English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1570-1585 DOI: 10.7536/PC140420 前一篇   后一篇

• 综述与评论 •

原子尺度研究固体氧化物池氧电极中氧迁移规律

刘少名1,2, 于波*2, 张文强2, 朱建新3, 翟玉春1, 陈靖2   

  1. 1. 东北大学材料与冶金学院 沈阳 110819;
    2. 清华大学核能与新能源技术研究院 北京 100084;
    3. 中国科学院生态环境研究中心 北京 100085
  • 收稿日期:2014-04-01 修回日期:2014-06-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 于波 E-mail:cassy_yu@tsinghua.edu.cn
  • 基金资助:

    “清华大学-剑桥大学-麻省理工学院”低碳能源大学联盟种子基金项目(No.2011LC004),国家科技重大专项 (No. ZX06901),国家自然科学基金项目 (No. 21273128,51202123)和教育部长江学者和创新团队发展计划(No. IRT13026)资助

Atomic-Scale Insights into the Oxygen Ionic Transport Mechanisms of Oxygen Electrode in Solid Oxide Cells:A Review

Liu Shaoming1,2, Yu Bo*2, Zhang Wenqiang2, Zhu Jianxin3, Zhai Yuchun1, Chen Jing2   

  1. 1. School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China;
    2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received:2014-04-01 Revised:2014-06-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the“Tsinghua-MIT-Cambridge” Low Carbon Energy University Alliance Seed Fund Program (No.2011LC004), the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. ZX06901), the National Natural Science Foundation of China (No. 21273128, 51202123) and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13026)

固体氧化物燃料电池(SOFC)和固体氧化物燃料电解池(SOEC)作为新一代的能源转化装置,凭借其清洁、高效的能源转化优势,非常具有技术吸引力。为了将SOFC和SOEC商业化,操作更加持久、高效和经济,中低温的运行温度成为当前国际上研究的主要方向,其中提高氧电极材料的氧还原反应/氧析出反应(ORR/OER)活性是研究的关键。本文主要阐述了原子尺度分子模拟分析和原位实验测试表征对混合离子电子导体氧电极材料中氧迁移规律和传输机理研究的重要作用,推进传统材料向新型氧电极材料和结构的发展;归纳和综述了近期热点的混合离子电子导体(MIEC)氧电极材料、相应的离子传输路径、各向异性结构及晶格动力学;介绍了当前采用的先进研究手段和方法,并重点介绍了原位X射线光电子能谱(XPS)和俄歇电子光谱(AES)探测材料的表面化学组成和结构,原位的方式可以将致密薄膜中几纳米到十几纳米的结构可视化,在原子层面上研究氧电极材料中带电缺陷的形成和迁移;并基于原子尺度的密度泛函理论(DFT)计算和近期分子动力学模拟(MD)的研究进展对传统材料和新型材料中的氧迁移机理进行解释和分析。最后,简要综述了清华大学核研院在固体氧化物池氧电极方面的研究进展。

As a new generation of energy conversion devices, solid oxide fuel cells (SOFC) and solid oxide electrolysis cells (SOEC) are of great importance with the advantage of highly efficient energy conversion in a clean way. For the commercialization of SOFC and SOEC technologies, operation at the intermediate-low temperature (IT) is the current major research direction all over the world, which are beneficial for the operation of SOFC and SOEC more durably and economically. The key point is how to improve the oxygen reduction reaction (ORR) or oxygen evolution reaction (OER) activity of oxygen electrodes. In this review, the important roles of atomic-scale molecular simulation and in-situ experimental characterization are mainly illustrated to provide insight and understanding on the oxygen transport mechanism analysis. These fundamental studies could put forward the progress from traditional materials and structures to novel designs and concepts. The recent R&D oxygen electrodes of mixed ionic electronic conducting (MIEC) materials, the corresponding ion migration paths, anisotropic structures and lattice dynamics are summarized in detail. The current advanced research methods and characterizations are introduced focusing on the in-situ X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) for probing the surface chemical composition and structure of materials. With in-situ methods, a several nanometers to tens of nanometers structure of the dense film could be visualized that made the study of the formation and migration of charged defects of oxygen electrode material feasible. Oxygen transport mechanisms in the traditional materials and novel materials at atomic scale are analyzed by the results of density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Furthermore, the research progress of oxygen electrodes at INET in Tsinghua University is briefly introduced.

Contents
1 Introduction
2 Oxygen electrode materials
2.1 Mixed ionic electronic conductor (MIEC) oxygen electrode
2.2 Perovskite oxides
2.3 Ruddlesden-popper series of layered oxides
2.4 Layered double perovskites oxides
3 The current research methods
3.1 Pulsed laser deposition (PLD)
3.2 Thin film characterization
3.3 Computational methods
4 Oxygen transport mechanisms in oxygen electrode
4.1 Oxygen bulk diffusion in oxygen electrode
4.2 Oxygen surface exchange in oxygen electrode
5 The research progress of INET in Tsinghua University on the oxygen electrode of the solid oxide cells
6 Conclusions

中图分类号: 

()

[1] British Petroleum Company. Statistical Review of World Energy, 2013.
[2] Minh N Q, Mogensen M. The Electrochemical Society Interface, 2013, 22(4): 55.
[3] Ni M, Leung M K H, Leung D Y C. Int. J. Hydrogen. Energ., 2008, 33(9): 2337.
[4] Wachsman E D, Marlowe C A, Lee K T. Energy & Environmental Science, 2012, 5: 5498.
[5] Yang C, Yang Z, Jin C, Xiao G L, Chen F L, Han M F. Adv. Mater., 2012, 24: 1439.
[6] Steele B C H, Heinzel A. Nature, 2001, 414: 345.
[7] Jacobson A J. Chem. Mater., 2009, 22: 660.
[8] Steele B C H. Solid State Ionics, 2000, 129: 95.
[9] Zheng Y, Ran R, Gu H X, Cai R, Shao Z P. J. Power Sources, 2008, 185: 641.
[10] Zheng Y, Zhang C M, Ran R, Cai R, Shao Z P, Farrusseng D. Acta Mater., 2009, 57: 1165.
[11] Zheng Y, Ran R, Shao Z P. J. Phys. Chem., 2008, 112: 18690.
[12] Tarancón A, Burriel M, Santiso J, Skinner S J, Kilner J A. J. Mater. Chem., 2010, 20: 3799.
[13] Frayret C, Villesuzanne A, Pouchard M. Chem. Mater., 2005, 17: 6538.
[14] Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. J. Mater. Chem., 2007, 17: 2500.
[15] Tarancón A, Skinner S J, Chater R J, Hernádez-Ramírez F, Kilner J A. J. Mater. Chem., 2007, 17: 3175.
[16] Burriel M, Garcia G, Santiso J, Kilner J A, Chater R J, Skinner S J. J. Mater. Chem., 2008, 18: 416.
[17] Yashima M, Enoki M, Wakita T, Ali R, Matsushita Y, Izumi F, Ishihara T. J. Am. Chem. Soc., 2008, 130: 2762.
[18] Chroneos A, Vovk R V, Goulatis I L, Goulatis L I. J. Alloys Compd., 2010, 494: 190.
[19] Galina M Z, Mazo G N, Ivanov-Schitz A K. Crystallogr. Rep., 2010, 55(2): 262.
[20] Wolff H, Dronskowski R. Journal of Computational Chemistry, 2008, 29(13): 2260.
[21] Savvin S N, Mazo G N, Ivanov-Schitz A K. Crystallogr. Rep., 2008, 53: 291.
[22] Parfitt D, Chroneos A, Kilner J A, Grimes R W. Phys. Chem. Chem. Phys., 2010, 12: 6834.
[23] Schwingenschlögl U, Chroneos A, Schuster C, Grimes R W. Appl. Phys. Lett., 2010, 96: 242107.
[24] Chroneos A, Grimes R W, Bracht H. J. Appl. Phys., 2009, 105: 016102.
[25] Adler S B. Solid State Ionics, 1998, 111: 125.
[26] Adler S B. Chem. Rev., 2004, 104: 4791.
[27] Adler S B, Lane J A, Steele B C H. J. Electrochem. Soc., 1996, 143: 3554.
[28] Baumann F S. Doctoral Dissertation of Max Planck Institute, Stuttgart, Germany, 2006.
[29] Schmalzried H. Chemical Kinetics of Solids. Weinheim: VCH Verlagsgesellschaft, 1995.
[30] Rickert H. Electrochemistry of Solids. Berlin: Springer-Verlag, 1982.
[31] Kilner J A. Solid State Ionics, 2000, 129: 13.
[32] Jorgensen M J, Primdahl S, Mogensen M. Electrochim. Acta, 1999, 44: 4195.
[33] Ostergard M J L, Clausen C, Bagger C, Mogensen M. Electrochim. Acta, 1995, 40: 1971.
[34] Lei Z, Zhu Q, Zhao L. J. Power Sources, 2006, 161: 1169.
[35] Jiang S P, Wang W. J. Electrochem. Soc., 2005, 152: A1398.
[36] Zhou W, Shao Z P, Ran R, Gu H X, Jin W Q, Xu N P. J. Am. Ceram. Soc., 2008, 91: 1155.
[37] Zhou W, Shao Z P, Ran R, Jin W Q, Xu N P. Chem. Commun., 2008, 44: 5791.
[38] Zhou W, Shao Z P, Ran R, Cai R. Electrochem. Commun., 2008, 10: 1647.
[39] Colomer M T, Steele B C H, Kilner J A. Solid State Ionics, 2003, 147: 41.
[40] Bae J M, Steele B C H. Solid State Ionics, 1998, 106: 247.
[41] Steele B C H, Bae J M. Solid State Ionics, 1998, 106: 255.
[42] Waller D, Lane J A, Kilner J A, Steele B C H. Mater. Lett., 1996, 27: 225.
[43] Waller D, Lane J A, Kilner J A, Steele B C H. Solid State Ionics, 1996, 86/88: 767.
[44] Kawada T, Masuda K, Suzuki J, Kaimai A, Kawamura K, Nigara Y, Mizusaki J, Yugami H, Arashi H, Sakai N, Yokokawa H. Solid State Ionics, 1999, 121: 271.
[45] Sase M, Ueno D, Yashiro K, Kaimai A, Kawada T, Mizusaki J. J. Phys. Chem. Solids, 2005, 66: 343.
[46] Bouwmeester H J M, Den Otter M W, Boukamp B A. J. Solid State Electrochem., 2004, 8: 599.
[47] De Souza R A, Kilner J A. Solid State Ionics, 1999, 126: 153.
[48] De Souza R A, Kilner J A. Solid State Ionics, 1998, 106: 175.
[49] Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M. Science, 2000, 288: 2031.
[50] Xia C R, Chen F L, Liu M L. Electrochem. Solid-State Lett., 2001, 4: A52.
[51] Xia C R, Liu M L. Solid State Ionics, 2001, 144: 249.
[52] Dusastre V, Kilner J A. Solid State Ionics, 1999, 126: 163.
[53] Shao Z P, Haile S M. Nature, 2004, 431: 170.
[54] Shao Z P, Haile S M, Ahn J, Ronney P D, Zhan Z L, Barnett S A. Nature, 2005, 435: 795.
[55] Knibbe R, Hauch A, Hjelm J, Ebbesen Sune D, Mogensen M. Durability of Solid Oxide Cells: Green, 2011, 1(2): 141.
[56] Chroneos A, Yildiz B. Energy Environ. Sci., 2011, 4: 2774.
[57] Shao Z P, Xiong G X, Tong J H, Dong H, Yang W S. Purif. Sep. Tech., 2001, 25: 419.
[58] Fisher C A J, Yoshiya M, Iwamoto Y, Ishii J, Asanuma M, Yabuta K. Solid State Ionics, 2007, 177: 3425.
[59] Suntivich J, May K J, Gasteiger H A, Goodenough J B, Yang S H. Science, 2011, 9: 1383.
[60] Naumovich E N, Kharton V V. Journal of Molecular Structure: Theochem, 2010, 946: 57.
[61] Li Q, Zhao H, Huo L, Sun L P, Cheng X L, Grenier J C. Electrochemistry Communications, 2007, 9: 1508.
[62] Boehm E, Bassat J M, Dordor P, Mauvy F, Grenier J C, Stevens Ph. Solid State Ionics, 2005, 176: 2717.
[63] Kilner J A, Shaw C K M. Solid State Ionics, 2002, 154/155: 523.
[64] Chroneos A, Parfitt D, Kilner J A, Grimes R W. J. Mater. Chem., 2010, 20: 266.
[65] Huang Y H, Dass R I, Xing Z L, Goodenough J B. Science, 2006, 312: 254.
[66] Maignan A, Martin C, Pelloquin D, Nguyen N, Raveau B. J. Solid State Chem., 1999, 142: 247.
[67] Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. J. Mater. Chem., 2007, 17: 2500.
[68] Burriel M, Pea-Martínez J, Chater R J, Fearn S, Berenov A V, Skinner S J, Kilner J A. Chem. Mater., 2012, 24: 613.
[69] Seymour I D, Tarancón A, Chroneos A, Parfitt D, Kilner J A, Grimes R W. Solid State Ionics, 2012, 216: 41.
[70] Parfitt D, Chroneos A, Tarancón A, Kilner J A. J. Mater. Chem., 2011, 21: 2183.
[71] Catlow C R A. Computer Modelling in Inorganic Crystallography, San Diego: Academic Press, 1997.
[72] Koch W, Holthausen M C. A Chemist's Guide to Density Functional Theory. Weinheim: Wiley-VCH, 2001.
[73] Buckingham R A. Proc. R. Soc. London Ser. A, 1938, 168: 264.
[74] Grimes R W, Busker G, McCoy M A, Chroneos A, Kilner J A, Chen S P. Ber. Bunsen-Ges., 1997, 101: 1204.
[75] Busker G, Chroneos A, Grimes R W, Chen I W. J. Am. Ceram. Soc., 1999, 82: 1553.
[76] Den Otter M W, van der Haar L M, Bouwmeester H J M. Solid State Ionics, 2000, 134: 259.
[77] Richter J, Holtappels P, Graule T, Nakamura T, Gauckler L J. Monatsh. Chem., 2009, 140: 985.
[78] Bogicevic A, Wolverton C. Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67: 024106.
[79] Kushima A, Yildiz B. J. Mater. Chem., 2010, 20: 4809.
[80] Laidler K, King C. J. Phys. Chem., 1983, 87: 2657.
[81] Bouwmeester H J M, Burggraaf A J. The CRC Handbook of the Solid State Electrochemistry (Gellings P J, Bouwmeester H J M, Eds.). Boca Raton: CRC Press, 1997.
[82] Ten Elshof J E, Lankhorst M H R, Bouwmeester H J M. J. Electrochem. Soc., 1997, 144(3): 1060.
[83] Wærnhus I. Doctoral Dissertation of Norwegian University of Science and Technology, 2003.
[84] Van der Haar L M, den Otter M W, Morskate M, Bouwmeester H J M, Verweij H. Journal of the Electrochemical Society, 2002, 149: J41.
[85] Wang S, Verma A, Yang Y L, Jacobsson A J, Abeles B. Solid State Ionics, 2001, 140: 125.
[86] Kharton V V, Viskup A P, Naumovich E N, Marques F M B. J. Mater. Chem., 1999, 9: 2623.
[87] Ganeshananthan R, Virkar A V. J. Electrochem. Soc., 2005, 152(8): A1620.
[88] Lee W Y, Han J W, Chen Y, Cai Z H, Yildiz B. J. Am. Chem. Soc., 2013, 135: 7909.
[89] Kubicek M, Cai Z H, Ma W, Yildiz B, Hutter H, Fleig J. J. Am. Chem. Soc., 2013, 7(4): 3276.
[90] 张文强(Zhang W Q), 于波(Yu B), 陈靖(Chen J), 徐景明( Xu J M). 化学进展(Progress in Chemistry), 2008, 20( 5) : 778.
[91] 王振(Wang Z), 于波(Yu B), 张文强(Zhang W Q), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2013, 25(7):1229.
[92] Stoots C M, O'Brien J E, Condie K G, Hartvigsen J J. Int. J. Hydrogen Energy, 2010, 35: 4861.

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[3] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[4] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[5] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[6] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[7] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[8] 张文锐, 张智慧, 高立国, 马廷丽. 双钙钛矿型电极材料在中低温固体氧化物燃料电池中的应用[J]. 化学进展, 2016, 28(6): 961-974.
[9] 郄佳, 李明, 刘利, 梁英华, 崔文权*. g-C3N4光催化材料的第一性原理研究[J]. 化学进展, 2016, 28(10): 1569-1577.
[10] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[11] 雷东升, 童慧敏, 张磊, 张星, 张胜利, 任罡. 胆固醇酯转移蛋白在胆固醇酯转移中的结构与功能[J]. 化学进展, 2014, 26(05): 879-888.
[12] 赵丽君, 雷鸣. 甲状腺结合前清蛋白的理论研究[J]. 化学进展, 2014, 26(01): 193-202.
[13] 刘张波, 刘蓓蓓, 夏长荣. 固体氧化物燃料电池的纳米阳极[J]. 化学进展, 2013, 25(11): 1821-1829.
[14] 李慧, 樊建芬, 宋学增, 刘东颜, 李睿, 陈素芳. 电场环境下纳米通道内水分子传输行为的MD模拟研究[J]. 化学进展, 2013, 25(10): 1642-1647.
[15] 常姗燕, 刘夫锋*. 三磷酸腺苷结合盒式转运体的分子模拟[J]. 化学进展, 2013, 25(07): 1208-1218.