English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2146-2158 DOI: 10.7536/PC211229 前一篇   后一篇

• 综述与评论 •

热激活延迟荧光材料的光物理行为及性能预测

张业文, 杨青青, 周策峰, 李平*(), 陈润锋*()   

  1. 南京邮电大学有机电子与信息显示国家重点实验室 江苏省生物传感材料与技术重点实验室 信息材料与纳米技术研究院 江苏先进生物与化学制造协同创新中心 南京 210023
  • 收稿日期:2021-12-24 修回日期:2022-02-21 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 李平, 陈润锋
  • 基金资助:
    国家自然科学基金项目(61875090); 国家自然科学基金项目(91833306); 国家自然科学基金项目(21772095); 江苏省教委重大专项(19KJA180005); 江苏省第五批333项目(BRA2019080); 江苏省第五批333项目(南京邮电大学1311人才计划); 南京邮电大学科学启动基金(NY219160); 南京邮电大学校级自然科学基金(NY221092)

The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials

Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping(), Chen Runfeng()   

  1. State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2021-12-24 Revised:2022-02-21 Online:2022-04-01 Published:2022-04-01
  • Contact: Li Ping, Chen Runfeng
  • Supported by:
    National Natural Science Foundation of China(61875090); National Natural Science Foundation of China(91833306); National Natural Science Foundation of China(21772095); Key giant project of Jiangsu Educational Committee(19KJA180005); fifth 333 project of Jiangsu Province of China(BRA2019080); 1311 Talents Program of Nanjing University of Posts and Telecommunications, the Scientific Starting Fund from Nanjing University of Posts and Telecommunications (No.NUPTSF)(NY219160); Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY221092)

热激活延迟荧光(Thermally activated delayed fluorescence, TADF)材料由于三线态激子可通过反系间窜越(Reverse intersystem crossing, RISC)转换为单线态激子,在有机发光二极管(Organic light-emitting diodes, OLEDs)中理论上可达到100%的激子利用率而被广泛关注。但实验上开发设计高性能TADF材料较为复杂且研究周期较长,理论研究可以从本质上建立材料结构-性能的关系,预测材料的性质并提供一定的分子设计策略。本文围绕高性能TADF材料的开发,从发光原理出发,系统阐述了分子的设计策略及光物理参数如材料单-三线态能级差(Single-triplet energy gap, ΔEST)、系间/反系间窜越速率、吸收/发射光谱、辐射/非辐射速率等的计算原理、计算方法和研究进展。最后我们探讨了TADF材料理论研究面临的机遇和挑战,通过对TADF材料的理论研究综述和研究前景的展望,期待吸引更多的研究工作者,推动该领域的发展和突破。

Thermally activated delayed fluorescence (TADF) materials have attracted significant attention due to their promising performance in organic light-emitting diodes (OLEDs) with theoretical 100% internal quantum efficiency through upconversion of triplet excitons into singlet excitons via reverse intersystem crossing (RISC) process. However, the experimental development of high-performance TADF materials is complicated and time-consuming. Theoretical calculations could intrinsically establish the structure-performance relationship, predict the properties and provide molecular design strategies. In this paper, aiming to develop high-performance TADF materials, started from the principle of luminescence, we systematically expound the molecular design strategies, and the calculation principles, methods and research progress of the photophysical parameters such as the single-triplet energy gap (ΔEST), the (reverse) intersystem crossing rate, absorption/emission spectrum and radiation/non-radiation rate. Finally, the opportunities and challenges faced by the theoretical research of TADF materials are discussed. Through the overview of the theoretical research of TADF materials and the outlook of the research prospects, we look forward to attracting more researchers and promoting the development and breakthrough of this field.

()
图1 TADF材料在(a)光致和(b)电致条件下辐射发光和非辐射衰减过程[28]
Fig. 1 Radiative and non-radiative transition processes of TADF materials by photoluminescence (a) and electroluminescence (b)[28]
图2 材料参数、设备性能、材料设计方法的关联示意图
Fig. 2 Schematic diagram relating the material parameters, device performances, and material design methods
表1 不同DFT泛函及其HF%成分(短程HF%/长程HF%)
Table 1 HF% components of different DFT functionals (short-range HF%/long-range HF%)
图3 采用OHF方法计算ΔEST的步骤
Fig. 3 Steps to calculate ΔEST by OHF method
图4 采用OHF方法所计算化合物的分子结构(蓝色和红色分别表示正、负电荷)[48]
Fig. 4 Molecular structures of compounds calculated by OHF method. (The blue and red denote the positive and negative charge, respectively)[48]
表2 采用OHF方法计算的E0-0(S1)、E0-0(T1)和ΔEST及与实验数据的比较
Table 2 Comparison of calculated E0-0(S1), E0-0(T1) and ΔEST by OHF method with experimental data
图5 使用LC-ωPBELOL计算ΔEST的步骤
Fig. 5 Steps to calculate ΔEST by LC-ωPBELOL
图6 单、三线态势能面示意图
Fig. 6 Schematic diagram of the potential energy surfaces (PESs) for singlet and triplet states
图7 计算ISC和RISC速率的示例分子结构
Fig. 7 Example molecular structures for calculating ISC and RISC rates
表3 ISC和RISC速率以及相关参数
Table 3 ISC, RISC rates and related parameters
图8 振动耦合示意图[11](a代表强振动耦合,b代表弱振动耦合)
Fig. 8 Schematic of (a) strong vibrational coupling, (b) weak vibrational coupling[11]
图9 吸收/发射过程示意图
Fig. 9 Schematic diagram of absorption/emission process
图10 计算辐射和非辐射速率的示例分子结构
Fig. 10 Example molecular structures for calculating radiation and non-radiation rates
表4 辐射和非辐射速率以及波长
Table 4 Radiation, non-radiation rates and wavelengths
图11 3CT和3LE态振动耦合对RISC过程影响示意图[69]
Fig. 11 Schematic diagram of the effect of3CT and3LE vibration coupling on the RISC process[69]
表5 纯CT和LE发光情况下常用指标及其限值[73]
Table 5 The metrics commonly used and their limiting values in the case of pure CT and LE luminescence[73]
图12 2PXZ-OXD和2PTZ-TAZ的空穴和电子密度[74](蓝色代表空穴,橙色代表电子,a和c代表T1态,b和d代表S1态)
Fig. 12 Hole (blue) and electron (orange) densities for 2PXZ-OXD and 2PTZ-TAZ compounds[74]. (a and c represent the T1 state, b and d represent the S1 state)
[1]
Parker C A, Hatchard C G. Proc. Roy. Soc. Lond. Math. Phys. Sci., 1962, 269: 574.
[2]
Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Adv. Mater., 2009, 21: 4802.

doi: 10.1002/adma.200900983     URL    
[3]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234.

doi: 10.1038/nature11687     URL    
[4]
Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J, Ono Y, Ikuta T. Adv. Mater., 2016, 28: 2777.

doi: 10.1002/adma.201505491     URL    
[5]
Jiang H, Jin J B, Chen R F, Zheng C, Huang W. Progress in Chemistry, 2016, 28(12): 1811.

doi: 10.7536/PC160520    
姜贺, 靳继彪, 陈润锋, 郑超, 黄维. 化学进展, 2016, 28(12): 1811.).

doi: 10.7536/PC160520    
[6]
Liu L, Wei Q, Cheng Y, Ma H, Xiong S, Zhang X. J. Mater. Chem. C, 2020, 8: 5839.

doi: 10.1039/D0TC00279H     URL    
[7]
Yang M, Park I S, Yasuda T. J. Am. Chem. Soc., 2020, 142: 19468.

doi: 10.1021/jacs.0c10081     URL    
[8]
Zou S N, Peng C C, Yang S Y, Qu Y K, Yu Y J, Chen X, Jiang Z Q, Liao L S. Org. Lett., 2021, 23: 958.

doi: 10.1021/acs.orglett.0c04159     URL    
[9]
Oda S, Kumano W, Hama T, Kawasumi R, Yoshiura K, Hatakeyama T. Angew. Chem. Int. Ed., 2021, 60: 2882.

doi: 10.1002/anie.202012891     URL    
[10]
Min H, Park I S, Yasuda T. Angew. Chem. Int. Ed., 2021, 60: 7643.

doi: 10.1002/anie.202016914     URL    
[11]
Zhang Y, Zhang D, Huang T, Gillett A J, Liu Y, Hu D, Cui L, Bin Z, Li G, Wei J, Duan L. Angew. Chem. Int. Ed., 2021, 60: 20498.

doi: 10.1002/anie.202107848     URL    
[12]
Liu G, Sasabe H, Kumada K, Matsunaga A, Katagiri H, Kido J. J. Mater. Chem. C, 2021, 9: 8308.

doi: 10.1039/D1TC01427G     URL    
[13]
Su Y M, Lin H J, Li W M. Progress in Chemistry, 2015, 27(10): 1384.
苏玉苗, 林海娟, 李文木. 化学进展, 2015, 27(10): 1384.).

doi: 10.7536/PC150304    
[14]
Kim J U, Park I S, Chan C Y, Tanaka M, Tsuchiya Y, Nakanotani H, Adachi C. Nat. Commun., 2020, 11: 1765.

doi: 10.1038/s41467-020-15558-5     URL    
[15]
Rao J, Zhao C, Wang Y, Bai K, Wang S, Ding J, Wang L. ACS Omega, 2019, 4: 1861.

doi: 10.1021/acsomega.8b03296     URL    
[16]
Park I S, Matsuo K, Aizawa N, Yasuda T. Adv. Funct. Mater., 2018, 28: 1802031.

doi: 10.1002/adfm.201802031     URL    
[17]
Agou T, Matsuo K, Kawano R, Park I S, Hosoya T, Fukumoto H, Kubota T, Mizuhata Y, Tokitoh N, Yasuda T. ACS Mater. Lett., 2019, 2: 28.
[18]
Wu X, Su B K, Chen, D G,. ; Liu D, Wu C C, Huang Z X, Lin T C, Wu C H, Zhu M, Li E Y, Hung W Y, Zhu W, Chou P T. Nat. Photonics, 2021, 15: 780.

doi: 10.1038/s41566-021-00870-3     URL    
[19]
Nickel B, Klemp D. Chem. Phys., 1993, 174: 319.

doi: 10.1016/0301-0104(93)87015-F     URL    
[20]
Klemp D, Nickel B. Chem. Phys., 1983, 78: 17.

doi: 10.1016/0301-0104(83)87002-5     URL    
[21]
Li Z, Yang D, Han C, Zhao B, Wang H, Man Y, Ma P, Chang P, Ma D, Xu H. Angew. Chem. Int. Ed., 2021, 60: 14846.

doi: 10.1002/anie.202103070     URL    
[22]
Lv X, Huang R, Sun S, Zhang Q, Xiang S, Ye S, Leng P, Dias F B, Wang L. ACS Appl. Mater. Interfaces, 2019, 11: 10758.

doi: 10.1021/acsami.8b20699     URL    
[23]
Krylova V A, Djurovich P I, Conley B L, Haiges R, Whited M, T, Williams T J, Thompson M E. Chem. Commun., 2014, 50: 7176.

doi: 10.1039/C4CC02037E     URL    
[24]
Cao C, Yang G X, Tan J H, Shen D, Chen W C, Chen J X, Liang J L, Zhu Z L, Liu S H, Tong Q X, Lee C S. Mater. Today Energy, 2021, 21: 100727.
[25]
Lin B Y, Easley C J, Chen C H, Tseng P C, Lee M Z, Sher P H, Wang J K, Chiu T L, Lin C F, Bardeen C J, Lee J H. ACS Appl. Mater. Interfaces, 2017, 9: 10963.

doi: 10.1021/acsami.6b16397     URL    
[26]
Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv. Mater., 2014, 26: 7931.

doi: 10.1002/adma.201402532     URL    
[27]
Yao L, Yang B, Ma Y. Sci. China Chem., 2014, 57: 335.

doi: 10.1007/s11426-013-5046-y     URL    
[28]
Im Y, Kim M, Cho Y J, Seo J A, Yook K S, Lee J Y. Chem. Mater., 2017, 29: 1946.

doi: 10.1021/acs.chemmater.6b05324     URL    
[29]
Hirata S, Sakai Y, Masui K, Tanaka H, Lee S Y, Nomura H, Nakamura N, Yasumatsu M, Nakanotani H, Zhang Q, Shizu K, Miyazaki H, Adachi C. Nat. Mater., 2015, 14: 330.

doi: 10.1038/nmat4154     pmid: 25485987
[30]
Pershin A, Hall D, Lemaur V, Sancho-Garcia J C, Muccioli L, Zysman-Colman E, Beljonne D, Olivier Y. Nat. Commun., 2019, 10: 597.

doi: 10.1038/s41467-019-08495-5     pmid: 30723203
[31]
Teng J M, Wang Y F, Chen C F. J. Mater. Chem. C, 2020, 8: 11340.

doi: 10.1039/D0TC02682D     URL    
[32]
Nobuyasu R S, Ren Z, Griffiths G C, Batsanov A S, Data P, Yan S, Monkman A P, Bryce M R, Dias F B. Adv. Opt. Mater., 2016, 4: 597.

doi: 10.1002/adom.201500689     URL    
[33]
Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C. Adv. Mater., 2016, 28: 4019.

doi: 10.1002/adma.201505026     URL    
[34]
Xia G, Qu C, Zhu Y, Ye J, Ye K, Zhang Z, Wang Y. Angew. Chem. Int. Ed., 2021, 60: 9598.

doi: 10.1002/anie.202100423     URL    
[35]
Ahn D H, Kim S W, Lee H, Ko I J, Karthik D, Lee J Y, Kwon J H. Nat. Photonics, 2019, 13: 540.

doi: 10.1038/s41566-019-0415-5     URL    
[36]
Khan A, Tang X, Zhong C, Wang Q, Yang S Y, Kong F C, Yuan S, Sandanayaka A S D, Adachi C, Jiang Z Q, Liao L S. Adv. Funct. Mater., 2021, 31: 2009488.

doi: 10.1002/adfm.202009488     URL    
[37]
Nikolaenko A E, Cass M, Bourcet F, Mohamad D, Roberts M. Adv. Mater., 2015, 27: 7236.

doi: 10.1002/adma.201501090    
[38]
Lim H, Cheon H J, Woo S J, Kwon S K, Kim Y H, Kim J J. Adv. Mater., 2020, 32: 2004083.

doi: 10.1002/adma.202004083     URL    
[39]
Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T. Nat. Photonics, 2019, 13: 678.

doi: 10.1038/s41566-019-0476-5     URL    
[40]
Yuan Y, Tang X, Du X Y, Hu Y, Yu Y J, Jiang Z Q, Liao L S, Lee S T. Adv. Opt. Mater., 2019, 7: 1801536.

doi: 10.1002/adom.201801536     URL    
[41]
Tsang D P, Matsushima T, Adachi C. Sci. Rep., 2016, 6: 22463.

doi: 10.1038/srep22463     URL    
[42]
Zhang D, Cai M, Zhang Y, Zhang D, Duan L. Mater. Horiz., 2016, 3: 145.

doi: 10.1039/C5MH00258C     URL    
[43]
Cohen A J, Mori-Sánchez P, Yang W. Chem. Rev., 2012, 112: 289.

doi: 10.1021/cr200107z     pmid: 22191548
[44]
Song C, Tang J, Li J, Wang Z, Li P, Zhang H. Inorg. Chem., 2018, 57: 12174.

doi: 10.1021/acs.inorgchem.8b01828     URL    
[45]
Improta R, Barone V, Scalmani G, Frisch, M J. J. Chem. Phys., 2006, 125: 054103.

doi: 10.1063/1.2222364     URL    
[46]
Runge E, Gross E. Phys. Rev. Lett., 1984, 52: 997.

doi: 10.1103/PhysRevLett.52.997     URL    
[47]
Chen J H, He L M, Wang R L. J. Phys. Chem. A, 2013, 117: 5132.

doi: 10.1021/jp312470k     URL    
[48]
Huang S P, Zhang Q, Shiota Y, Nakagawa T, Kuwabara K, Yoshizawa K, Adachi C. J. Chem. Theory Comput., 2013, 9: 3872.

doi: 10.1021/ct400415r     URL    
[49]
Lu T, Chen F. J. Comput. Chem., 2012, 33: 580.

doi: 10.1002/jcc.22885     URL    
[50]
Wang C, Deng C, Wang D, Zhang Q S. J. Phys. Chem. C, 2018, 122: 7816.

doi: 10.1021/acs.jpcc.7b10560     URL    
[51]
Sun H T, Zhong C, BrÉdas J. J. Chem. Theory Comput., 2015, 11: 3851.

doi: 10.1021/acs.jctc.5b00431     URL    
[52]
Wang C, Zhang Q. J. Phys. Chem. C, 2018, 123: 4407.

doi: 10.1021/acs.jpcc.8b08228     URL    
[53]
Wang C, Zhou K, Huang S, Zhang Q. J. Phys. Chem. C, 2019, 123: 13869.

doi: 10.1021/acs.jpcc.9b01896     URL    
[54]
Moral M, Muccioli L, Son W J, Olivier Y, Sancho-Garcia J C. J. Chem. Theory Comput., 2015, 11: 168.

doi: 10.1021/ct500957s     pmid: 26574215
[55]
Xu S, Yang Q, Wan Y, Chen R, Wang S, Si Y, Yang, B, Liu D, Zheng C, Huang W. J. Mater. Chem. C, 2019, 7: 9523.

doi: 10.1039/C9TC03152A     URL    
[56]
Lin L, Fan J, Cai L, Wang C K. Mol. Phys., 2017, 116: 19.

doi: 10.1080/00268976.2017.1362119     URL    
[57]
Nelsen S F, Blackstock S C, Kim Y. J. Am. Chem. Soc., 1987, 109: 677.

doi: 10.1021/ja00237a007     URL    
[58]
Pei Z, Ou Q, Mao Y, Yang J, Lande A, Plasser F, Liang W, Shuai Z, Shao Y. J. Phys. Chem. Lett., 2021, 12: 2712.

doi: 10.1021/acs.jpclett.1c00094     URL    
[59]
Reimers J R. J. Chem. Phys., 2001, 115: 9103.

doi: 10.1063/1.1412875     URL    
[60]
Lower S, El-Sayed M. Chem. Rev., 1966, 66: 199.

doi: 10.1021/cr60240a004     URL    
[61]
THOMAS L H. Nature, 1926, 117: 514.
[62]
Chen T, Zheng L, Yuan J, An Z, Chen R, Tao Y, Li H, Xie X, Huang W. Sci. Rep., 2015, 5: 10923.

doi: 10.1038/srep10923     URL    
[63]
Lu F, Kitamura N, Takaya T, Iwata K, Nakanishi T, Kurashige Y. Phys. Chem. Chem. Phys., 2018, 20: 3258.

doi: 10.1039/C7CP06811E     URL    
[64]
Serdiuk I E, Monka M, Kozakiewicz K, Liberek B, Bojarski P, Park S Y. J. Phys. Chem. B, 2021, 125: 2696.

doi: 10.1021/acs.jpcb.0c10605     URL    
[65]
Peng Q, Fan D, Duan R, Yi Y, Niu Y, Wang D, Shuai Z. J. Phys. Chem. C, 2017, 121: 13448.

doi: 10.1021/acs.jpcc.7b00692     URL    
[66]
Zhang X, Jacquemin D, Peng Q, Shuai Z, Escudero D. J. Mater. Chem. C, 2018, 122: 6340.
[67]
Niu Y, Li W, Peng Q, Geng H, Yi Y, Wang L, Nan G, Wang D, Shuai Z G. Mol. Phys., 2018, 116: 1078.

doi: 10.1080/00268976.2017.1402966     URL    
[68]
Freidzon A Y, Bagaturyants A A. J. Phys. Chem. A, 2020, 124: 7927.

doi: 10.1021/acs.jpca.0c06440     URL    
[69]
Gibson J, Monkman A P, Penfold T J. Chemphyschem, 2016, 17: 2956.

doi: 10.1002/cphc.201600662     pmid: 27338655
[70]
Etherington M K, Gibson J, Higginbotham H F, Penfold T J, Monkman A P. Nat. Commun., 2016, 7: 13680.

doi: 10.1038/ncomms13680     pmid: 27901046
[71]
Park S W, Yang J H, Choi H, Rhee Y M, Kim D. J. Phys. Chem. A, 2020, 124: 10384.

doi: 10.1021/acs.jpca.0c09439     pmid: 33245236
[72]
Samanta P K, Kim D, Coropceanu V, BrÉdas J L. J. Am. Chem. Soc., 2017, 139: 4042.

doi: 10.1021/jacs.6b12124     pmid: 28244314
[73]
Olivier Y, Sancho-Garcia J C, Muccioli L, D’Avino G, Beljonne D. J. Phys. Chem. Lett., 2018, 9: 6149.

doi: 10.1021/acs.jpclett.8b02327     pmid: 30265539
[74]
Olivier Y, Moral M, Muccioli L, Sancho-García J C. J. Mater. Chem. C, 2017, 5: 5718.

doi: 10.1039/C6TC05075A     URL    
[75]
Huet L, Perfetto A, Muniz-Miranda F, Campetella M, Adamo C, Ciofini I. J. Chem. Theory Comput., 2020, 16: 4543.

doi: 10.1021/acs.jctc.0c00296     URL    
[76]
Chen X K, Kim D, BrÉdas J L. Acc. Chem. Res., 2018, 51: 2215.

doi: 10.1021/acs.accounts.8b00174     URL    
[1] 龚筑轲, 许辉. 晶态咔唑基有机室温磷光材料[J]. 化学进展, 2022, 34(11): 2432-2461.
[2] 郄佳, 李明, 刘利, 梁英华, 崔文权*. g-C3N4光催化材料的第一性原理研究[J]. 化学进展, 2016, 28(10): 1569-1577.
[3] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[4] 刘少名, 于波, 张文强, 朱建新, 翟玉春, 陈靖. 原子尺度研究固体氧化物池氧电极中氧迁移规律[J]. 化学进展, 2014, 26(09): 1570-1585.
[5] 张颖, 徐昕*. 新一代密度泛函方法XYG3[J]. 化学进展, 2012, 24(06): 1023-1037.
[6] 蒋鸿*. 带隙问题:第一性原理电子能带理论研究现状[J]. 化学进展, 2012, 24(06): 910-927.
[7] 王东琪, Wilfred F. van Gunsteren. 锕系计算化学进展[J]. 化学进展, 2011, 23(7): 1566-1581.
[8] 朱崇强 杨春晖 孙亮. 非线性光学晶体CdGeAs2点缺陷的研究*[J]. 化学进展, 2010, 22(0203): 315-321.
[9] 徐宇虹,尹鸽平,左朋建. 锂离子电池正极材料的第一性原理研究进展[J]. 化学进展, 2008, 20(11): 1827-1833.
[10] 刘文剑. 相对论量子化学新进展*[J]. 化学进展, 2007, 19(06): 833-851.
[11] 李震宇 贺 伟 杨金龙. 密度泛函理论及其数值方法新进展*[J]. 化学进展, 2005, 17(02): 192-202.
[12] 戴瑛,黎乐民. 密度泛函理论处理激发态与多重态结构研究进展[J]. 化学进展, 2001, 13(03): 167-.