English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1569-1577 DOI: 10.7536/PC160623 前一篇   后一篇

• 综述与评论 •

g-C3N4光催化材料的第一性原理研究

郄佳, 李明, 刘利, 梁英华, 崔文权*   

  1. 华北理工大学化学工程学院 河北省环境光电催化材料重点实验室 唐山 063009
  • 收稿日期:2016-06-01 修回日期:2016-09-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 崔文权 E-mail:wkcui@163.com
  • 基金资助:
    国家自然科学基金项目(No.51672081),河北省杰出青年科学基金项目(No.B2014209304),河北省自然科学基金重点项目(No.B2016209375)和河北省自然科学基金-钢铁联合基金项目(B2016209348)资助

Research of Photocatalyst g-C3N4 Using First Principles

Qie Jia, Li Ming, Liu Li, Liang Yinghua, Cui Wenquan*   

  1. Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
  • Received:2016-06-01 Revised:2016-09-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51672081), the Hebei Natural Science Funds for Distinguished Young Scholar(No. B2014209304), the Key Program of Natural Science of Hebei Province(No.B2016209375), and the Hebei Natural Science Funds for the Joint Research of Iron and Steel(No.B2016209348).
能源短缺和环境恶化是人类社会快速发展面临的重大难题。太阳能作为一种清洁无污染的理想新型能源,具有取之不尽、用之不竭的特点,是实现可持续发展的最佳能源选择。半导体光催化可以直接利用太阳光进行催化反应,得到了广泛关注。作为一种低成本无金属光催化剂,g-C3N4具有独特的电子能带结构、优良的化学稳定性和热力学稳定性,在光催化领域如分解水制氢制氧、降解有机污染物、CO2还原、抗菌和有机官能团选择性转换等方面表现出巨大的应用前景。目前g-C3N4光催化剂存在着如比表面积小、可见光利用率低、量子产率低和光生载流子易复合等问题,制约了其在光催化领域的应用。因此,提升g-C3N4光催化性能是光催化研究领域的重要课题。第一性原理具有半经验方法不可比拟的优势,已成为光催化研究领域计算和模拟的重要基础。基于密度泛函理论的第一性原理在光催化领域的广泛应用,为有效迅速地探求能够改善g-C3N4光催化性能的方法提供了明确的研究手段。本文从理论计算的角度综述了近年来在g-C3N4改性方面所取得的一些重要研究进展,主要包括元素掺杂、复合和形貌调控等改性手段。本文以g-C3N4改性光催化剂为研究对象,从电子性质、能带结构、光学性质和缺陷形成能的角度阐述了各种改性手段提高光催化活性的微观机理。最后,在总结前文所述各类改性研究的基础上,对g-C3N4改性光催化剂未来的发展趋势作出了展望。
Energy shortage and environmental deterioration are the difficult problems now confronting us in the development of human society. As one of the best and new type energy which is clean, renewable and zero-pollution, solar energy is the best choice to achieve sustainable development, because it is an inexhaustible energy source. The issue that semiconductor photocatalysis can use solar light directly to conduct the photocatalytic reaction has aroused widely public concern. As a kind of low cost and non-metal photocatalyst, graphitic carbon nitride (g-C3N4) shows great application prospects in decomposition of water into hydrogen and oxygen, photocatalytic degradation of organic pollutants, carbon dioxide reduction, antibacterial, selective conversion of organic functional groups, as well as other fields, for its unique electronic band structure, thermal and chemical stability. But at present, g-C3N4 photocatalyst still exists some problems such as small specific surface area, low visible light utilization rate, low light quantum yield, and easy recombination of photo-generated carriers which restrict its application in the field of photocatalysis. Therefore, it has become a key subject in the field of photocatalytic research to improve the photocatalytic activity of g-C3N4. The first principles have the incomparable advantages over semi empirical method, which have become an important basis for the calculation and simulation in the field of photocatalytic research. The wide application of first principles based on density functional theory in the field of photocatalysis provides a clear research means to explore the method to improve the photocatalytic activity of g-C3N4 effectively and quickly. In this review, some important research progress in g-C3N4 modification in recent years is reviewed from the theoretical point of view, including element doping modification, composite modification, morphology control modification and other means of modification. The microscopic mechanism of improved photocatalytic activity of g-C3N4 modified photocatalyst is studied, from the point of view of electronic properties, band structure, optical properties and defect formation energy. Finally, on the basis of summarizing various of the modification research mentioned above, the future development trend of g-C3N4 modified photocatalyst is discussed.

Contents
1 Introduction
2 Molecular model and band structure of g-C3N4
2.1 Molecular model of g-C3N4
2.2 Band structure of g-C3N4
3 Modification research of g-C3N4
3.1 Doping modification
3.2 Composite modification
3.3 Morphology control modification
3.4 Other modification research
4 Conclusion

中图分类号: 

()
[1] Fujishima A, Honda K. Nature, 1972, 238:37.
[2] 田蒙奎(Tian M K), 上官文峰(ShangGuan W F), 欧阳自远(OuYang Z Y), 王世杰(Wang S J). 功能材料(Functional Materials), 2005, 36(10):1489.
[3] Daghrir R, Drogui P, Robert D. Ind. Eng. Chem. Res., 2013, 52:3581.
[4] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8:76.
[5] Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X Z, Antonietti M, Wang X C. Angew. Chem. Int. Ed., 2010, 49:441.
[6] Cui Y J, Ding Z X, Liu P, Antonietti M, Fu X Z, Wang X C. Phys. Chem. Chem. Phys., 2012, 14:1455.
[7] Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J O, Schlögl R, Carlsson J M. J. Mater. Chem., 2008, 18:4893.
[8] Xin G, Meng Y L. Journal of Chemistry, 2013, 2013:1.
[9] Ji H H, Chang F, Hu X F, Qin W, Shen J W. Chemical Engineering Journal, 2013, 218:183.
[10] Li X H, Zhang J S, Chen X F, Fischer A, Thomas A, Antonietti M, Wang X C. Chemistry of Materials, 2011, 23(19):4344.
[11] Jorge A B, Martin D J, Dhanoa M T S, Rahman A S, Makwana N, Tang J W, Sella A, Cora F, Firth S, Darr J A, Mcmillan P F. Journal of Physical Chemistry C, 2013, 117(14):7178.
[12] Huang Z J, Li F B, Chen B F, Lu T, Yuan Y, Yuan G Q. Applied Catalysis B:Environmental, 2013, 136/137:269.
[13] Ding G D, Wang W T, Jiang T, Han B X, Fan H L, Yang G Y. ChemCatChem, 2013, 5(1):192.
[14] Zhai H S, Cao L, Xia X H. Chinese Chemical Letters, 2013, 24(2):103.
[15] Liu A Y, Cohen M L. Science, 1989, 245(4920):841.
[16] Teter D M, Hemley R J. Science, 1996, 271(5245):53.
[17] Liu A Y, Cohen M L. Phys. Rev. B:Condens. Matter. Phys., 1990, 41:10727.
[18] Guo Y J, Goddard W A. Chem. Phys. Lett., 1995, 237:72.
[19] 楚增勇(Chu Z Y), 原博(Yuan B), 颜廷楠(Yan T N). 无机材料学报(Journal of Inorganic Materials), 2014, 29(8):785.
[20] Kroke E, Schwarz M, Horath-Bordon E, Kroll P, Noll B, Norman A D. New J. Chem., 2002, 26:508.
[21] Xu Y, Gao S P. Int. J. Hydrogen Energy, 2012, 37(15):11072.
[22] Maeda K, Wang X C, Nishihara Y, Lu D L, Antonietti M, Domen K. J. Phys. Chem. C, 2009, 113:4940.
[23] Wang X C, Blechert S, Antonietti M. ACS Catal., 2012, 2:1596.
[24] Zhang Y J, Antonietti M. Chem. -Asian J., 2010, 5:1307.
[25] Zhang Y J, Schnepp Z, Cao J Y, Ouyang S X, Li Y, Ye J H, Liu S Q. Sci. Rep., 2013, 3:2163.
[26] Liu J J. Journal of Alloys and Compounds, 2016, 672:271.
[27] Ma X G, Lv Y H, Xu J, Liu Y F, Zhang R Q, Zhu Y F. J. Phys. Chem. C, 2012, 116:23485.
[28] Hohenberg P, Kohn W. Phys. Rev. B, 1964, 136:864.
[29] Kohn W, Sham LJ. Phys. Rev. A, 1965, 140:1133.
[30] Zhang J S, Sun J H, Maeda K, Domen K, Liu P, Antonietti M, Fu X Z, Wang X C. Energy Environ. Sci., 2011, 4:675.
[31] Ran J R, Ma T Y, Gao G P, Du X W, Qiao S Z. Energy Environ. Sci., 2015, 8:3708.
[32] 阮林伟(Ruan L W), 裘灵光(Qiu L G), 朱玉俊(Zhu Y J), 卢运祥(Lu Y X). 物理化学学报(Acta Physico-Chimica Sinica), 2014, 30(1):43.
[33] Wang K, Li Q, Liu B S, Cheng B, Ho W K, Yu J G. Applied Catalysis B:Environmental, 2015, 176/177:44.
[34] Zhou Y J, Zhang L X, Liu J J, Fan X Q, Wang B Z, Wang M, Ren W C, Wang J, Li M L, Shi J L. J. Mater. Chem. A, 2015, 3:3862.
[35] Lin S, Ye X X, Gao X M, Huang J. Journal of Molecular Catalysis A:Chemical, 2015, 406:137.
[36] Dong G H, Zhao K, Zhang L Z. Chem. Commun., 2012, 48(49):6178.
[37] Cui J, Liang S H, Wang X H, Zhang J M. Materials Chemistry and Physics, 2015, 161:194.
[38] Li J H, Shen B, Hong Z H, Lin B Z, Gao B F, Chen Y L. Chem. Commun., 2012, 48:12017.
[39] Ma Z J, Sa R J, Li Q H, Wu K C. Phys. Chem. Chem. Phys., 2016, 18:1050.
[40] Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C. J. Am. Chem. Soc., 2012, 134:4393.
[41] Xiang Q J, Yu J G, Jaroniec M. J. Phys. Chem. C, 2011, 115(15):7355.
[42] Xu L, Huang W Q, Wang L L, Tian Z A, Hu W Y, Ma Y M, Wang X, Pan A L, Huang G F. Chem. Mater., 2015, 27:1612.
[43] Li Y B, Zhang H M, Liu P R, Wang D, Li Y, Zhao H J. Small, 2013, 9:3336.
[44] Li X R, Dai Y, Ma Y D, Han S H, Huang B B. Phys. Chem. Chem. Phys., 2014, 16:4230.
[45] Wang J J, Guan Z Y, Huang J, Li Q X, Yang J L. J. Mater. Chem. A, 2014, 2(21):7960.
[46] Hou Y D, Laursen A B, Zhang J S, Zhang G G, Zhu Y S, Wang X C, Dahl S, Chorkendorff I. Angew. Chem. Int. Ed., 2013, 52:3621.
[47] Liu J J. J. Phys. Chem. C, 2015, 119:28417.
[48] Zhang X R, Meng Z H, Rao D W, Wang Y H, Shi Q, Liu Y Z, Wu H P, Deng K M, Liu H Y, Lu R F. Energy Environ. Sci., 2016, 9:841.
[49] Shi S, Gondal M A, Rashid S G, Qi Q, Al-Saadi A A, Yamani Z H, Sui Y H, Xu Q Y, Shen K. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2014, 461:202.
[50] Zhang J H, Ren F Z, Deng M S, Wang Y X. Phys. Chem. Chem. Phys., 2015, 17:10218.
[51] Shi H F, Chen G Q, Zhang C L, Zou Z G. ACS. Catal., 2014, 4:3637.
[52] Wang S M, Li D L, Sun C, Yang S G, Guan Y, He H. Applied Catalysis B:Environmental, 2014, 144:885.
[53] Gong Y, Yu H T, Chen S, Guan X. RSC Adv., 2015, 5:83225.
[54] Gao G P, Jiao Y, Ma F X, Jiao Y, L, Waclawik E, Du A J. Phys. Chem. Chem. Phys., 2015, 17:31140.
[55] Liu J, Liu Y, Liu N Y, Han Y Z, Zhang X, Huang H, Lifshitz Y, Lee S, Zhong J, Kang Z H. Science, 2015, 347:970.
[56] Zhang J Y, Wang Y H, Jin J, Zhang J, Lin Z, Huang F, Yu J G. ACS Appl. Mater. Interfaces, 2013, 5:10317.
[57] Jiang G F, Zhou C H, Xia X, Yang F Q, Tong D S, Yu W H, Liu S M. Mater. Lett., 2010, 64:2718.
[58] Gao J, Zhou Y, Li Z S, Yan S C, Wang N Y, Zou Z G. Nanascale, 2012, 4:3687.
[59] Chen X F, Jun Y S, Takanabe K, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chemistry of Materials, 2009, 21:4093.
[60] Bai X J, Zong R L, Li C X, Liu D, Liu Y F, Zhu Y F. Applied Catalysis B:Environmental, 2014, 147:82.
[61] Zimmerman J L, Williams R, Khabashesku V N, Margrave J L. Nano Letters, 2001, 1(12):731.
[62] Wang X C, Maeda K, Chen X F, Takanabe K, Domen K, Hou Y D, Fu X Z. J. Am. Chem. Soc., 2009, 131:1680.
[63] Liu J, Huang J H, Zhou H, Antonietti M. ACS Applied Materials & Interfaces, 2014, 6:8434.
[64] Ho W K, Zhang Z Z, Lin W, Huang S P, Zhang X W, Wang X X, Huang Y. ACS Applied Materials & Interfaces, 2015, 7:5497.
[65] Lin Z, Zheng J N, Lin G, Tang Z, Yang X Q, Cai Z W. Anal. Chem., 2015, 87:8005.
[66] Pan H, Zhang Y W, Shenoy V B, Gao H J. ACS Catal., 2011, 1:99.
[67] Zhang J Q, An X H, Lin N, Wu W T, Wang L Z, Li Z T, Wang R Q, Wang Y, Liu J X, Wu M B. Carbon, 2016, 100:450.
[68] Ruan L W, Zhu Y J, Qiu L G, Yuan Y P, Lu Y X. Computational Materials Science, 2014, 91:258.
[69] Chen Y, Wang B, Lin S, Zhang Y F, Wang X C. Phys. Chem. C, 2014, 118:29981.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[7] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[8] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[9] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[10] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[11] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[12] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[13] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[14] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[15] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.