: 10.1021/acs.macromol.1c01367     URL    
[100]
Szwarc M. Nature, 1956, 178: 1168.

doi: 10.1038/1781168a0     URL    
[101]
Hirao A, Goseki R, Ishizone T. Macromolecules, 2014, 47(6): 1883.

doi: 10.1021/ma401175m     URL    
[102]
Ma H W, Zhang C Q, Li Y, Wang Y R, Hu Y M, Li Z S, Zhao Z F, Shen K H. Acta Polym. Sinica, 2011, 12(12): 1390.
马红卫, 张春庆, 李杨, 王玉荣, 胡雁鸣, 李战胜, 赵忠夫, 申凯华. 高分子学报, 2011, 12(12): 1390.).
[103]
Sínchez-Condado A, Carriedo G A, Presa Soto A, Rodríguez-Álvarez M J, García-Álvarez J, Hevia E. ChemSusChem, 2019, 12(13): 3134.

doi: 10.1002/cssc.201900533     URL    
[104]
Wagner K, Pringle J M, Hall S B, Forsyth M, MacFarlane D R, Officer D L. Synth. Met., 2005, 153(1-3): 257.

doi: 10.1016/j.synthmet.2005.07.210     URL    
[105]
Nkuku C A, LeSuer R J. J. Phys. Chem. B, 2007, 111(46): 13271.

doi: 10.1021/jp075794j     URL    
[106]
Shabani E, Zappi D, Berisha L, Dini D, Antonelli M L, Sadun C. Talanta, 2020, 215: 120880.

doi: 10.1016/j.talanta.2020.120880     URL    
[107]
Parsa A, Heli H. Microchem. J., 2020, 152: 104267.

doi: 10.1016/j.microc.2019.104267     URL    
[108]
Chen Y, Mu T C. J. Chem. Ind. Eng., 2020, 71(1): 106.
陈钰, 牟天成. 化工学报, 2020, 71(1): 106.).
[109]
Fernandes P M V, Campiña J M, Pereira C M, Silva F. J. Electrochem. Soc., 2012, 159(9): G97.

doi: 10.1149/2.059209jes     URL    
[110]
Fernande, P M V, Campiña J M, Pereira N M, Pereira C M, Silva F. J. Appl. Electrochem., 2012, 42: 997.

doi: 10.1007/s10800-012-0474-5     URL    
[111]
Prathish K P, Carvalho R C, Brett C M A. Electrochem. Commun., 2014, 44: 8.

doi: 10.1016/j.elecom.2014.03.026     URL    
[112]
Prathish K P, Carvalho R C, Brett C M A. Electrochim. Acta, 2016, 187: 704.

doi: 10.1016/j.electacta.2015.11.092     URL    
[113]
Hosu O, Bârsan M M, Cristea C, Sândulescu R, Brett C M A. Electrochim. Acta, 2017, 232: 285.

doi: 10.1016/j.electacta.2017.02.142     URL    
[114]
Hosu O, Bârsan M M, Cristea C, Sândulescu R, Brett C M A. Microchim. Acta, 2017, 184: 3919.

doi: 10.1007/s00604-017-2420-z     URL    
[115]
Abad-Gil L, Procopio J R, Brett C M A. Electrochem. Commun., 2021, 124: 106967.

doi: 10.1016/j.elecom.2021.106967     URL    
[116]
Chang Y H, Woi P M, Alias Y B. Electrocatalysis, 2021, 12: 238.

doi: 10.1007/s12678-021-00648-9     URL    
[117]
Ozdemir N, Zengin H, Yavuz A. Mater. Chem. Phys., 2020, 256: 123645.

doi: 10.1016/j.matchemphys.2020.123645     URL    
[118]
Leote R J B, Ghica M E, Brett C M A. Electroanalysis, 2022, 34(4): 724.

doi: 10.1002/elan.202100164     URL    
[119]
Coulembier O, Lemaur V, Josse T, Minoia A, Cornil J, Dubois P. Chem. Sci., 2012, 3(3): 723.

doi: 10.1039/C2SC00590E     URL    
[120]
García-Argüelles S, García C, Serrano M C, Gutiérrez M C, Ferrer M L, del Monte F. Green Chem., 2015, 17(6): 3632.

doi: 10.1039/C5GC00348B     URL    
[121]
Pérez-García M G, Gutiérrez M C, Mota-Morales J D, Luna-Bírcenas G, del Monte F. ACS Appl. Mater. Interfaces, 2016, 8(26): 16939.

doi: 10.1021/acsami.6b04830     URL    
[122]
Park T-J, Lee S H. Green Chem., 2017, 19(4): 910.

doi: 10.1039/C6GC02789J     URL    
[123]
Shiraz M G, Absalan G, Tashkhourian J. J. Appl. Polym. Sci., 2022, 139(18): 52090.

doi: 10.1002/app.52090     URL    
[124]
Mota-Morales J D, Morales-Narvíez E. Matter, 2021, 4(7): 2141.

doi: 10.1016/j.matt.2021.05.009     URL    
[125]
O’Dea R M, Willie J A, Epps III T H. ACS Macro Lett., 2020, 9(4): 476.

doi: 10.1021/acsmacrolett.0c00024     URL    
[126]
Scholten P B V, Moatsou D, Detrembleur C, Meier M A R. Macromol. Rapid Commun., 2020, 41(16): 2000266.

doi: 10.1002/marc.202000266     URL    
[127]
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Adv. Sci., 2022, 9(19): 2106076.
[1] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[2] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[3] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[4] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[5] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[6] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[7] 黄妮, 许峰, 夏江滨. 聚噻吩的固相聚合及其应用[J]. 化学进展, 2019, 31(8): 1103-1115.
[8] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[9] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[10] 王爱玲, 郑学良, 赵壮志, 李长平, 郑学仿. 深共融溶剂在有机合成中的应用[J]. 化学进展, 2014, 26(05): 784-795.
[11] 武元鹏, 林元华, 周莹, 左芳, 郑朝晖, 丁小斌. 光致型形状记忆高分子材料[J]. 化学进展, 2012, (10): 2004-2010.
[12] 李思超, 韩朋, 许华平*. 自修复高分子材料[J]. 化学进展, 2012, 24(07): 1346-1352.
[13] 杨凯 汪朝阳 傅建花 谭越河. 物理技术辅助的Knoevenagel反应*[J]. 化学进展, 2010, 22(11): 2126-2133.
[14] 冯超 刘赛文 彭圣明 易兵 邓国军. 基于脱羧法的C-C键生成反应*[J]. 化学进展, 2010, 22(07): 1403-1413.
[15] 李楠 刘伟军 龚流柱. 手性有机小分子催化的最新进展*[J]. 化学进展, 2010, 22(07): 1362-1379.