English
新闻公告
More
化学进展 2022, Vol. 34 Issue (1): 1-130 DOI: 10.7536/PC211037   后一篇

• 邀请综述 •

聚集诱导发光

韩鹏博1, 徐赫1, 安众福2,*(), 蔡哲毅1, 蔡政旭3,*(), 巢晖4,*(), 陈彪5, 陈明6,*(), 陈禹4, 池振国5,6,*(), 代淑婷7, 丁丹8,*(), 董宇平3,*(), 高志远8, 管伟江9, 何自开10,*(), 胡晶晶11, 胡蓉1,*(), 胡毅雄12, 黄秋忆5, 康苗苗13, 李丹霞13, 李济森8, 李树珍14, 李文朗5, 李振15,16,*(), 林新霖4, 刘骅莹10, 刘佩颖13, 娄筱叮11,*(), 吕超9,*(), 马东阁1,*(), 欧翰林8, 欧阳娟1, 彭谦17,*(), 钱骏18,*(), 秦安军1,*(), 屈佳敏3, 石建兵3, 帅志刚19,*(), 孙立和1, 田锐9, 田文晶7,*(), 佟斌3, 汪辉亮14,*(), 王东13,*(), 王鹤2, 王涛5, 王晓2,20, 王誉澄21, 吴水珠1,*(), 夏帆11,*(), 谢育俊15, 熊凯4, 徐斌7, 闫东鹏14,*(), 杨海波12,*(), 杨清正22,*(), 杨志涌5, 袁丽珍11, 袁望章23,*(), 臧双全24,*(), 曾钫1, 曾嘉杰1, 曾卓1, 张国庆5,*(), 张晓燕8, 张学鹏5, 张艺5, 张宇凡8, 张志军13, 赵娟5,6, 赵征21,*(), 赵子豪23, 赵祖金1,*(), 唐本忠1,13,21,25,*()   

  1. 1 华南理工大学材料科学与工程学院 发光材料与器件国家重点实验室 聚集诱导发光中心 广东省分子聚集发光重点实验室 广州 510640
    2 南京工业大学先进材料研究院 南京 211816
    3 北京理工大学材料学院 结构可控先进功能材料与绿色应用北京市重点实验室 北京 100081
    4 中山大学化学学院 生物无机与合成化学教育部重点实验室 广州 510006
    5 中国科学技术大学合肥微尺度物质科学国家研究中心 合肥 230026
    6 暨南大学化学与材料学院 广州 510632
    7 吉林大学化学学院 超分子结构与材料国家重点实验室 长春 130012
    8 南开大学生命科学学院 药物化学与生物学国家重点实验室 生物活性材料教育部重点实验室 天津 300071
    9 北京化工大学化工资源有效利用国家重点实验室 北京 100029
    10 哈尔滨工业大学(深圳)理学院 深圳 518055
    11 中国地质大学(武汉)材料与化学学院 生物地质与环境地质国家重点实验室 武汉 430074
    12 华东师范大学化学与分子工程学院 上海市绿色化学与化工过程绿色化重点实验室 上海 200062
    13 深圳大学材料学院 AIE研究中心 深圳 518055
    14 北京师范大学化学学院 能量转换与存储材料北京市重点实验室 北京 100875
    15 天津大学分子聚集态科学研究院 天津 300192
    16 武汉大学化学与分子科学学院 武汉 430072
    17 中国科学院大学化学科学学院 北京 101804
    18 浙江大学光电科学与工程学院 现代光学仪器国家重点实验室 先进光子学国际研究中心 光及电磁波研究中心 杭州 310058
    19 清华大学化学系 北京 100084
    20 西北工业大学柔性电子研究院 生物医学材料与工程研究所 西安 710072
    21 香港中文大学(深圳)理工学院 深圳分子聚集体科学与工程研究院 深圳 518172
    22 北京师范大学化学学院 放射性药物教育部重点实验室 北京 100875
    23 上海交通大学化学化工学院 变革性分子前沿科学中心 上海市电气绝缘与热老化重点实验室 上海 200240
    24 郑州大学化学学院 绿色催化中心 郑州 450001
    25 香港科技大学化学系 香港
  • 收稿日期:2021-10-30 修回日期:2021-12-27 出版日期:2022-01-20 发布日期:2021-12-28
  • 通讯作者: 安众福, 蔡政旭, 巢晖, 陈明, 池振国, 丁丹, 董宇平, 何自开, 胡蓉, 李振, 娄筱叮, 吕超, 马东阁, 彭谦, 钱骏, 秦安军, 帅志刚, 田文晶, 汪辉亮, 王东, 吴水珠, 夏帆, 闫东鹏, 杨海波, 杨清正, 袁望章, 臧双全, 张国庆, 赵征, 赵祖金, 唐本忠
  • 基金资助:
    国家自然科学基金项目(21788102); 国家自然科学基金项目(21977126); 国家自然科学基金项目(21907112); 国家自然科学基金项目(21778079); 国家自然科学基金项目(51961160730); 国家自然科学基金项目(51873092); 国家自然科学基金项目(81921004); 国家自然科学基金项目(21975238); 国家自然科学基金项目(21974008); 国家自然科学基金项目(21838007); 国家自然科学基金项目(21804006); 国家自然科学基金项目(51733010); 国家自然科学基金项目(21875019); 国家自然科学基金项目(21975020); 国家自然科学基金项目(21975021); 国家自然科学基金项目(21975061); 国家自然科学基金项目(22090050); 国家自然科学基金项目(21974128); 国家自然科学基金项目(21874121); 国家自然科学基金项目(52003257); 国家自然科学基金项目(21973099); 国家自然科学基金项目(21905113); 国家自然科学基金项目(21835001); 国家自然科学基金项目(51773080); 国家自然科学基金项目(21674041); 国家自然科学基金项目(51903163); 国家自然科学基金项目(21801169); 国家自然科学基金项目(21875069); 国家自然科学基金项目(21625202); 国家自然科学基金项目(21971023); 国家自然科学基金项目(51822303); 国家自然科学基金项目(52073172); 国家自然科学基金项目(21574015); 国家自然科学基金项目(52003228); 国家自然科学基金项目(92061201); 国家自然科学基金项目(21825106); 国家自然科学基金项目(21771021); 国家自然科学基金项目(21822501); 国家自然科学基金项目(22061130206); 国家自然科学基金项目(61975172); 国家自然科学基金项目(82001874); 国家自然科学基金项目(51620105009); 广东省自然科学基金(2021B1515020102); 广东省自然科学基金(2020B1515020011); 广东省自然科学基金(2016A030312002); 国家重点研发计划中国-澳大利亚政府间国际科技创新合作项目(2017YFE0132200); 国家重点研发计划(2017YFA0303500); 广东省分子聚集发光重点实验室基金(2019B030301003); 深圳市自然科学基金(JCYJ20190808153415062); 中央高校基本科研专项资金(2020-KYY-511108-0007); 中国博士后科学基金(2019M653036); 中国科学技术大学启动经费(KY2340000139); 香港创新科技委员会(ITC-CNERC14S01)

Aggregation-Induced Emission

Pengbo Han1, He Xu1, Zhongfu An2(), Zheyi Cai1, Zhengxu Cai3(), Hui Chao4(), Biao Chen5, Ming Chen6(), Yu Chen4, Zhenguo Chi5,6*(), Shuting Dai7, Dan Ding8(), Yuping Dong3(), Zhiyuan Gao8, Weijiang Guan9, Zikai He10(), Jingjing Hu11, Rong Hu1(), Yixiong Hu12, Qiuyi Huang5, Miaomiao Kang13, Danxia Li13, Jisen Li8, Shuzhen Li14, Wenlang Li5, Zhen Li15,16(), Xinlin Lin4, Huaying Liu10, Peiying Liu13, Xiaoding Lou11(), Chao Lu9(), Dongge Ma1(), Hanlin Ou8, Juan Ouyang1, Qian Peng17(), Jun Qian18(), Anjun Qin1(), Jiamin Qu3, Jianbing Shi3, Zhigang Shuai19(), Lihe Sun1, Rui Tian9, Wenjing Tian7(), Bin Tong3, Huiliang Wang14(), Dong Wang13(), He Wang2, Tao Wang5, Xiao Wang2,20, Yucheng Wang21, Shuizhu Wu1(), Fan Xia11(), Yujun Xie15, Kai Xiong4, Bin Xu7, Dongpeng Yan14(), Haibo Yang12(), Qingzheng Yang22(), Zhiyong Yang5, Lizhen Yuan11, Wangzhang Yuan23(), Shuangquan Zang24(), Fang Zeng1, Jiajie Zeng1, Zhuo Zeng1, Guoqing Zhang5(), Xiaoyan Zhang8, Xuepeng Zhang5, Yi Zhang5, Yufan Zhang8, Zhijun Zhang13, Juan Zhao5,6, Zheng Zhao21(), Zihao Zhao23, Zujin Zhao1(), Ben Zhong Tang1,13,21,25()   

  1. 1 State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology,Guangzhou 510640, China
    2 Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University,Nanjing 211816, China
    3 Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology,Beijing 100081, China
    4 MOE Key Laboratory of Bioinorganic and Synthetic Chemistry,School of Chemistry, Sun Yat-Sen University,Guangzhou 510006, China
    5 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China,Hefei 230026, China
    6 College of Chemistry and Materials Science, Jinan University,Guangzhou 510632, China
    7 State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University,Changchun 130012
    8 State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University,Tianjin 300071, China
    9 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology,Beijing 100029, China
    10 School of Science, Harbin Institute of Technology,Shenzhen 518055, China
    11 State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
    12 Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
    13 Center for AIE Research, College of Materials Science and Engineering, Shenzhen University,Shenzhen 518055, China
    14 Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University,Beijing 100875, China
    15 Institute of Molecular Aggregation Science, Tianjin University,Tianjin 300192, China
    16 Department of Chemistry, Wuhan University,Wuhan 430072, China
    17 School of Chemistry Science, Chinese Academy of Sciences,Beijing 101804, China
    18 State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University,Hangzhou 310058, China
    19 Department of Chemistry, Tsinghua University,Beijing 100084, China
    20 Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University,Xi'an 710072, China
    21 Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong,Shenzhen 518172, China
    22 Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University,Beijing 100875, China
    23 School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University,Shanghai 200240, China
    24 Green Catalysis Center, College of Chemistry, Zhengzhou University,Zhengzhou 450001, China
    25 Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
  • Received:2021-10-30 Revised:2021-12-27 Online:2022-01-20 Published:2021-12-28
  • Contact: Zhongfu An, Zhengxu Cai, Hui Chao, Ming Chen, Zhenguo Chi, Dan Ding, Yuping Dong, Zikai He, Rong Hu, Zhen Li, Xiaoding Lou, Chao Lu, Dongge Ma, Qian Peng, Jun Qian, Anjun Qin, Zhigang Shuai, Wenjing Tian, Huiliang Wang, Dong Wang, Shuizhu Wu, Fan Xia, Dongpeng Yan, Haibo Yang, Qingzheng Yang, Wangzhang Yuan, Shuangquan Zang, Guoqing Zhang, Zheng Zhao, Zujin Zhao, Ben Zhong Tang
  • About author:
    † These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(21788102); National Natural Science Foundation of China(21977126); National Natural Science Foundation of China(21907112); National Natural Science Foundation of China(21778079); National Natural Science Foundation of China(51961160730); National Natural Science Foundation of China(51873092); National Natural Science Foundation of China(81921004); National Natural Science Foundation of China(21975238); National Natural Science Foundation of China(21974008); National Natural Science Foundation of China(21838007); National Natural Science Foundation of China(21804006); National Natural Science Foundation of China(51733010); National Natural Science Foundation of China(21875019); National Natural Science Foundation of China(21975020); National Natural Science Foundation of China(21975021); National Natural Science Foundation of China(21975061); National Natural Science Foundation of China(22090050); National Natural Science Foundation of China(21974128); National Natural Science Foundation of China(21874121); National Natural Science Foundation of China(52003257); National Natural Science Foundation of China(21973099); National Natural Science Foundation of China(21905113); National Natural Science Foundation of China(21835001); National Natural Science Foundation of China(51773080); National Natural Science Foundation of China(21674041); National Natural Science Foundation of China(51903163); National Natural Science Foundation of China(21801169); National Natural Science Foundation of China(21875069); National Natural Science Foundation of China(21625202); National Natural Science Foundation of China(21971023); National Natural Science Foundation of China(51822303); National Natural Science Foundation of China(52073172); National Natural Science Foundation of China(21574015); National Natural Science Foundation of China(52003228); National Natural Science Foundation of China(92061201); National Natural Science Foundation of China(21825106); National Natural Science Foundation of China(21771021); National Natural Science Foundation of China(21822501); National Natural Science Foundation of China(22061130206); National Natural Science Foundation of China(61975172); National Natural Science Foundation of China(82001874); National Natural Science Foundation of China(51620105009); Natural Science Foundation of Guangdong Province(2021B1515020102); Natural Science Foundation of Guangdong Province(2020B1515020011); Natural Science Foundation of Guangdong Province(2016A030312002); National Key R&D Program of China (Intergovernmental Cooperation Project)(2017YFE0132200); National Key R&D Program of China(2017YFA0303500); Natural Science Foundation of Guangdong Province(2019B030301003); Science and Technology Foundation of Shenzhen City(JCYJ20190808153415062); Fundamental Research Funds for the Central Universities(2020-KYY-511108-0007); China Postdoctoral Science Foundation(2019M653036); University of Science and Technology of China startup funds(KY2340000139); Innovation and Technology Commission of Hong Kong(ITC-CNERC14S01)

聚集诱导发光(AIE)是唐本忠院士于2001年提出的一个科学概念,是指一类在溶液中不发光或者发光微弱的分子聚集后发光显著增强的现象。高效固态发光的AIE材料有望从根本上解决有机发光材料面临的聚集导致发光猝灭难题,具有重大的实际应用价值。从分子内旋转受限到分子内运动受限,从聚集诱导发光到聚集体科学,AIE领域已经取得了许多原创性的成果。在本综述中,我们从AIE材料的分类、机理、概念衍生、性能、应用和挑战等方面讨论了AIE领域最近取得的显著进展。希望本综述能激发更多关于分子聚集体的研究,并推动材料、化学和生物医学等学科的进一步交叉融合和更大发展。

Aggregation-induced emission (AIE), conceptually coined by Prof. Ben Zhong Tang in 2001, refers to a unique photophysical phenomenon non- or weakly emissive luminogens in dilute solutions emit intensely upon aggregation. AIE can solve the aggregation-caused quenching problem that traditional fluorophores are suffering from and hold great technological values for practical applications. The past 20 years have witnessed the rapid development of AIE research, from the restriction of intramolecular rotations to restriction of intramolecular motions, and from AIE to aggregate science, and many original results have been achieved. In this review, we summarize the advances in the field of AIE and its related areas. We specifically discuss the recent progress in AIE area, including material classification, mechanism, concept derivation, property, applications, and challenges. It is hoped that this review will inspire more research into the molecular aggregate level and make significant advances in materials, chemistry and biological sciences.

Contents

1 Introduction

2 AIE systems

2.1 Small molecular AIEgens

2.2 AIE cocrystals

2.3 AIE polymers

2.4 Metal-complex AIEgens

3 Working mechanisms

3.1 J-Aggregate

3.2 Restriction of intramolecular motions (RIM)

3.3 Blockage of nonradiative decay

3.4 Aggregation-induced radiative decays

4 The research branches of AIE

4.1 Room-temperature phosphorescence

4.2 Nonconventional luminophores

5 Mechano-stimulated responsive AIE materials

5.1 Mechanochromic luminescent

5.2 Mechanoluminescence

5.3 Other stimuli responses

6 Technological applications

6.1 Microscale dispersion evaluation of organic-inorganic composites

6.2 Organic light-emitting diodes (OLEDs)

6.3 Biological fields

7 Conclusions and outlooks

()
图1 基于9,10-二苯乙烯基蒽衍生物的分子结构调控和聚集态调控
Fig. 1 Manipulation of molecular structure and aggregate structure of 9,10-distyrylanthracene derivatives
图2 部分基于DSA有机小分子、齐聚物以及聚合物的分子式
Fig. 2 Examples of small organic molecules, oligomers and polymers based on DSA derivatives
图3 (a) 蝴蝶型BDPVA单晶的荧光图像以及晶体中的两种分子构象[30]。(b) BDFVA的G相和B相晶体及对应的分子堆积[31]。(c) BDTVA晶体中分子的单轴取向以及光波导和偏振特性[34]
Fig. 3 (a) Fluorescence image of butterfly-like BDPVA single crystal and corresponding two conformational structures of BDPVA[30]. (b) Crystal images of G-phase and B-phase and corresponding molecular packing of BDFVA[31]. (c) The uniaxial orientation of the molecules in the BDTVA crystal and corresponding waveguide and polarization performance[34]
图4 (a) 压力刺激下BP2VA不同聚集态的堆积模式及发光颜色[37]。(b) 不对称质子化的BP4VA-1H和对称质子化的BP4VA-2H晶体的荧光图像以及分子堆积[45]。(c) DSA-2SP在紫外光和热的交替刺激下分子构型、荧光颜色的可逆改变以及防伪颜料和超分辨成像应用。(d) BP4VA-FIB共晶的多晶型以及多重外界刺激下晶体到晶体(SCSC)的相变以及发光颜色转变[49]
Fig. 4 (a) The Stacking modes and corresponding emission colors of different aggregation states of BP2VA under pressure stimulation[37]. (b) Fluorescence images of asymmetrically protonated BP4VA-1H and symmetrically protonated BP4VA-2H crystals and corresponding molecular packing in the crystals[45]. (c) DSA-2SP molecular configuration, reversible change of fluorescence color, anti-counterfeiting pigments and super-resolution imaging applications under alternating UV light and heat stimulation. (d) Polymorphs of BP4VA-FIB cocrystal and the crystal-to-crystal (SCSC) transition and corresponding changes of fluorescence color under multiple external stimulation[49]
图5 (a) TPB-AC基器件的电流效率-电压曲线,器件结构:Ⅰ: ITO/NPB (60 nm)/TPB-AC (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al; Ⅱ: ITO/NPB (40 nm)/TPB-AC (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al[55]。 插图: TPB-AC的化学结构。 (b) 优化器件的功率效率-外量子效率-亮度曲线(P-EQE-L)。器件结构:ITO/HAT-CN (5 nm)/TAPC (50 nm)/TCTA (5 nm)/TPB-AC (20 nm)/ETLs (40 nm)/LiF (1 nm)/Al (120 nm), Bphen和BCP是ETLs[56]
Fig. 5 (a) Current efficiency versus voltage plots of the TPB-AC based devices. Device configuration: Ⅰ: ITO/NPB (60 nm)/TPB-AC (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al; Ⅱ: ITO/NPB (40 nm)/TPB-AC (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al[55]. Insert: chemical structures of TPB-AC. (b) Power and external quantum efficiencies as a function of luminance of the resulting devices. Device configuration: ITO/HAT-CN (5 nm)/TAPC (50 nm)/TCTA (5 nm)/TPB-AC (20 nm)/ETLs (40 nm)/LiF (1 nm)/Al (120 nm), Bphen or BCP is chosen for ETLs[56]
图6 (a) 深蓝光AIEgens。 (b) CN-TPB-TPA的UV-vis光谱(THF溶液)和光致发光光谱(薄膜态)。(c) CN-TPB-TPA 30 nm薄膜在极化光下的角度依赖光谱(448 nm)。(d) 最优深蓝光器件的外量子效率-亮度曲线。(e) 最优混合白光器件的功率-外量子效率-亮度曲线[54]
Fig. 6 (a) Chemical structures of deep blue AIEgens. (b) UV-vis (THF solution) and photoluminescence (PL, films) spectra of CN-TPB-TPA. (c) Angle-dependent PL intensity of p-polarized light from the 30 nm-thick films at 448 nm for CN-TPB-TPA. (d) External quantum efficiencies as a function of luminance of the resultant deep blue OLEDs. (e) Power and external quantum efficiencies as a function of luminance of the resultant hybrid white OLEDs[54]
图7 (a) 蓝紫光AIEgens的设计原理和化学结构。(b) 最优非掺杂蓝紫光OLEDs的外量子效率-亮度曲线。插图:器件B1的发光。(c) 器件B1~B3在5 V下的电致发光光谱。(d) 基于荧光材料制备的CIEy<0.046的蓝紫光OLEDs的最大EQE值。器件B1: EBL:mCP和EML:TPBCzC1; B2: EBL:TCTA和EML:TPBCzC2; B3: EBL:TCTA和EML:TPBCzC3[52]
Fig. 7 (a) Design principle, chemical structures of violet-blue AIEgens. (b) External quantum efficiencies as a function of luminance of the resultant non-doped violet-blue OLEDs with different EBLs and emitters. Inset: the emission of device B1. (c) Electroluminescence (EL) spectra of B1-B3 at 5.0 V. (d) Maximum EQE values of the representative violet-blue OLEDs with CIEy smaller than 0.046 based on fluorescent materials. Device B1: EBL:mCP and EML:TPBCzC1; B2: EBL:TCTA and EML:TPBCzC2; B3: EBL:TCTA and EML:TPBCzC3[52]
图8 TPP的合成路径[57]
Fig. 8 The synthesis route of TPP[57]
图9 TPP衍生物的合成路径[57]
Fig. 9 The synthesis route of TPP derivatives[57]
图10 三苯胺单元取代的TPP衍生物的合成[58]
Fig. 10 The synthesis route of TPP derivatives substituted by triphenylamine units[58]
图11 TPP-PDCV用于检测H2S的荧光探针[59]
Fig. 11 TPP-PDCV is a fluorescent probe for detecting H2S[59]
图12 TPP衍生物的异构效应对其性质的影响[60]
Fig. 12 Schematic illustration of functionalities tuned by the isomerism effect of AIEgens[60]
图13 基于TPP的AIE聚合物[61]
Fig. 13 AIE polymer based on TPP[61]
图14 TPP-cage和DPP的主客体相互作用及复合物白光[62]
Fig. 14 The host-guest interaction between TPP-cage and DPP and the white light of the complex[62]
图15 基于TPP的Eu3+-MOF的性质和功能[63]
Fig. 15 The properties and functions of Eu3+-MOF based on TPP[63]
图16 化合物MAP1~23的结构式
Fig. 16 Structural formulas of compounds MAP1~23
图17 化合物MAPP1~6的结构式
Fig. 17 Structural formulas of compounds MAPP1~6
图18 4T1荷瘤小鼠的体内成像和肿瘤治疗能力。(a) 荷瘤小鼠注射MAP4-FE NPs后的肿瘤部位PA图像(1.5 mg·mL-1, 200 μL, n=3, 660 nm, 0.5 W·cm-2, 10 min,300 J·cm-2)。(b) (a)中肿瘤部位归一化PA强度曲线随时间的对应关系。(c) 在激光辐照下肿瘤控制组和注射MAP4-FE NPs组肿瘤检测的温度变化(9 h后,老鼠用激光辐照(660 nm, 0.5 W·cm-2, 10 min,300 J·cm-2)。(d) 将4T1荷瘤小鼠分为4组(对照组不给予任何治疗,一组仅给予0.5 W·cm-2激光照射,一组仅给予MAP4-FE NPs,最后一组给予MAP4-FE NPs和0.5 W·cm-2激光照射)。各组治疗后肿瘤体积的变化,插入物显示治疗14天后的肿瘤图像(每两天记录小鼠肿瘤体积和体重)。(e) 不同组肿瘤小鼠的照片。(f) 各组治疗后肿瘤组织的H&E和TUNEL染色分析[81]
Fig. 18 In vivo imaging and tumor therapy capacity of 4T1 tumor-bearing mice. (a) PA images of the tumor sites from a representative tumor-bearing mouse post injection of MAP4-FE NPs (1.5 mg·mL-1, 200 μL, n=3, 660 nm, 0.5 W·cm-2, 10 min, 300 J·cm-2). (b) Correspondence to the normalized PA intensity curve of the tumor sites in (a) over time. 4T1 tumor-bearing mice were divided into four groups (control group without any treatment, 0.5 W·cm-2 laser irradiation only, MAP4-FE NPs only, and MAP4-FE NPs with 300 J·cm-2 laser). (c) Temperature changes in tumors under laser irradiation after administration of Control or MAP4-FE NPs (nine hours after the injection, the mice were irradiated with a laser (660 nm, 0.5 W·cm-2, 10 min, 300 J·cm-2), and the temperature of the tumor was detected by a thermal imager). (d) The relative tumor volume changes after various treatments, and the inset shows the tumor images after 14 days of treatment (the tumor volumes and body weights of the mice were recorded every two days). (e) Photos of tumor-bearing mice from different groups. (f) H&E and TUNEL staining analyses of tumor tissues after various treatments (color online)[81]
图19 (a) MAPP7的衍生物。(b) 以0.5 ℃·min-1的降温速率将MAPP7-C6降温至103 ℃和MAPP7-C12降温至87 ℃时观察到的液晶织构,左下角的插图是液晶相在紫外灯下的照片。(c~e) MAPP7-C6和MAPP7-C12液晶薄膜的2D GIWAXS图;MAPP7-C6和MAPP7-C12的2D GIWAXS散射图样在平行和垂直方向的信号强度。(f~h) TPPP-C6和TPPP-C12在液晶相的分子排列模型[82]
Fig. 19 (a) Derivatives of MAPP7. (b) The liquid crystal texture observed when MAPP7-C6 is cooled to 103 ℃ and MAPP7-C12 is cooled to 87 ℃ at a cooling rate of 0.5 ℃·min-1. The illustration in the lower left corner is a photo of the liquid crystal phase under ultraviolet light. (c~e) 2D GIWAXS images of MAPP7-C6 and MAPP7-C12 liquid crystal films; signal intensity of 2D GIWAXS scattering patterns of MAPP7-C6 and MAPP7-C12 in parallel and vertical directions. (f~h) Molecular arrangement model of TPPP-C6 and TPPP-C12 in liquid crystal phase[82]
图20 (a) TPPP-NO2在365 nm紫外灯下从30 ℃加热到210 ℃过程中的发光照片。(b) TPPP-NO2从20 ℃加热到210 ℃过程中的变温荧光光谱图。(c, d) (b) 中荧光发射波长和荧光强度的变化情况,I0: 20 ℃时TPPP-NO2的荧光强度[82]
Fig. 20 (a) Photos of TPPP-NO2 during the heating process from 30 to 210 ℃ under 365 nm UV light; (b) temperature-dependent fluorescence spectra during the heating process from 20 to 210 ℃; (c) the corresponding PL wavelength maximum shift behavior and (d) PL intensity change behavior of (b), I0:Fluorescence intensity of TPPP-NO2 at 20 ℃[82]
图21 (1-萘乙烯)吡啶和三种共组装单元:1,4-二碘四氟苯、4-溴-2,3,5,6-四氟苯甲酸、4-苯甲酰基苯甲酸的结构式[100]
Fig. 21 Chemical structures of the chromophore molecule 4-(1-naphthylvinyl)pyridine and three co-formers: 1,4-diiodotetrafluorobenzene, 4-bromotetrafluorobenzoic acid, and 4-benzoylbenzoic acid[100]
图22 (a) 9-乙酰基蒽-1,2,4,5-四氰基苯共晶(AE)在不同水含量的丙酮溶液下的荧光发射光谱;(b) AE共晶在丙酮-水溶剂对中荧光强度与水体积分数关系图,插图是在365 nm紫外灯下拍摄样品聚集诱导现象照片[104]
Fig. 22 (a) PL spectra of AE in acetone-H2O mixtures with different water fractions (fw); (b) plots of fluorescence intensity in acetone-H2O solutions, the inset in (b): photos of acetone-H2O mixtures (fw=0-95%) taken under illumination of a 365 nm UV lamp[104]
图23 (a) 用于负载DOX的超分子组装合成路线;(b) 具有AIE和FRET效应的pH/氧化还原响应超分子组装的药物递送和释放示意图[108]
Fig. 23 (a) Synthesis route of supramolecular assembly used to load DOX; (b) schematic illustration of a pH/redox dual-responsive supramolecular assembly with the AIE and FRET effects for drug delivery and release[108]
图24 A549细胞的共聚焦显微镜图:(a) 405 nm激发下的TPE 2SP/CB[8]/HA-CD ([TPE-2SP]=0.005×10-3 m)图;(b) 线粒体绿色荧光探针和(a, b)的合并图(c);A549细胞的双光子显微镜图:(d) 840 nm激发下的TPE 2SP/CB[8]/HA-CD ([TPE-2SP]=0.005×10-3 m)图;(e) 线粒体绿色荧光探针和(d, e)的合并图(f)[110]
Fig. 24 CLSM images of A549 cells incubated with (a) TPE 2SP/CB[8]/HA-CD ([TPE-2SP]=0.005×10-3 m) excited at 405 nm. (b) Mito-Tracker Green and (c) the merged image of (a, b); two-photon microscopic images of A549 cells incubated with (d) TPE-2SP/CB[8]/HA-CD ([TPE-2SP]=0.005×10-3 m) excited at 840 nm. (e) Mito-Tracker Green and (f) the merged image of (d, e)[110]
图25 (a) 组装单元4-双(1-氰基-2-苯乙烯基)苯(A)和2,3,5,6-四氟-4-羟基(C)的分子结构式;(b) 共晶A-2C的压致变色图以及光谱图;(c) 共晶A-2C在酸碱蒸气熏蒸前后的光谱图[114]
Fig. 25 (a) Molecular structures of co-crystal components: 4-bis(1-cyano-2-phenylethenyl)benzene (A) and 2,3,5,6-tetrafluoro-4-hydroxy-benzoic acid (C); (b) photographs and fluorescence spectra of the A-2C cocrystal as gradually increasing hydrostatic pressures; (c) fluorescence spectra for A-2C sample before (black lines) and after (red lines) fuming with HCl vapor (left) and NH3 vapor (right), respectively[114]
图26 活细胞选择性成像:(a) P(TPE-2EG)结构式;(b) 用双氧水处理后的HeLa细胞与P(TPE-2EG), M(TPE-2EG)及calcein AM共培养之后的CLSM成像图;(c) P(TPE-2EG)和calcein AM的细胞毒性实验[125]
Fig. 26 Selective viable labeling. (a) Chemical structure of P(TPE-2EG); (b) CLSM images of HeLa cells incubated with P(TPE-2EG), M(TPE-2EG) and calcein AM after treatment with H2O2, followed by staining with Annexin V-FITC and PI; (c) Cell viability of HeLa cells incubated with different concentrations of P(TPE-2EG) and calcein AM[125]
图27 CO2响应性:(a) 嵌段聚合物对于CO2及N2响应示意图;(b) 细胞内CO2响应成像示意图;(c) 不同细胞系与嵌段聚合物的CLSM成像图[133]
Fig. 27 CO2 responsiveness. (a) Schematic illustration of the response process of block polymer with CO2 and N2; (b) Schematic illustration of the mechanism for cell imaging; (c) CLSM images of 16HBE human bronchial epithelial cells, GES-1 human gastric mucosa epithelial cells, HeLa human cervical cancer cells, 5-8F nasopharyngeal cancer cells, and CNE1 nasopharyngeal cancer cells after incubation with the block polymer[133]
图28 以细菌为模板构建聚合物。(a) 模板聚合物合成路线;(b) 分别以BAK085和SGH10为模板构建模板聚合物示意图及对应的成像结果;(c) 以BAK085和SGH10为对应模板聚合物的平板杀菌实验结果[138]
Fig. 28 Bacterium-templated polymer; (a) Synthetic route to templated polymer; (b) Schematic illustration of the templated polymer grown in a suspension of K. pneumoniae (BAK085 and SGH10), and the templated polymers were collected for BAK085 and SGH10 CLSM imaging; (c) Plate photographs of the colonies formed of BAK085 and SGH10 on LB agar in the absence or presence of white light irradiation after incubation with templated polymers or mismatched polymers[138]
图29 (a) 基于炔胺点击聚合的细胞内聚合示意图[141];(b) 细胞内聚合。H2O2存在情况下过氧物酶催化的TT聚合;基于TT的细胞内聚合用于选择性成像及抑制示意图[142]
Fig. 29 (a) Illustration of the intracellular spontaneous amino-yne click polymerization, and synthetic route to poly(β-aminoacrylate) (color online)[141]; (b) Intracellular polymerization. Peroxidase-catalyzed oligomerization of TT in the presence of H2O2; selective imaging and inhibition of inflammatory cells after incubation of cocultured cells with TT[142]
图30 具有AIE性能的顺铂前药聚合物用于药物释放及联合治疗[145]
Fig. 30 Schematic illustration of a DOX-loaded light-activatable Pt(Ⅳ) prodrug and AIEgen TPE copolymer nanoparticle system for dual-drug monitoring and combination therapy[145]
图31 配合物56~59的结构
Fig. 31 The chemical structures of complex 56-59
图32 配合物60~68的结构
Fig. 32 The chemical structures of complex 60~68
图33 配合物69~80的结构
Fig. 33 The chemical structures of complex 69~80
图34 配合物81~90结构
Fig. 34 The chemical structures of complex 81~90
图35 配合物91~97结构
Fig. 35 The chemical structures of complex 91~97
图36 配合物98~100的结构[157,158,185]
Fig. 36 The chemical structures of complex 98~100[157,158,185]
图37 (a) 溶剂诱导AIE性质的示意图。(b) Au(Ⅰ)-硫醇聚合物在不同比例水和乙醇混合溶剂的荧光照片。Au(Ⅰ)-硫醇聚合物在不同体积分数的乙醇中紫外-可见吸收光谱(c)和发射光谱(d)[196]
Fig. 37 (a) Schematic of solvent-induced AIE properties of oligomeric gold-thiolate complexes. (b) Photos of gold-thiolate complexes in mixed solvents with different fractions of water under visible and UV light. (c) UV-vis absorption and (d) emission spectra of gold-thiolate complexes in mixed solvents with different fractions of ethanol[196]
图38 (a) 团簇的紫外-可见吸收光谱和质谱图。(b) 团簇在不同体积分数乙醇中的发射光谱和荧光照片[197]
Fig. 38 (a) Electrospray ionization mass spectrometry spectra and total structure of the as-purified Au nanoclusters. (b) Emission spectra and photos under UV light of the clusters in the mixed solvent with different ethanol fractions[197]
图39 (a) 铜纳米团簇溶液的发射光谱(pH值为2.66);(b) pH值对铜纳米团簇发射强度的影响;(c) 铜纳米团簇在pH值3.1和7.1交替条件下循环切换时的发射强度[199]
Fig. 39 (a) Emission spectra of the aqueous copper cluster aggregates (pH 2.66); (b) Plots of emission intensity of the copper clusters against pH values; (c) Emission intensity upon the cyclic switching of the copper clusters under alternating conditions of pH values of 3.1 and 7.1[199]
图40 (a) 溶剂诱导AIE性质的示意图;(b) 团簇在不同比例四氢呋喃和异丙醇溶剂体系中的荧光照片[200]
Fig. 40 (a) Schematic of solvent-induced AIE properties of the Ag3 complex; (b) Photos of Ag3 complex in mixed solvents with different fractions of isopropanol under visible and UV light[200]
图41 (a) Au4Ag13(DPPM)3(SR)9的晶体结构;(b) 团簇在晶态、溶液态以及非晶态条件下的发射光谱。插图为紫外光下团簇晶体的照片[201]
Fig. 41 (a) The structure of one pair of enantiomers; (b) Emission spectra of the crystalline, solution and amorphous states. Insets: luminescent photograph of the single crystals[201]
图42 (a) 三苯基膦配体解离-聚集过程中团簇发光、量子产率的变化;(b) 加入不同摩尔比的三苯基膦该团簇溶液的荧光照片[202]
Fig. 42 (a) Enhancement of emission intensity and quantum yield induced by the restriction of the ligand dissociation-aggregation process; (b) Photos of Ag29(BDT)12(PPh3)4 upon the addition of different molar ratios of the ligand in solution under UV light[202]
图43 (a) 铜纳米团簇的示意图及相应的透射电子显微镜图[203];(b) 铜纳米团簇自组装纳米片的高分辨透射电子显微镜图;(c) 纳米片的卡通图像;(d) 纳米片的激发态弛豫动力学示意图[204]
Fig. 43 (a) Schematic diagram and corresponding TEM images of copper cluster assemblies;(b) high magnification TEM images of copper clusters self-assembly nanosheets;(c) cartoon images of the nanosheets;(d) schematic diagram of the excited state relaxation dynamics of the copper clusters self-assembly nanosheets
图44 (NH4)9[Ag9(mba)9]纳米团簇的合成示意图以及(NH4)9[Ag9(mba)9]团簇溶液和有机凝胶的荧光照片[206]
Fig. 44 Illustration of the synthesis of (NH4)9[Ag9(mba)9] clusters and photos of (NH4)9[Ag9(mba)9] clusters in solution (top) and organogel (bottom) under UV light[206]
图45 (a) 手性三核铜簇的合成路线及结构;(b) 手性团簇在不同比例二甲基亚砜和水体系中的发射光谱;(c) 手性团簇在605 nm波长处的发射强度与不同比例溶剂体系的关系[207]
Fig. 45 (a) Synthetic route and structure of copper clusters;(b) emission spectra of copper clusters in mixed solvents with different fractions of water;(c) emission intensity of copper clusters at 605 nm as a function of water fraction[207]
图46 手性炔铜簇的合成、聚集及手性光学活性示意图[208]
Fig. 46 Illustration for formation, aggregation, and chiroptical properties of the chiral copper clusters[208]
图47 L-[Au4(C9H8S2N)4] (a)和(b) L-{[Au4(C6H10S2N)4]3}n (b)的堆积结构。插图为紫外灯下L-[Au4(C9H8S2N)4]晶体和L-{[Au4(C6H10S2N)4]3}n的数码照片。(c) 可见光和紫外光下L-{[Au4(C6H10S2N)4]3}n在不同体积分数水中的数码照片[209]
Fig. 47 (a) Stacking structure of (a) L-[Au4(C9H8S2N)4] and (b) L-{[Au4(C6H10S2N)4]3}n. Insets: luminescent photograph of the single crystals. (c) Photos of L-{[Au4(C6H10S2N)4]3}n in mixed solvents with different fractions of water under visible and UV light[209]
Fig. 48 L-[Au4(C9H8S2N)4] (a)和L-{[Au4(C6H10S2N)4]3}n (b)的堆积结构[213] Stacking structures of (a) L-[Au4(C9H8S2N)4]和 (b) L-{[Au4(C6H10S2N)4]3 } n [ 213 ]
图49 (a) 金属有机大环101和肝素钠可能的结合模式示意图;(b) 金属有机大环101中加入肝素钠的荧光发射光谱; (c) 金属有机大环101肝素钠复合物的AFM图[244]
Fig. 49 (a) Schematic showing the possible binding mode of metallacycle 101 and heparin; (b) emission spectral changes of metallacycle 101 with the addition of heparin; (c) AFM images of a mixture of metallacycle 101 and heparin[244]
图50 金属有机大环102和TMV通过多重静电相互作用形成金属有机生物杂化材料的示意图[245]
Fig. 50 Schematic representation of the formation of a metal-organic biohybrid material metallacycle 102/TMV via multiple electrostatic interactions[245]
图51 通过配位导向自组装构建不同形状和尺寸的多四苯基乙烯基金属有机大环109~113[246]
Fig. 51 The construction of multi-TPE metallacycles 109~113 with different shapes and sizes via coordination-driven self-assembly[246]
图52 (a) 三聚体、四聚体、五聚体和六聚体的混合物单层大环117;(b) 双层六聚体118;(c) 三层七聚体119[247]
Fig. 52 The formation of (a) a mixture of trimer, tetramer, pentamer, and hexamer-macrocycles 117, (b) double-layered hexamer 118, and (c) triple-layered heptamer 119[247]
图53 (a) 金属有机大环123和124的自组装示意图;(b~f) 基于金属大环123(30 wt%)的全息图像(白光照射下以不同角度观察)[248]
Fig. 53 (a) Schematic representation of the self-assembly of metallacycles 123 and 124; (b~f) holographic image based on metallacycle 123 (30 wt%) that was viewed at different angles upon white light illumination[248]
图54 (a) 金属有机大环127的自组装示意图;(b) 基于金属有机大环127的光捕获体系的构建和光催化过程示意图[249]
Fig. 54 (a) Self-assembly of metallacycle 127; (b) illustration of the construction of the metallacycle 127-based LHS and the process of light catalysis[249]
图55 (a) 金属有机笼132和133的自组装示意图;(b) 金属有机笼133在不同溶剂中的荧光照片[250]
Fig. 55 (a) Self-assembly of metallacages 132 and 133; (b) photographs of metallacage 133 in different solvents[250]
图56 基于金属有机笼136的LHS的构建和光催化过程示意图[251]
Fig. 56 Illustration of the construction of the metallacage 136-based LHS and the process of light catalysis[251]
图57 (a) 金属有机笼138的自组装示意图;(b) 金属有机笼138中加入不同阴离子的荧光发射光谱;(c) 金属有机笼138中加入不同芳香化合物的荧光发射光谱[252]
Fig. 57 (a) Self-assembly of metallacage 138;(b) emission spectral changes of metallacage 138 with the addition of different anions;(c) emission spectral changes of metallacage 138 with the addition of different aromatic compounds[252]
图58 (a) Zr6L3型金属有机笼141和142的自组装;(b)金属有机笼141和(c)金属有机笼142晶体的荧光图[253]
Fig. 58 (a) Self-assembly of Zr6L3 metallacages 141 or 142;fluorescence images of (b) metallacage 141 crystals and(c) metallacage 142 crystals[253]
图59 (a) 外和内官能团化M12L24型金属有机笼145和146的自组装示意图; 配体143、144和金属有机笼145、146的(b)吸收和(c)荧光光谱[254]
Fig. 59 (a) Self-assembly of exo- and endo-functionalized M12L24 metallacages 145 and 146; (b) Absorption and (c) fluorescence spectra of the ligands 143, 144 and metallacages 145, 146[254]
图60 (a) MOF 148 的自组装示意图[255];(b) MOF 148(正方形)和配体147(TPE,圆形)的温度依赖性荧光衰减曲线。加热和冷却循环分别用实心和空心符号表示;(c) MOF 148 在 100 ℃下暴露于各种分析物的归一化发射光谱[256]
Fig. 60 (a) Self-assembly of MOF 148[255]; (b) Temperature-dependent fluorescence decay profiles of MOF 148 (squares) and ligand 147 (TPE, circles). Heating and cooling cycles are represented as filled and open symbols, respectively; (c) Normalized emission spectra of MOF 148 exposed to various analytes at 100 ℃[256]
图61 (a) MOF 150的自组装示意图;(b) MOF 150和配体149的固态吸收和发射光谱;(c) MOF 150和配体149在紫外光下的照片[257]
Fig. 61 (a) Self-assembly of MOF 150;(b) solid-state absorption and emission spectra of MOF 150 and ligand 149;(c) photos of MOF 150 and ligand 149 are shown under UV light[257]
图62 (a) MOF 151的自组装示意图;(b) 151-W和151-Y在室光(左)和紫外光(右)下的颜色;(c) MOF 151的可逆压致荧光变色行为[258]
Fig. 62 (a) Self-assembly of MOF 151;(b) the color of 151-W and 151-Y under room light (left) and UV light (right); (c) reversible piezofluorochromic behavior of MOF 151[258]
图63 有机分子激发态的能量耗散示意图
Fig. 63 Schematic graph of the decay pathways from an excited state (ES) to the ground state (GS)
图64 H-聚集体和J-聚集体的Kasha的Frenkel激子(FE)模型和FE激子与电荷转移(CT)激子的耦合模型[273]
Fig. 64 Schematic Kasha's Frenkel exciton (FE) model and FE-CT coupling model of H- and J-aggregate dimers. |FES> FES and |FEAS> FEAS are the dipole-allowed symmetric FE and dipole-forbidden antisymmetric FE, respectively. The FE-CT coupling model is established when the electron and hole transfer integrals te and th meet te ? th for H-aggregate and te ≈-th for J-aggregate, respectively[273]
图65 振动弛豫诱导的无辐射跃迁受阻机理[261]
Fig. 65 Blockage of nonradiative decay induced by vibration relaxation[261]
图66 贡献较大的无辐射通道所涉及的振动模式[261]
Fig. 66 Illustrations of vibrational modes involved in the NR-VR channels with dominant contribution[261]
图67 锥形交叉点和光异构化引起的无辐射跃迁受阻机理[298]
Fig. 67 Removal of nonradiative decays caused by conical intersections and photoisomerization[298]
图68 聚集诱导辐射跃迁机理
Fig. 68 Aggregation-induced radiative decays
图69 聚集诱导发光体系中从溶液(周围)到聚集(中心)的势能面变化特征
Fig. 69 The feature of the change of potential energy surfaces from solution to aggregate
图70 基于H-聚集体的单晶模型及超长有机室温磷光的机理[314]
Fig. 70 Single-crystal structure of molecule with the H-aggregates (up) and proposed mechanism for ultralong organic temperature phosphorescence (bottom)[314]
图71 多孔有机框架的化学结构式和堆积模型[315⇓~317]
Fig. 71 Molecular structures and models of porous organic frameworks[315⇓~317]
图72 (a) 超分子框架设计概念示意图[318]。(b) 具有刚性结构的超长有机室温磷光材料体系[319]
Fig. 72 (a) Schematic representation of design concept and supramolecular architecture[318]. (b) Representation of rigid material architectures for ultralong organic phosphorescence[319]
图73 (a) 离子聚合物的超长有机室温磷光示意图[320]。(b) 多组分共聚物变色超长有机磷光示意图[322]
Fig. 73 (a) Schematic illustration for RTP in ionic polymers[320]. (b) Schematic illustration of the color-tunable RTP multicomponent copolymer[322]
图74 雅布隆斯基图[7]
Fig. 74 Jablonski figure[7]
图75 (a) 极化双氢键分子的结构式与(b) 衰减曲线,插图为三个分子的磷光寿命增加的比例[323]
Fig. 75 (a) The molecular structures and (b) lifetimes of the three molecules with dihydrogen bonding. The inset shows the percentage increase in the lifetime of the phosphorescent molecules[323]
图76 (a) 2FPB、23FPB、24FPB和234FPB的化学结构。(b) 在晶体下调控超长磷光分子的分子间和分子内相互作用的示意图[324]
Fig. 76 (a) Chemical structures of 2FPB, 23FPB, 24FPB, and 234FPB. (b) Schematic illustration of intermolecular and intramolecular interactions for manipulating RTP[324]
图77 纯有机RTP性能的理论模型。(a) 有机发光体的Jablonski图。(b) 磷光量子产率、ISC量子产率和磷光寿命的方程。(c) ISC和分子轨道杂交的El-Sayed规则的示意图,用于调节磷光衰减速率的最低三重态。通常,持久的有机磷光是由具有纯3(π, π*)构型的T1极慢的辐射衰减率引起的[325]
Fig. 77 Theoretical models for understanding the performance of pure organic RTP.(a) A Jablonski diagram of organic luminophores. (b) Equations for phosphorescence quantum yield, ISC quantum yield, and phosphorescence lifetime. (c) Schematic representation of the El-Sayed rule for ISC and molecular-orbital hybridization of the lowest triplet states for tuning the rate of phosphorescence decay. Generally, persistent organic phosphorescence results from an extremely slow radiative decay rate of T1 with a pure3(π, π*) configuration[325]
图78 开发单分子白光RTP体系的策略和实例。(a) 双磷光发射的Jablonski图。(b) ClBDBT的照片图案。使用ClBDBT粉末绘图案。白光是在激发源打开时拍照所得,黄灯是在激发源关闭时所得。(c) 室温磷光体的分子结构[326]
Fig. 78 Strategy and example to develop single molecule white light-emitting RTP system. (a) Jablonski diagram for dual phosphorescent emission. (b) Photo-pattern of ClBDBT. A lamp was drawn using powder of ClBDBT. The white lamp was taken when excitation source is on, the yellow lamp was taken when excitation source is off. (c) Molecular structures of room temperature phosphors studied here[326]
图79 MCBAs的化学结构、室温磷光和单晶的分子构型[327]
Fig. 79 Chemical structure, room-temperature phosphorescence, and molecular geometry in single crystals of MCBAs[327]
图80 通过分子内TTET过程实现高效OPRTP的策略。溴二苯并呋喃取代咔唑中激发态衰变途径的表示、寿命和晶态效率[328]
Fig. 80 Strategy to achieve efficient OPRTP by intramolecular TTET process. Representation of the excited-state decay pathways in bromodibenzofuransubstituted carbazole, lifetime, and efficiency in the crystalline state[328]
图81 (a) 通过引入d-pπ键延长磷光寿命。(b) 引入d-pπ键前后磷光分子寿命变化[329]
Fig. 81 (a) Illustration of the phosphorescence lifetime enhancement by introducing d-pπ bonds. (b) The change of phosphorescent lifetimes after the introduction of d-pπ bonds[329]
图82 (a) 化合物p-BrTCz、m-BrTCz、o-BrTCz的分子结构及磷光效率[330]。(b) 化合物PDCz和PDBCz的分子结构及磷光效率[331]。(c) 化合物p-1、m-1、o-1的分子结构及磷光效率、寿命[332]
Fig. 82 (a) Molecular structures and phosphorescence quantum yields of the compounds p-BrTCz, m-BrTCz, and o-BrTCz[330]. (b) Molecular structures and phosphorescence quantum yields of the compounds PDCz and PDBCz[331]. (c) Molecular structures, phosphorescence yield, and lifetimes of the compounds p-1, m-1, and o-1[332].
图83 电荷转移态介导系间窜跃和增强萘酰亚胺室温磷光示意图[313]
Fig. 83 Schematic illustration of enhancing intersystem crossing and RTP in 1,8-naphthalimide derivatives via charge-transfer mediation[313]
图84 典型的具有聚集诱导室温磷光性质的“电荷给体(D)-sp3连接子-电荷受体(A)”分子结构[335⇓⇓~338]
Fig. 84 Representative “donor (D)-sp3 linker-acceptor (A)” molecular structure showing aggregation-induced RTP[335⇓⇓~338]
图85 多彩的超长有机磷光材料体系。(a) 基于H-型聚集体结构的多彩超长磷光分子及其光物理性质[312]。(b) 咔唑和亚氨基二苄基的分子结构及光致发光和磷光光谱[314]。(c) 离子晶体的分子结构及光致发光和长余辉图片[319]
Fig. 85 Colorful ultralong organic phosphorescent material system. (a) Colorful ultralong phosphorescent molecules based on H-type aggregate structure and their photophysical properties[312]. (b) The molecular structures and photoluminescence and phosphorescence spectra of carbazole and iminodibenzyl[314]. (c) The molecular structures and photoluminescence and long afterglow pictures of ionic crystals[319]
图86 基于不同发光中心的单组分多彩超长有机磷光。(a) 2,4,6-三甲氧基-1,3,5-三嗪(TMOT)粉末的激发发射磷光光谱。插图:TMOT粉末在不同激发下的磷光光谱。(b) 激发波长改变导致的磷光CIE坐标变化[338]。插图:TMOT在不同激发下的余辉照片。(c) 海因分子的磷光激发发射光谱。(d) 海因在不同激发下的磷光CIE坐标变化及相关照片[339]
Fig. 86 Single component colorful RTP materials. (a) Excitation-phosphorescence mapping of 2,4,6-trimethoxy-1,3,5-triazine (TMOT) under ambient conditions. Inset shows the phosphorescence spectra of TMOT following different excitations. (b) The recorded CIE coordinate by varying the excitation. The inset photographs show the relative afterglow photographs of the TMOT powder[338]. (c) Excitation-phosphorescence mapping of glycolylurea. (d) The change of CIE coordinate with the variation of excitation wavelength[339]
图87 (a) PSSNa[320]和(b) PVP-S[321]在77 K下不同波长激发下的磷光光谱和照片。(c) PDNA薄膜的磷光发射与激发映射图。(d) PDNA薄膜在不同激发波长下的磷光颜色变化[322]
Fig. 87 Excitation dependent phosphorescence spectra and photographs of (a) PSSNa[320] and (b) PVP-S[321] at 77 K. (c) Excitation-phosphorescence mapping of PDNA film. (d) CIE chromaticity diagram and phosphorescence photographs of PDNA with varied excitation[322]
图88 (a) 高效有机磷光闪烁体的分子结构。(b) X射线激发的有机磷光闪烁体的发光机理示意图[340]
Fig. 88 (a) Molecular structures of efficient organic phosphorescent scintillators. (b) Schematic diagram of the emission mechanism of X-ray excited organic phosphorescent scintillators[340]
图89 (a) 化合物PhCz、CPhCz和BPhCz的分子结构及分子堆积示意图。(b) 化合物BPhCz在可见光激发下的长余辉发光示意图[341]
Fig. 89 (a) The molecular structures and stacking of the three compounds. (b) The RTP photographs of BPhCz under the excitation of visible light[341]
图90 (a) 光活化动态磷光分子结构及分子堆积示意图[342]。(b) 多晶型依赖的光活化磷光分子发光机理示意图[343]
Fig. 90 (a) Schematic diagram of photo-activated dynamic phosphorescent molecular structures and molecular packing[342]. (b) Schematic diagram of luminescent mechanism of polymorph-dependent photo-activated phosphorescent molecules[343]
图91 (a) 痕量反应副产物引起室温磷光主客体体系。(b)ppb级含量客体引起室温磷光主客体体系[345]
Fig. 91 (a) The host-guest RTP system where trace amount of by-product acts as the guest. (b) Organic guest-host system produces RTP at part-per-billion level[345]
图92 聚集诱导双重室温磷光分子设计及其OLED器件应用[349]
Fig. 92 Design and OLED application of aggregation-induced dual-RTP molecule[349]
图93 (a) RTP分子的化学结构[350]。(b) 负载磷光体的中空介孔二氧化硅纳米粒子的制备示意图。(c) 在不同条件下,HeLa细胞存活率关系图。(d, e) 活HeLa细胞和斑马鱼的磷光成像[351]
Fig. 93 (a) Chemical structures of the RTP molecules[350]. (b) Schematic illustration of the fabrication of HMSNPs loaded with phosphors. (c) Viability values of HeLa cells incubated with PNDs in dark or under excitation. (d, e) Images of living HeLa cells and zebrafish[350]
图94 (a) 不同照射时间下,在500~550 nm处采集的HeLa细胞的明场和重叠的共聚焦图像。(b) 不同组的小鼠在治疗时间延长下的肿瘤相对体积变化和(c)体重变化。(d) H&E染色对照组和治疗组的肿瘤组织切片的图像[352]
Fig. 94 (a) Confocal images of HeLa cells collected at 500~550 nm, bright field and overlap under different irradiation time. (b) Relative tumor volume and (c) body weight of mice in different groups with prolonged treatment time. (d) H&E stained images of tumor slices from the tumor tissues of the control and treated groups[352]
图95 氯仿传感示意图[353]
Fig. 95 Schematic diagram of chloroform sensing[353]
图96 有机磷光在信息加密的应用。(a) 在紫外灯照射前后的图案[314]。(b) 在不同激发下的多色磷光图案[338]。(c) 多级防伪展示[342]。(d) 分子逻辑门中的应用演示[343]
Fig. 96 The application of information encryption. (a) The imaging patterns before (top) and after (bottom) excitation[314]. (b) The multi-color phosphorescent patterns under different excitation[338]. (c) Multi-level anti-counterfeiting experiment[342]. (d) Application in molecular logic gates[343]
图97 非典型发光化合物中常见的亚荧光团
Fig. 97 Common subfluorophores in nonconventional luminophores
图98 (a) D-木糖[359]、N,N'-羰基双丁二酰亚胺(CBSI)在不同紫外灯照射下及关灯后的照片[360]。(b) L-赖氨酸(L-Lys)及ε-聚(L-赖氨酸)(ε-PLL)在365 nm紫外灯照射下或关灯后的照片[361]
Fig. 98 (a) Photographs taken under and after the stop of varying UV lights for D-xylose[359] and CBSI[360]. (b) Photographs taken under and after the stop of 365 nm UV light for L-lysine and ε-PLL[361]
图99 簇聚诱导发光的Jablonski能级图机理解释[367]
Fig. 99 Jablonski diagrams for interpretation of CTE mechanism[367]
图100 向CHDA引入C=C桥键和氢键的示意图以及对应分子的发光照片[378]
Fig. 100 Schematic illustration of introducing C=C bridging and hydrogen bonds into CHDA and luminescent photographs of corresponding molecules[378]
图101 哑铃型样条由分子量8万的线型聚丙烯酸甲酯制成,在拉伸应力下,无色螺吡喃结构可能转变成红色的部花青结构,暴露在可见光下可以恢复为原来的螺吡喃结构[385]
Fig. 101 Schematic diagram of ‘dog bone' specimens prepared from linear 80 kDa PMA. Upon application of tensile force, a hypothesized conversion between the colourless spiropyran and coloured merocyanine forms of the mechanophore occurs. Exposure to visible light reverses the conversion back to the original spiropyran form[385]
图102 染料化合物152 (a)和153 (b)掺混到低密度线型聚乙烯薄膜中的拉伸荧光图片[386]
Fig. 102 Tensile fluorescence images of dye compounds 152 (a) and 153 (b) doped in low density linear polyethylene films[386]
图103 AIE材料的化学结构
Fig. 103 Chemical structures of AIEgens
图104 (a) 化合物168的分子结构及在不同聚集状态下的发光照片;(b) 外界刺激下不同聚集状态之间相互转化前后的发光照片[403]
Fig. 104 (a) Chemical structure of compound 168; normalized emission spectra of 168-G, 168-G0, 168-Y, 168-O and 168-R. lex=420 nm. The fluorescent images of compound 168 in its four polymorphs and one amorphous solid state (microscopy images of 168-G and 168-G0; the photographs of 168-Y, 168-O and 168-R taken under 365 nm UV lamp. (b) Transition among five different aggregates with diverse luminescent colors upon stimuli: 168-G and 168-O crystalline powders can transform into 168-Y crystalline powders by heating or fuming with DCM vapor; all crystalline powders can transform into 168-R aggregates by fully grinding[403]
图105 具有力致变色特性聚合物的结构
Fig. 105 The structure of a polymer with mechanochromic properties
图106 (a) SPFC、DEAC-DPS、mono-DMACDPS与DBT-BZ-DMAC的分子结构。(b) FCO-CzS的分子结构与在Water/THF溶剂中的发光强度。FCO-CzS随着研磨时间增长的ML光谱(c)与ML照片(d)[409]
Fig. 106 (a) Molecular structures of SPFC, DEAC-DPS, mono-DMACDPS and DBT-BZ-DMAC. (b) The emission intensity of FCO-CzS in mixture solution of Water/THF; (c) ML spectra and (d) ML photos of FCO-CzS as the increase in grinding time[409]
图107 AIE-TADF分子170的发色团选择性表达行为示意图[410]
Fig. 107 Schematic diagram of the selective expression of chromophores in AIE-TADF molecule 170[410]
图108 (a) 化合物TPA-1BA、TPA-pR、TPA-mR、TPA-CHO-2R(R=F, Cl, Br)的分子结构。(b) TPA-1BA的ML光谱与日光、黑暗环境下的ML照片[411]。(c) TPA-mF、TPA-mCl、TPA-pCl、TPA-mBr和TPA-pBr的ML照片[413]
Fig. 108 (a) Molecular structures of TPA-1BA,TPA-pR,TPA-mR,TPA-CHO-2R (R=F, Cl, Br). (b) ML spectrum and photos of TPA-1BA under daylight and dark[411]. (c) ML photos of TPA-mF, TPA-mCl, TPA-pCl, TPA-mBr and TPA-pBr[413]
图109 基于四苯乙烯以及四苯乙烯等电子体的有机ML化合物
Fig. 109 Molecular structures of organic ML compounds based on TPE and TPE analogues
图110 (a) P4TA[422]、TMPE[423]、tPE5-MeTh[424]的分子结构与同质多晶的晶相照片与ML光谱;ML-Cbf为Cb相经二氯甲烷熏蒸后ML光谱。(b) CDpP[425]与TBIM[426]分子结构与不同晶相与ML照片。(c) TPA-o-3COOMe分子结构与不同晶相分子排列方式与磷光寿命曲线、晶相B的ML照片与光谱[427]
Fig. 110 (a) Molecular structures of P4TA[422], TMPE[423], tPE5-MeTh[424] and corresponding polymorphism photos, ML spectra; ML-Cbf refers to Cb phase crystal after fuming by dichloromethane. (b) Molecular structures, polymorphism and ML photos of CDpP[425] and TBIM[426]. (c) Molecular structure, molecular arrangement in polymorphism, time-resolved RTP spectra, ML spectrum and photos of TPA-o-3COOMe[427]
图111 (a) 化合物DPP-BO、CX、CzS-C2H5与Br-Flu-CBr分子结构。(b) DPP-BO和(c) CzS-C2H5的PL与ML光谱与ML照片[429]。(d) 化合物ImF与ImBr的分子结构、ML照片与ImBr在紫外灯下的RTP现象[431]
Fig. 111 (a) Molecular structures of DPP-BO, CX, CzS-C2H5 and Br-Flu-CBr. ML and PL spectra and ML photos of DPP-BO (b) and CzS-C2H5[429] (c). (d) Molecular structure, RTP and ML photos of ImF and ImBr[431]
图112 (a) 化合物Cz-alkyl-6[432]与NPC[433]的分子结构,掺杂荧光客体分子后的ML光谱。(b) 主体PCP、PA与DCB,客体NA的分子结构[37],受到力刺激后的即时与延迟ML照片[347]
Fig. 112 (a) Molecular structure of Cz-alkyl-6[432], NPC[433], and ML spectra of them when doped with fluorescent dopant. (b) Molecular structures of host of PCP, PA, and DCB, guest of NA, ML photos of flash ML and delayed ML[347]
图113 (a) 单晶结构;(b) 研磨前后的发射光谱;(c) 样品在不同处理条件下的发光照片及分子运动受限示意图[436]
Fig. 113 (a) Single-crystal structure; (b) emission spectra before and after grinding; (c) photoluminescence photographs of the samples under different treatment conditions and schematic diagram of restriction of molecular motion[436]
图114 TPE衍生物的分子结构
Fig. 114 Molecular structure of TPE derivatives
图115 TPE衍生物173的分子结构;多重可逆性结构转变示意图[439]
Fig. 115 Molecular structure of TPE derivatives; schematic diagram of multiple reversible transformations[439]
图116 客体诱导呼吸效应伴随力致发光活性可控的示意图[440]
Fig. 116 Schematic diagram of guest-induced breathing behaviors with controllable mechanoluminescence activity[440]
图117 在不同条件下二维动态分子编织晶体结构及编织示意图[441]
Fig. 117 Schematic diagram of dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework[441]
图118 通过控制系统间交叉来制定MRL材料的策略。(a) 通过控制硝基苯基化AIEgens的系统间交叉来提出高灵敏度On-Off MRL材料的机制。标尺:100 μm。(b) 硝基苯的最低单重激发态(S1)和三重激发态(T4)的自然跃迁轨道。由于El-Sayed规则表明,当自旋轨道耦合混合自旋和电子配置不同的两种状态时,多重性变化变得非常有效,因此T4是系统间交叉过程中的密室和良好的“接收器状态”,它决定了超快通过有利的1(n,π*)到3(π,π*)通道消耗S1。(c) 典型AIEgens的扭曲晶体结构:三苯胺(TPA)和四苯乙烯(TPE)。(d) 这里研究的硝基TPA和硝基TPE的分子结构[437]
Fig. 118 Strategies for MRL materials by controlling intersystem crossing. (a) Proposed mechanism of highly sensitive On-Off MRL materials by controlling intersystem crossing of nitrophenylated AIEgens. Scale: 100 μm. (b) Nature transition orbitals of the lowest singlet excited state (S1) and triplet excited state (T4) of nitrobenzene. Since El-Sayed's rule states that the multiplicity change becomes highly efficient when the spin-orbit coupling mixes two states differing in both spin and electronic configuration, T4 is the closet and a good “receiver state” in the intersystem crossing process which determines the ultrafast S1 depletion through an favored1(n,π*) to3(π,π*) channel. (c) Twisted crystal structures of typical AIEgens: triphenylamine (TPA) and tetraphenyethylene (TPE). (d) Molecular structures of nitro-TPAs and nitro-TPEs studied here[437]
图119 (a) TPE-4N的光敏和热敏机制示意图。(b) 在紫外线照射5 min之前(左)和之后(右)的单晶显微照片。照片是在明场(顶部)和330~385 nm的紫外线通道(底部)下拍摄的。紫外线照射的功率密度为80 mW·cm-2。(c) 在不同刺激下切换TPE-4N粉末的发光:(Ⅰ) 150 ℃加热 5 min;(Ⅱ) 紫外线照射5 min;(Ⅲ) 丙酮熏蒸30 s;(Ⅳ) 研磨;荧光照片由手持相机在365 nm紫外灯下拍摄。(d) TPE-4N粉末在不同刺激下的PL光谱。紫外线照射的功率密度为 50 mW·cm-2[443]
Fig. 119 (a) Illustration of the photo- and thermoresponsive mechanism of TPE-4N. (b) Microscopy photos of single crystal before (left) and after (right) UV irradiation for 5 min. The photos are taken under bright field (top) and UV channel of 330~385 nm (bottom). The power density of UV irradiation is 80 mW·cm-2. (c) Switching the luminescence of TPE-4N powders under different stimulus: (Ⅰ) heating at 150 ℃ for 5 min; (Ⅱ) UV irradiation for 5 min; (Ⅲ) fuming with acetone for 30 s; (Ⅳ) grinding; The fluorescence photos were taken by a handheld camera under 365 nm UV lamp. (d) PL spectra of TPE-4N powders under different stimulus. The power density of UV irradiation is 50 mW·cm-2[443]
图120 (a) 40 μM TPE-DTAB水溶液的紫外-可见吸收和荧光光谱; (b) TPE-DTAB荧光强度随浓度的变化图[461]
Fig. 120 (a) UV-visible absorption and fluorescence spectra of 40 μM TPE-DTAB aqueous solution; (b) fluorescence intensity at 490 nm versus the concentration of TPE-DTAB[461]
图121 TPE-DTAB修饰的MMT结构及发光性能表征[461]
Fig. 121 Structural and fluorescent characterizations of TPE-DTAB-modified MMT[461]
图122 有机-无机复合材料中无机填料三维宏观分散可视化示意图[461]
Fig. 122 Schematic representation of 3D macrodispersion of fillers in organic-inorganic composites[461]
图123 TPEDB分子在不同LDHs含量下的荧光发射变化[464]
Fig. 123 Fluorescent performance variations of TPEDB in the presence of LDHs[464]
图124 有机-无机复合材料中无机相后染定位及三维成像分析[464]
Fig. 124 Post-labelling of inorganic nanofiller and imaging of organic-inorganic composites[464]
图125 对聚合物基质中无机相的三维分散度定量分析[465]
Fig. 125 Schematic representation of 3D quantified macrodispersion of fluorescent inorganic fillers in polymer matrix[465]
图126 (a) LDHs空间间距与其含量之间的关系; (b) LDHs含量与其粒子空间间距、抗拉强度之间的关系[466]
Fig. 126 (a) Relationship between spatial ID and content of LDHs; (b) relationship for contents of LDHs, averaged ID and tensile strength[466]
图127 用于OLEDs制备的经典AIE材料
Fig. 127 Typical AIEgens for fabrication of OLEDs
图128 (a) 蒽衍生物的化学结构;(b) TPA-An-Ph和TPA-An-mPhCz基非掺杂器件在不同亮度下的电流效率和外量子效率;(c) 蓝光发光材料的设计原理[481]
Fig. 128 (a) Chemical structures of the anthracene derivatives; (b) CE and EQE versus luminance curves of the non-doped OLEDs based on the AIEgens TPA-An-Ph and TPA-An-mPhCz; (c) Design principle of the blue emitters[481]
图129 TPB-AC分子的结构式
Fig. 129 Structure of TPB-AC
图130 TPB-AC分子的取向特性[56]
Fig. 130 Orientation properties of TPB-AC[56]
图131 TPB-AC蓝光OLEDs在不同偏执电流下的MEL响应特性[485]
Fig. 131 MEL responses of the TPB-AC-based blue OLEDs under different applied currents[485]
图132 计算的TPB-AC分子的单线态和三线态激子能级[485]
Fig. 132 The calculated energy levels of singlet and triplet states of TPB-AC[485]
图133 (a) CN-TPB-TPA和TPBzC1的分子结构;(b) CN-TPB-TPA和TPBzC1蓝光OLEDs的EQE-亮度特性;(c) CN-TPB-TPA和TPBzC1蓝光OLEDs在15 mA/cm2电流密度下的MEL响应特性[484]
Fig. 133 (a) Chemical structures of CN-TPB-TPA and TPBCzC1; (b) EQE versus luminance characteristics for CN-TPB-TPA- and TPBCzC1-based blue OLEDs; (c) MEL responses of CN-TPB-TPA- and TPBCzC1-based blue OLEDs measured at the current density of 15 mA/cm2[484]
图134 计算的CN-TPB-TPA (a)和TPBzC1 (b)分子的单线态和三线态激子能级[484]
Fig. 134 The calculated energy levels of singlet and triplet states of (a) CN-TPB-TPA and (b) TPBCzC1[484]
图135 (a) 基于CN-TPB-TPA设计的多层蓝光OLEDs结构与能级;(b) 发光层中的激子传递过程;(c) 单发光层和多发光层OLEDs的归一化电致发光光谱;(d) 单发光层和多发光层OLEDs的EQE-亮度特性[484]
Fig. 135 (a) Energy level diagram of the designed multilayer OLEDs based on CN-TPB-TPA; (b) exciton transfer process in emission layer; (c) normalized EL spectra of the fabricated OLEDs with single- and multi-emission layers; (d) EQE versus the luminance characteristics of the fabricated OLEDs with single- and multi-emission layers[484]
图136 典型AIDF材料随不良溶剂加入,发光显著增强;基于该AIDF材料制备的器件表现出高效率低滚降的特性[491]
Fig. 136 Typical AIDF luminogens emit stronger by adding more poor solvent; its OLED device demonstrate properties of high efficiency and low roll-off[491]
图137 AIDF机理示意图[494]
Fig. 137 Schematic diagram of AIDF mechanism[494]
图138 用于OLEDs制备的AIE-TADF材料
Fig. 138 AIE-TADF luminogens for fabrication of OLEDs
图139 用TPB-AC作为主体制备的红、橙、绿光磷光OLEDs的电致发光光谱(a)和PE-EQE-亮度特性(b)[56]
Fig. 139 (a) EL spectra and (b) PE-EQE luminance characteristics of the resulting red, orange and green phosphorescence OLEDs based on TPB-AC as host[56]
图140 用TPB-AC作为蓝光发光层和磷光主体制备的白光OLEDs的器件结构和电致发光性能[56]
Fig. 140 Device structures and EL performances of the resulting fluorescence/phosphorescence white OLEDs based on TPB-AC as blue emitter and phosphorescence host[56]
图141 用TPB-AC蓝光和CP-BP-PXZ绿光AIE材料制备的三色荧光/磷光混合型白光OLEDs的PE-EQE-亮度特性(a)和在不同亮度下的归一化电致发光光谱(b)。插图给出了发光层结构[513]
Fig. 141 (a) PE-EQE-luminance characteristics and (b) normalized EL spectra at different luminance of the resulting fluorescence/phosphorescence white OLEDs based on TPB-AC as blue emitter and CP-BP-PXZ as green emitter[513]
图142 “T”型探针TCNTP用于肿瘤细胞的长效低毒示踪[548]
Fig. 142 “T” type probe TCNTP for tracking the tumor cells with long term and low toxicity[548]
图143 DOX-FCPPs-PyTPE探针用于追踪肿瘤治疗过程中抗癌药物阿霉素的递送路径[549]
Fig. 143 DOX-FCPPs-PyTPE probe for tracking the delivery process of antitumor drug DOX in tumor cells[549]
图144 TNCP多肽探针用于追踪基因治疗中反义寡核苷酸(ASO)的递送过程[550]
Fig. 144 TNCP probe for tracking the delivery process of therapeutic genes (ASO) in tumor cells[550]
图145 FCsiRNA-PyTPA复合物被细胞高效内化,发挥最佳治疗性能[551]
Fig. 145 FCsiRNA-PyTPA complex being internalized by the tumor cells efficiently and exhibiting optimized therapeutic efficacy[551]
图146 多功能模块化探针TCDTMP用于术前、术中、术后分段治疗[552]
Fig. 146 Multifunctional modular probe TCDTMP for preoperative, intraoperative and postoperative treatment[552]
图147 两种模块相同,但空间排布不同的探针及其细胞内性能比较[553]
Fig. 147 Two probes with the same modules but different spatial arrangement and comparison of their intracellular performance[553]
表1 半菁类生色团的结构及光学性质
Table 1 Structure and photophysical properties of hemicyanine chromophores
表2 半菁类探针响应前后的结构变化
Table 2 Structural change of hemicyanine-based probes before and after response
图148 (a) 探针NP-Q-NO对小鼠模型中的乳腺癌转移的NIR-Ⅱ荧光成像图;(b) 探针的结构式;(c) 探针NP-Q-NO对小鼠模型中的乳腺癌转移的多光谱光声断层扫描成像图;(d) 激活探针Q-NH2的结构式;(e) Q-NH2的AIE特性(922nm处的荧光强度与不良溶剂水含量的关系);白线:肺部,绿线:骼下淋巴结,蓝线:第五对脂肪垫原位瘤[573]
Fig. 148 (a) The probe's NIR-Ⅱ fluorescent image imaging for breast cancer metastasis; (b) structure of the probe; (c) the probe's MSOT image for breast cancer metastasis; (d) structure of the activated probe; (e) AIE effect of Q-NH2 (fluorescence intensity at 922 nm versus poor solvent water fraction)[573]
图149 探针DHXI@HSA通过荧光/光声成像定位小鼠肝区肿瘤及指导肿瘤切除[572]
Fig. 149 Location of hepatic tumor and image-guided tumor resection via fluorescent/MSOT imaging with probe DHXI@HSA[572]
图150 探针对pH响应前后的结构变化
Fig. 150 Structural changes before and after probe response toward pH
图151 半菁类探针对过氧化氢和亚硫酸根响应前后的结构变化
Fig. 151 Structural change of hemicyanine-based probes before and after responding to hydrogen peroxide or sulfite
图152 水的吸收光谱[595]
Fig. 152 Abosorption spectrum of water[595]
图153 2TT-mC6B与2TT-oC6B的结构式与光学性质。(a) 2TT-mC6B与2TT-oC6B的结构式;(b) 2TT-mC6B与2TT-oC6B在四氢呋喃中的吸收与发射光谱;(c) αAIE随水所占比例的变化曲线[601]
Fig. 153 Chemical structures and optical spectra of 2TT-mC6B and 2TT-oC6B. (a) Chemical structures of 2TT-mC6B and 2TT-oC6B; (b) Absorption and emission spectra in THF; (c) αAIE curves with water fraction[601]
图154 利用2TT-oC6B NPs术中输尿管成像[612]
Fig. 154 Intraoperative ureter imaging of 2TT-oC6B NPs[612]
图155 结合2TT-mC6B与2TT-oC6B的2TT-m,oC6B化学结构式[605]
Fig. 155 Combination of 2TT-mC6B with 2TT-oC6B to yield 2TT-m,oC6B[605]
图156 (a) TT1-oCB、TT2-oCB与TT3-oCB的化学结构式;(b) 不同波段下利用TT3-oCB NPs进行的膀胱成像以及膀胱荧光信号的高斯拟合[606]
Fig. 156 (a) Chemical structures of TT1-oCB, TT2-oCB and TT3-oCB; (b) Bladder NIR-Ⅱ imaging of living mice under different long-pass filters treated with TT3-oCB NPs and cross-sectional fluorescence intensity profile fitted with Gaussian along red-dashed lines[606]
图157 利用TT3-oCB NPs的NIR-Ⅱb术中胆道显影[613]
Fig. 157 NIR-Ⅱb intraoperative cholangiography of TT3-oCB NPs[613]
图158 基于水吸收和米氏散射的有效衰减长度理论模型,其中黑色三角形代表实测的在体小鼠大脑有效衰减常数[624]
Fig. 158 The theoretical model of the effective attenuation length based on water absorption and Mie scattering. The black triangles indicate the measured effective attenuation length in mouse brains in vivo[624]
图159 (a) 不同TTF负载比NPs的吸收与1560 nm飞秒光激发三倍频、3PF比较;(b) 1560 nm飞秒激光激发不同TTF负载比溶液的3PF与三倍频成像(从左至右分别为9 wt%、14 wt%与20 wt%的负载比)[631]
Fig. 159 (a) Quantitative comparison of 3PF and THG from TTF NPs with various TTF loading ratios; (b) 3PF and THG images of aqueous dispersion of TTF NPs in a capillary glass tube, with various TTF loading ratios (from left to right: 9 wt%, 14 wt%, and 20 wt%) under 1560 nm femtosecond laser[631]
图160 利用纳米氧化石墨烯包覆的TTF NPs的示意图及斑马鱼与鼠耳血管3PF成像[632]
Fig. 160 Schematic illustration of the synthesis of TTF-NGO NPs and their 3PF imagings of mouse ear blood vessel and zebrafish[632]
图161 (a) TTF NPs显微注射入斑马鱼胚胎的卵黄中;(b) 显微注射后6、48、96和120 h斑马鱼明场与1560 nm飞秒光激发3PF图像,标尺:200 μm;(c) 斑马鱼心脏与血管的3PF图像、明场图像以及相对应的叠加图像[628]
Fig. 161 (a) Scheme illustrating the microinjection of TTF NPs into the yolk of zebrafish embryo; (b) bright field and 3PF images of zebrafish at 6, 48, 96 and 120 hours after microinjection of TTF NPs excited by a 1560 nm femtosecond laser, scale bar: 200 μm; (c) 3PF images, bright field images and overlay images of the heart and blood vessels of zebrafish[628]
图162 小鼠脑血管3PF三维重构图。(a) 深度为875 μm的3D重构图;不同深度范围的3D重构图:(b) 0~200 μm, (c) 200~400 μm, (d) 400~600 μm and (e) 600~800 μm;标尺:200 μm[633]
Fig. 162 3D reconstruction of the brain vascular system of a mouse. (a) 3D reconstruction with a penetration depth of 875 μm; 3D reconstruction at various depth regions, (b) 0~200 μm, (c) 200~400 μm, (d) 400~600 μm and (e) 600~800 μm; scale bar: 200 μm[633]
图163 (a)~(f) 不同深度的小鼠脑血管3PF图像;(c)~(e) 中白色箭头旁的数值代表测量的血管直径;(g,f)图中虚线荧光强度的高斯拟合;(h) 深度1000~1200 μm之间皮质血管3PF三维重构图[634]
Fig. 163 (a)~(f) 3PF images at various brain depth. The values beside the white arrows in (c)~(e) represent the measured diameters of blood vessels; (g) line plot of dashed line in (f). (h) 3D reconstruction of cortical vasculature in the depth range from 1000~1200 μm[634]
图164 利用DCDPP-2TPA NPs的小鼠穿颅脑血管3PF成像[635]
Fig. 164 Through-skull 3PF imaging of mouse brain with DCDPP-2TPA NPs[635]
图165 小鼠脑血管3PF成像。(a) BONAPs标记的小鼠脑血管3PF(红色)与三倍频(绿色)三维重构图;(b)~(e) 深度分别为20、850、1200与1680 μm的3PF图像;标尺:50 μm[591]
Fig. 165 Deep-brain 3PF imaging in mouse. (a) 3D reconstruction of 3PF imaging of the brain vasculature labeled by BONAPs (red) and simultaneously acquired third-harmonic generation imaging (green) to identify the anatomical layers; (b)~(e) 2D images from the 3D stack at 20 (b), 850 (c), 1200 (d) and 1680 (e) μm below the surface of the brain. WM: whiter matter. Scale bar: 50 μm[591]
图166 (a)具有光捕获性能的AIE材料的制备示意图和纳米粒子修饰供受体的化学结构;(b)发光性能的控制[640]
Fig. 166 (a) Schematic illustration of the preparation of AIE materials with light-harvesting properties, and chemical structures of the UPy-modified donors (TPEH, TPEP, and TPEDC) and acceptors (GM, YM, RM, and NIR-M). (b) Control of emission performance[640]
图167 (a) 纳米沉淀法制备Cor-AIE点和DSPE-AIE点的示意图;(b) Jablonski能级图显示了柔性(DSPE-AIE点)和刚性(Cor-AIE点)模型中AIEgens的非辐射、辐射和系间窜越(ISC)过程[641]
Fig. 167 (a) Schematic illustration of the preparation of Cor-AIE dots and DSPE-AIE dots by nanoprecipitation method; (b) the Jablonski energy diagram of the nonradiative, radiative, and intersystem crossing processes for AIEgens in the flexible (DSPE-AIE dots) and rigid (Cor-AIE dots) models[641]
图168 (a) 能量耗散路径示意图;(b) 纳米粒子结构示意图;(c) 主客体掺杂的AIE纳米粒子和传统AIE纳米粒子在水中的荧光光谱;(d) 主客体掺杂的AIE纳米粒子和传统AIE纳米粒子ln(A0/A)随光照时间的变化曲线[642]
Fig. 168 (a) The three dissipation pathways of the absorbed excitation energy for different AIE dots, which are likened to three water taps. FE: fluorescence emission; TD:thermal deactivation; (b) S-AIE dots and DSPE-PEGAIE dots and chemical structure of CC5A-12C; (c) Photoluminescence (PL) spectra of S-AIE dots and DSPE-PEG-AIE dots in water (λex: 445 nm); (d) Plot of ln(A0/A) against light irradiation time. A0 and A represent the ABDA absorbance at 378 nm without and with exposure to white light, respectively[642]
图169 AGL AIE点放大近红外余辉发光的机理示意图[647]
Fig. 169 Scheme of AGL AIE dots for amplifying near-infrared afterglow[647]
图170 通过调控ΔEST和SOC常数构建高性能AIE光敏剂[652]
Fig. 170 The construction of high-performance AIE photosensitizers through adjusting the value of ΔEST and SOC[652]
图171 联合利用三个AIE光敏剂实现“1+1+1>3”的多细胞器靶向的协同光动力治疗[658]
Fig. 171 Schematic illustration of using three AIE photosensitizers for achieving “1+1+1>3” synergistic enhanced photodynamic multi-organelle therapy[658]
图172 酸响应性细胞核靶向载体负载Ⅰ型AIE光敏剂用于肿瘤细胞核原位光动力治疗[659]
Fig. 172 Illustration of a pH-responsive nuclear targeting PDT system based on a type-Ⅰ AIE photosensitizer[659]
图173 (a) TPE-Py-FFGYSA的化学结构;(b) TPE-Py-Me的能量图、ROS产生途径以及HOMO-LUMO分布;(c) TPE-Py-FFGYSA作为佐剂协同紫杉醇抗肿瘤的机制示意图。HOMO:最高占位分子轨道;LUMO:最低未占位分子轨道;p-AKT:磷酸化蛋白激酶B;Cyt.C:细胞色素C;Pro-Caspase 3:半胱天冬酶-3前体[660]
Fig. 173 (a) Chemical structure of TPE-Py-FFGYSA; (b) energy diagrams, the proposed pathway of ROS generation and HOMO-LUMO distributions of TPE-Py-Me; (c) schematic illustration of the proposed synergistic mechanism. HOMO: highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital; p-AKT: phospho-protein kinase B; Cyt.C: cytochrome C; Pro-Caspase 3:Pro-cysteinyl aspartate specific proteinase-3[660]
图174 (a) TPE-DPA-TCyP的化学结构、二面角以及HOMO-LUMO分布;(b) TPE-DPA-TCyP作为ICD诱导剂抗肿瘤的免疫机制示意图。HOMO:最高占位分子轨道;LUMO:最低未占位分子轨道;ICD:免疫原性死亡;CRT:钙网蛋白;ecto-CRT:转位至包膜外侧的钙网蛋白;HMGB1:迁移率族蛋白1;ATP:腺嘌呤核苷三磷酸;HSP70:热休克蛋白70;iDC:未成熟树突状细胞;mDC:成熟树突状细胞;TEM:效应/记忆T细胞[661]
Fig. 174 (a) Chemical structures, dihedral angles, and HOMO-LUMO distributions of TPE-DPA-TCyP; (b) proposed mechanism of TPE-DPA-TCyP as an effective ICD inducer for antitumor immunity. HOMO: highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital; ICD: immunogenic cell death; CRT: calreticulin; ecto-CRT: surface-exposed CRT; HMGB1: high mobility group protein B1; ATP: adenosine triphosphate; HSP70: heat shock protein 70; iDC: immature dendritic cells; mDC: mature dendritic cells; TEM: effector memory T cells[661]
图175 (a) AIE机理示意图; (b) 分子内运动诱导的光热转化(iMIPT)机理示意图; (c) 基于不同iMIPT分子的纳米颗粒在激光辐照下的温度随时间的变化曲线。激发波长:808 nm,辐照功率:0.8 W·cm-2,辐照时间:300 s; (d) 基于不同iMIPT分子的纳米颗粒的光声(PA)信号随波长的变化; (e) 静脉注射iMIPT纳米颗粒前后,肿瘤部位和正常组织的光声强度随时间的变化,插图:静脉注射4 h后肿瘤组织和正常组织的光声成像图片[668]
Fig. 175 (a) Schematic illustration of aggregation-induced emission (AIE) mechanism; (b) schematic illustration of intramolecular motion-induced photothermy (iMIPT); (c) the temperature changes of solutions of various iMIPT nanoparticles (NPs) as a function of time. The solutions were irradiated with 808 nm laser for 300 s, power: 0.8 W·cm-2; (d) photoacoustic (PA) signal of NPs based on different iMIPT molecules varies with the wavelength; (e) PA intensity of tumor sites and normal tissues with time before and after intravenous injection of iMIPT NPs, inset: PA images of tumor and normal tissues at a time interval of 4 h after intravenous injection[668]
图176 (a) 基于iMIPT分子设计的近红外分子NIRb14、NIRb10、NIRb8、NIR6的分子结构; (b) 链长对iMIPT纳米颗粒的光热行为影响以及和金纳米棒的光热行为对比; (c) 不同条件处理下小鼠肿瘤生长曲线。PEG:聚乙二醇; PAE: β-聚氨酯。数据表达为,平均值±标准偏差(n=8),*p<0.05[672]
Fig. 176 (a) Molecular structures of NIRB14, NIRB10, NIRB8 and NIR6 based on the molecular design of iMIPT; (b) the effect of chain length on the photothermal behavior of iMIPT NPs and the comparison of the photothermal behavior between iMIPT NPs and gold nanorods; (c) tumor growth curves of mice with different treatments. PEG: polyethylene glycol, PAE: poly(β-amino ester). In Figure 4c, data were presented as mean± SD (n=8), *p<0.05[672]
图177 (a) 基于iMIPT分子的类肺泡巨噬细胞纳米颗粒-TN@AM用于阻断冠状病毒进入细胞、光热杀灭病毒和吸收炎症细胞因子; (b) 分别用红细胞(RBC)膜包裹的iMIPT分子纳米颗粒、TN@AM纳米颗粒以及PBS处理的L929细胞中的MHV-A59病毒颗粒的数量。PBS: 磷酸缓冲盐溶液;纳米颗粒中蛋白浓度:4.0 mg·mL-1; (c) 分别用TN@AM NPs、RBC+NIR、NPs+NIR以及空白处理对小鼠进行治疗5天后用标准空斑实验测定的小鼠肺组织中MHV-A59浓度。b和c数据处理采取单项方差分析(One-way ANOVA )和Tukey事后比较法(Tukey post-hoc),*p<0.05,**p<0.01,***p<0.001, n.s.:不显著。c图数据为平均值+标准偏差,n=3[673]
Fig. 177 (a) Schematic illustration of coronavirus cellular entry blockage, virus photothermal disruption, and inflammatory cytokines absorption by multifunctional alveolar macrophage-like nanoparticles-TN@AM NPs; (b) counts of MHV-A59 particle localization in single L929 cells with treatments of PBS, RBC NPs (4.0 mg·mL-1 protein concentration) and TN@AM NPs (4.0 mg·mL-1 protein concentration). L929 cells as the target cells, PBS: phosphate-buffered saline; RBC NPs: nanoparticles derived from red blood cell membranes; (c) detection of MHV-A59 burden in the lung tissues through a standard plaque assay after 5 days' different post-treatments. Statistical analysis of b and c was conducted by using one-way ANOVA followed by a Tukey post-hoc test,*p<0.05,**p<0.01,***p<0.001, n.s.=not significant. In Figure 2c, data were presented as mean + SD (n=3)[673]
图178 (a) DSPE-PEG封装的2TPE-2NDTA纳米颗粒的制备及其通过光热去除成熟的细菌生物膜示意图;有无近红外激光辐照和有无纳米颗粒存在的条件下,0.1% w/w结晶紫染色的金黄色葡萄球菌照片(b),各组细菌生物膜的相对生物质量(c),金黄色葡萄球菌菌落在NB琼脂上的生长图片(d)[677]
Fig. 178 (a) Schematic diagram of preparation of 2TPE-2NDTA NPs and eradication of mature bacterial biofilms by photothermal effect; (b) digital images of S. aureus biofilm stained with 0.1% (w/w) crystal violet after treated with or without near-infrared laser and nanoparticles; (c) relative biomass amount of each group; (d) Digital images of live S. aureus colonies grown on NB agar[677]
图179 (a) OTTAB检测NO的原理示意图;(b) OTTAB和OTTTB在四氢呋喃溶液中的吸收光谱,c=10-5 M;(c) 不同水含量下OTTTB和OTTAB在四氢呋喃/水混合溶液中的荧光强度的变化,c=10-5 M;(d) NO存在下,不同浓度OTTAB纳米颗粒的光声强度,数据表达为,平均值±标准偏差(n=3),*p=0.017,***p=0.00049,****p<0.0001;(e) 光声强度随NO浓度的变化曲线,数据表达为平均值±标准偏差(n=3)[680]
Fig. 179 (a) The chemical mechanism of NO detection by OTTAB; (b) absorption spectra of OTTAB and OTTTB in tetrahydrofuran solution, c=10-5 M; (c) fluorescence intensity of OTTTB and OTTAB in tetrahydrofuran/water mixture with different water content, c=10-5 M; (d) in the presence of NO, the PA intensity of OTTAB NPs with different concentrations of OTTAB, data were presented as mean ± SD (n=3),*p=0.017,***p=0.00049,****p<0.0001; (e) the variation curve of PA intensity with NO concentration. Data were presented as mean ± SD (n=3)[680]
图180 基于AIE材料的无机材料辅助的多模态光学诊疗体系。(a)二维黑磷纳米片辅助的多模态光学诊疗体系[686];(b)金纳米棒辅助的柱芳烃超分子杂化的多模态光学诊疗体系[687]
Fig. 180 AIEgen-based multimodal phototheranostic systems assisted by inorganic materials. (a) Multimodal phototheranostic system assisted by 2D black phosphorus nanosheets[686]. (b) Hybrid multimodal phototheranostic system assisted by pillar[5]arene-modified gold nanorods[687]
图181 基于单种AIE分子的多模态光学诊疗体系。(a) 促进分子在聚集态下杂乱无章堆积构建多模态光学诊疗体系[692];(b) 分子结构中引入振子构建多模态光学诊疗体系[693]
Fig. 181 Single AIEgen-based multimodal phototheranostic systems. (a) Multimodal phototheranostic system based on the disordered loose packing in aggregate state[692]; (b) multimodal phototheranostic system based on the introduction of molecular vibrators[693]
[1]
Xue K, Wang C, Wang J X, Lv S, Hao B Y, Zhu C L, Tang B Z. J. Am. Chem. Soc., 2021,143(35): 14147.

doi: 10.1021/jacs.1c04597     URL    
[2]
Hong G, Gan X M, Leonhardt C, Zhang Z, Seibert J, Busch J M, Bräse S. Adv. Mater., 2021,33(9): 2005630.

doi: 10.1002/adma.v33.9     URL    
[3]
Cheng Y, Chang Y, Feng Y L, Jian H, Tang Z H, Zhang H Y. Angew. Chem. Int. Ed., 2018,57(1): 246.

doi: 10.1002/anie.201710399     URL    
[4]
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015,115(21): 11718.

doi: 10.1021/acs.chemrev.5b00263     pmid: 26492387
[5]
Tu L, Xie Y, Li Z, Tang B Z. SmartMat, 2021,2(3): 326.

doi: 10.1002/smm2.v2.3     URL    
[6]
Qin A J, Tang B Z. Sci. China Chem., 2018,61(8): 879.

doi: 10.1007/s11426-018-9338-5     URL    
[7]
Zhao Z, Zhang H K, Lam J W Y, Tang B Z. Angew. Chem., 2020,132(25): 9972.

doi: 10.1002/ange.v132.25     URL    
[8]
Mei J, Hong Y N, Lam J W Y, Qin A J, Tang Y H, Tang B Z. Adv. Mater., 2014, 26(31): 5429.

doi: 10.1002/adma.201401356     URL    
[9]
Nakatsuji S, Matsuda K, Uesugi Y, Nakashima K, Akiyama S, Katzer G, Fabian W. J. Chem. Soc., 1991,2(6): 861.
[10]
Kim S, Zheng Q, He G S, Bharali D J, Pudavar H E, Baev A, Prasad P N. Adv. Funct. Mater., 2006,16(18): 2317.

doi: 10.1002/(ISSN)1616-3028     URL    
[11]
He J T, Xu B, Chen F P, Xia H J, Li K P, Ye L, Tian W J. J. Phys. Chem. C, 2009,113(22): 9892.

doi: 10.1021/jp900205k     URL    
[12]
Zhang J B, Xu B, Chen J L, Wang L J, Tian W J. J. Phys. Chem. C, 2013,117(44): 23117.

doi: 10.1021/jp405664m     URL    
[13]
Zhang J B, Ma S Q, Fang H H, Xu B, Sun H B, Chan I, Tian W J. Mater. Chem. Front., 2017,1(7): 1422.

doi: 10.1039/C7QM00032D     URL    
[14]
Wu D E, Wang M N, Luo Y H, Wen G J, Sun B W. CrystEngComm, 2015,17(47): 9228.

doi: 10.1039/C5CE01465D     URL    
[15]
Li F, Gao N, Xu H, Liu W, Shang H, Yang W J, Zhang M. Chem. Eur. J., 2014,20(32): 9991.

doi: 10.1002/chem.201402369     URL    
[16]
Dong Y J, Xu B, Zhang J B, Lu H G, Wen S P, Chen F P, He J T, Li B, Ye L, Tian W J. CrystEngComm, 2012,14(20): 6593.

doi: 10.1039/c2ce25276g     URL    
[17]
Lu H G, Xu B, Dong Y J, Chen F P, Li Y W, Li Z F, He J T, Li H, Tian W J. Langmuir, 2010,26(9): 6838.

doi: 10.1021/la904727t     URL    
[196]
Luo Z T, Yuan X, Yu Y, Zhang Q B, Leong D T, Lee J Y, Xie J P. J. Am. Chem. Soc., 2012,134(40): 16662.

doi: 10.1021/ja306199p     URL    
[197]
Wu Z N, Yao Q F, Chai O J H, Ding N, Xu W, Zang S Q, Xie J P. Angew. Chem. Int. Ed., 2020,59(25): 9934.

doi: 10.1002/anie.v59.25     URL    
[198]
Jia X F, Li J, Wang E K. Small, 2013,9(22): 3873.

doi: 10.1002/smll.v9.22     URL    
[199]
Jia X F, Yang X, Li J, Li D Y, Wang E K. Chem. Commun., 2014,50(2): 237.

doi: 10.1039/C3CC47771A     URL    
[200]
Tian Y, Wang Z Y, Zang S Q, Li D, Mak T C W. Dalton Trans., 2019,48(7): 2275.

doi: 10.1039/C8DT04898C     URL    
[201]
Chen T, Yang S, Chai J S, Song Y B, Fan J Q, Rao B, Sheng H T, Yu H Z, Zhu M Z. Sci. Adv., 2017,3(8): e1700956. DOI: 10.1126/sciadv.1700956.

doi: 10.1126/sciadv.1700956     URL    
[202]
Kang X, Wang S X, Zhu M Z. Chem. Sci., 2018,9(11): 3062.

doi: 10.1039/c7sc05317g     pmid: 29732091
[203]
Wu Z N, Liu J L, Gao Y, Liu H W, Li T T, Zou H Y, Wang Z G, Zhang K, Wang Y, Zhang H, Yang B. J. Am. Chem. Soc., 2015,137(40): 12906.

doi: 10.1021/jacs.5b06550     URL    
[204]
Wu Z N, Liu H W, Li T T, Liu J L, Yin J, Mohammed O F, Bakr O M, Liu Y, Yang B, Zhang H. J. Am. Chem. Soc., 2017,139(12): 4318.

doi: 10.1021/jacs.7b00773     URL    
[205]
Sugiuchi M, Maeba J, Okubo N, Iwamura M, Nozaki K, Konishi K. J. Am. Chem. Soc., 2017,139(49): 17731.

doi: 10.1021/jacs.7b10201     pmid: 29178782
[206]
Xie Z C, Sun P P, Wang Z, Li H G, Yu L Y, Sun D, Chen M J, Bi Y T, Xin X, Hao J C. Angew. Chem. Int. Ed., 2020,59(25): 9922.

doi: 10.1002/anie.v59.25     URL    
[207]
Kong Y J, Yan Z P, Li S, Su H F, Li K, Zheng Y X, Zang S Q. Angew. Chem. Int. Ed., 2020,59(13): 5336.

doi: 10.1002/anie.v59.13     URL    
[208]
Zhang M M, Dong X Y, Wang Z Y, Li H Y, Li S J, Zhao X L, Zang S Q. Angew. Chem. Int. Ed., 2020,59(25): 10052.

doi: 10.1002/anie.v59.25     URL    
[209]
Han Z, Zhao X L, Peng P, Li S, Zhang C, Cao M, Li K, Wang Z Y, Zang S Q. Nano Res., 2020,13(12): 3248.

doi: 10.1007/s12274-020-2997-0     URL    
[210]
Dou X Y, Yuan X, Yu Y, Luo Z T, Yao Q F, Leong D T, Xie J P. Nanoscale, 2014,6(1): 157.

doi: 10.1039/C3NR04490D     URL    
[211]
Jin S, Liu W, Hu D Q, Zou X J, Kang X, Du W J, Chen S, Wei S Q, Wang S X, Zhu M Z. Chem. Eur. J., 2018,24(15): 3712.

doi: 10.1002/chem.201800189     URL    
[212]
Koshevoy I O, Chang Y C, Karttunen A J, Shakirova J R, Jänis J, Haukka M, Pakkanen T, Chou P T. Chem. Eur. J., 2013,19(16): 5104.

doi: 10.1002/chem.201204611     URL    
[18]
Li X, Ma K, Zhu S J, Yao S Y, Liu Z Y, Xu B, Yang B, Tian W J. Anal. Chem., 2014,86(1): 298.

doi: 10.1021/ac403629t     URL    
[19]
Wang Z L, Ma K, Xu B, Li X, Tian W J. Sci. China Chem., 2013,56(9): 1234.

doi: 10.1007/s11426-013-4917-6     URL    
[20]
Li X, Xu B, Lu H G, Wang Z L, Zhang J B, Zhang Y, Dong Y J, Ma K, Wen S P, Tian W J. Anal. Methods, 2013,5(2): 438.

doi: 10.1039/C2AY26202A     URL    
[21]
Saha B, Ruidas B, Mete S, Mukhopadhyay C D, Bauri K, De P. Chem. Sci., 2020,11(1): 141.

doi: 10.1039/C9SC04338A     URL    
[22]
Ma K, Wang H, Li H L, Xu B, Tian W J. Sens. Actuat. B: Chem., 2017,253: 92.

doi: 10.1016/j.snb.2017.06.055     URL    
[23]
Ma K, Wang H, Li H L, Wang S, Li X, Xu B, Tian W J. Sens. Actuat. B: Chem., 2016,230: 556.

doi: 10.1016/j.snb.2016.02.107     URL    
[24]
Ma L, Xu B, Liu L J, Tian W J. Chem. Res. Chin. Univ., 2018,34(3): 363.

doi: 10.1007/s40242-018-8072-7     URL    
[25]
Xu B, He J T, Dong Y J, Chen F P, Yu W L, Tian W J. Chem. Commun., 2011,47(23): 6602.

doi: 10.1039/c1cc11706h     URL    
[26]
Xu B, Zhang J B, Fang H H, Ma S Q, Chen Q D, Sun H B, Im C, Tian W J. Polym. Chem., 2014,5(2): 479.

doi: 10.1039/C3PY00974B     URL    
[27]
Lu H G, Su F Y, Mei Q, Zhou X F, Tian Y Q, Tian W J, Johnson R H, Meldrum D R. J. Polym. Sci. A Polym. Chem., 2012,50(5): 890.

doi: 10.1002/pola.v50.5     URL    
[28]
Lu H G, Su F Y, Mei Q, Tian Y Q, Tian W J, Johnson R H, Meldrum D R. J. Mater. Chem., 2012,22(19): 9890.

doi: 10.1039/c2jm30258f     URL    
[29]
Zhang Y, Chen Y J, Li X, Zhang J B, Chen J L, Xu B, Fu X Q, Tian W J. Polym. Chem., 2014,5(12): 3824.

doi: 10.1039/C4PY00075G     URL    
[30]
Zhang J B, Xu B, Chen J L, Ma S Q, Dong Y J, Wang L J, Li B, Ye L, Tian W J. Adv. Mater., 2014,26(5): 739.

doi: 10.1002/adma.201303639     URL    
[31]
Ma S Q, Liu Y J, Zhang J B, Xu B, Tian W J. J. Phys. Chem. Lett., 2020,11(24): 10504.

doi: 10.1021/acs.jpclett.0c02917     URL    
[32]
Xu B, Fang H H, Dong Y J, Chen F P, Chen Q D, Sun H B, Tian W J. New J. Chem., 2010,34(9): 1838.

doi: 10.1039/c0nj00300j     URL    
[33]
Chen J L, Ma S Q, Xu B, Zhang J B, Dong Y J, Tian W J. Chin. Sci. Bull., 2013,58(22): 2747.

doi: 10.1007/s11434-013-5897-9     URL    
[34]
Chen J L, Ma S Q, Zhang J B, Li B, Xu B, Tian W J. ACS Photonics, 2015,2(2): 313.

doi: 10.1021/ph5004384     URL    
[35]
Liu Y J, Ma S Q, Xu B, Tian W J. Faraday Discuss., 2017,196: 219.

doi: 10.1039/C6FD00166A     URL    
[36]
Chi Z G, Zhang X Q, Xu B J, Zhou X, Ma C P, Zhang Y, Liu S W, Xu J R. Chem. Soc. Rev., 2012,41(10): 3878.

doi: 10.1039/c2cs35016e     URL    
[37]
Dong Y J, Xu B, Zhang J B, Tan X, Wang L J, Chen J L, Lv H, Wen S P, Li B, Ye L, Zou B, Tian W J. Angew. Chem. Int. Ed., 2012,51(43): 10782.

doi: 10.1002/anie.v51.43     URL    
[38]
Li H Y, Chi Z G, Xu B J, Zhang X Q, Li X F, Liu S W, Zhang Y, Xu J R. J. Mater. Chem., 2011,21(11): 3760.

doi: 10.1039/c0jm02571b     URL    
[39]
Li H Y, Zhang X Q, Chi Z G, Xu B J, Zhou W, Liu S W, Zhang Y, Xu J R. Org. Lett., 2011,13(4): 556.

doi: 10.1021/ol102872x     URL    
[40]
Zhang X Q, Chi Z G, Zhang J Y, Li H Y, Xu B J, Li X F, Liu S W, Zhang Y, Xu J R. J. Phys. Chem. B, 2011,115(23): 7606.

doi: 10.1021/jp202112e     URL    
[41]
Liu W, Wang Y L, Sun M X, Zhang D T, Zheng M, Yang W J. Chem. Commun., 2013,49(54): 6042.

doi: 10.1039/c3cc42636j     URL    
[42]
Xiong Y, Yan X L, Ma Y W, Li Y, Yin G H, Chen L G. Chem. Commun., 2015,51(16): 3403.

doi: 10.1039/C4CC10196K     URL    
[43]
Dong Y J, Zhang J B, Tan X, Wang L J, Chen J L, Li B, Ye L, Xu B, Zou B, Tian W J. J. Mater. Chem. C, 2013,1(45): 7554.

doi: 10.1039/c3tc31553c     URL    
[44]
Zhang J B, Chen J L, Xu B, Wang L J, Ma S Q, Dong Y J, Li B, Ye L, Tian W J. Chem. Commun., 2013,49(37): 3878.

doi: 10.1039/c3cc41171k     URL    
[45]
Ma S Q, Zhang J B, Liu Y J, Qian J Y, Xu B, Tian W J. J. Phys. Chem. Lett., 2017,8(13): 3068.

doi: 10.1021/acs.jpclett.7b01454     URL    
[46]
Gonzalez A, Kengmana E S, Fonseca M V, Han G G D. Mater. Today Adv., 2020,6: 100058.
[47]
Qi Q K, Li C, Liu X G, Jiang S, Xu Z C, Lee R, Zhu M Q, Xu B, Tian W J. J. Am. Chem. Soc., 2017,139(45): 16036.

doi: 10.1021/jacs.7b07738     URL    
[48]
Shao B, Jin R H, Li A S, Liu Y J, Li B, Xu S P, Xu W Q, Xu B, Tian W J. J. Mater. Chem. C, 2019,7(11): 3263.

doi: 10.1039/c9tc00051h    
[49]
Liu Y J, Li A S, Xu S P, Xu W Q, Liu Y, Tian W J, Xu B. Angew. Chem. Int. Ed., 2020,59(35): 15098.

doi: 10.1002/anie.v59.35     URL    
[50]
Li L Z, Chen M, Zhang H K, Nie H, Sun J Z, Qin A J, Tang B Z. Chem. Commun., 2015,51(23): 4830.

doi: 10.1039/C5CC00241A     URL    
[51]
Han P B, Qin A J, Tang B Z. Chem. Res. Chin. Univ., 2021,37(1): 16.

doi: 10.1007/s40242-021-0403-4     URL    
[52]
Han P B, Lin C W, Ma D G, Qin A J, Tang B Z. ACS Appl. Mater. Interfaces, 2020,12(41): 46366.

doi: 10.1021/acsami.0c12722     URL    
[53]
Han P B, Lin C W, Ma D G, Qin A J, Tang B Z. Asian J. Org. Chem., 2020,9(9): 1286.

doi: 10.1002/ajoc.v9.9     URL    
[54]
Han P B, Xu Z, Lin C W, Ma D G, Qin A J, Tang B Z. J. Mater. Chem. C, 2020,8(21): 7012.

doi: 10.1039/D0TC00920B     URL    
[55]
Li L Z, Nie H, Chen M, Sun J Z, Qin A J, Tang B Z. Faraday Discuss., 2017,196: 245.

doi: 10.1039/C6FD00163G     URL    
[56]
Xu Z, Gu J B, Qiao X F, Qin A J, Tang B Z, Ma D G. ACS Photonics, 2019,6(3): 767.

doi: 10.1021/acsphotonics.8b01724     URL    
[57]
Chen M, Li L Z, Nie H, Tong J Q, Yan L L, Xu B, Sun J Z, Tian W J, Zhao Z J, Qin A J, Tang B Z. Chem. Sci., 2015,6(3): 1932.

doi: 10.1039/C4SC03365E     URL    
[58]
Chen M, Nie H, Song B, Li L Z, Sun J Z, Qin A J, Tang B Z. J. Mater. Chem. C, 2016,4(14): 2901.

doi: 10.1039/C5TC03299G     URL    
[59]
Chen M, Chen R, Shi Y, Wang J G, Cheng Y H, Li Y, Gao X D, Yan Y, Sun J Z, Qin A J, Kwok R T K, Lam J W Y, Tang B Z. Adv. Funct. Mater., 2018,28(6): 1704689.

doi: 10.1002/adfm.v28.6     URL    
[60]
Chen M, Liu J K, Liu F, Nie H, Zeng J J, Lin G W, Qin A J, Tu M, He Z K, Sung H H Y, Williams I D, Lam J W Y, Tang B Z. Adv. Funct. Mater., 2019,29(37): 1903834.

doi: 10.1002/adfm.v29.37     URL    
[61]
Chen M, Li L Z, Wu H Q, Pan L X, Li S W, He B R, Zhang H K, Sun J Z, Qin A J, Tang B Z. ACS Appl. Mater. Interfaces, 2018,10(15): 12181.

doi: 10.1021/acsami.8b03178     URL    
[62]
Feng H T, Zheng X Y, Gu X G, Chen M, Lam J W Y, Huang X H, Tang B Z. Chem. Mater., 2018,30(4): 1285.

doi: 10.1021/acs.chemmater.7b04703     URL    
[63]
Yin H Q, Wang X Y, Yin X B. J. Am. Chem. Soc., 2019,141(38): 15166.

doi: 10.1021/jacs.9b06755     URL    
[64]
Lauder K, Toscani A, Scalacci N, Castagnolo D. Chem. Rev., 2017,117(24): 14091.

doi: 10.1021/acs.chemrev.7b00343     pmid: 29166000
[65]
Feng X, Tong B, Shen J B, Shi J B, Han T, Chen L, Zhi J G, Lu P, Ma Y G, Dong Y P. J. Phys. Chem. B, 2010,114(50): 16731.

doi: 10.1021/jp108254g     URL    
[66]
Lei Y X, Dai W B, Liu Z Q, Guo S, Cai Z X, Shi J B, Zheng X Y, Zhi J G, Tong B, Dong Y P. Mater. Chem. Front., 2019,3(2): 284.

doi: 10.1039/C8QM00613J     URL    
[67]
Lei Y X, Liu Q W, Dong L C, Cai Z X, Shi J B, Zhi J G, Tong B, Dong Y P. Chem. Eur. J., 2018,24(53): 14269.

doi: 10.1002/chem.v24.53     URL    
[68]
Li Y Y, Lei Y X, Dong L C, Zhang L L, Zhi J G, Shi J B, Tong B, Dong Y P. Chem. Eur. J., 2019,29(5):573.
[213]
Koshevoy I O, Chang Y C, Karttunen A J, Haukka M, Pakkanen T, Chou P T. J. Am. Chem. Soc., 2012,134(15): 6564.

doi: 10.1021/ja3018994     pmid: 22469012
[214]
Chakrabarty R, Mukherjee P S, Stang P J. Chem. Rev., 2011,111(11): 6810.

doi: 10.1021/cr200077m     pmid: 21863792
[215]
Chakraborty S, Newkome G R. Chem. Soc. Rev., 2018,47(11): 3991.

doi: 10.1039/c8cs00030a     pmid: 29594272
[216]
Fujita M, Tominaga M, Hori A, Therrien B. Acc. Chem. Res., 2005,38(4): 369.

doi: 10.1021/ar040153h     URL    
[217]
Cook T R, Zheng Y R, Stang P J. Chem. Rev., 2013,113(1): 734.

doi: 10.1021/cr3002824     URL    
[218]
Wang W, Wang Y X, Yang H B. Chem. Soc. Rev., 2016,45(9): 2656.

doi: 10.1039/c5cs00301f     pmid: 27009833
[219]
Qin Y, Liu X, Jia P P, Xu L, Yang H B. Chem. Soc. Rev., 2020,49(16): 5678.

doi: 10.1039/C9CS00797K     URL    
[220]
Zhang D W, Ronson T K, Nitschke J R. Acc. Chem. Res., 2018,51(10): 2423.

doi: 10.1021/acs.accounts.8b00303     URL    
[221]
Pullen S, Clever G H. Acc. Chem. Res., 2018,51(12): 3052.

doi: 10.1021/acs.accounts.8b00415     URL    
[222]
Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012,112(2): 673.

doi: 10.1021/cr300014x     URL    
[223]
Chowdhury A, Howlader P, Mukherjee P S. Chem. Eur. J., 2016,22(22): 7468.

doi: 10.1002/chem.v22.22     URL    
[224]
Li Z T, Yan X Z, Huang F H, Sepehrpour H, Stang P J. Org. Lett., 2017,19(21): 5728.

doi: 10.1021/acs.orglett.7b02456     URL    
[225]
Acharyya K, Bhattacharyya S, Sepehrpour H, Chakraborty S, Lu S, Shi B B, Li X P, Mukherjee P S, Stang P J. J. Am. Chem. Soc., 2019,141(37): 14565.

doi: 10.1021/jacs.9b08403     pmid: 31479260
[226]
Tuo W, Sun Y, Lu S, Li X P, Sun Y, Stang P J. J. Am. Chem. Soc., 2020,142(40): 16930.

doi: 10.1021/jacs.0c08697     URL    
[227]
Zhang C W, Ou B, Jiang S T, Yin G Q, Chen L J, Xu L, Li X P, Yang H B. Polym. Chem., 2018,9(15): 2021.

doi: 10.1039/C8PY00226F     URL    
[228]
Zheng W, Yang G, Jiang S T, Shao N N, Yin G Q, Xu L, Li X P, Chen G S, Yang H B. Mater. Chem. Front., 2017,1(9): 1823.

doi: 10.1039/C7QM00107J     URL    
[229]
Lu C J, Zhang M M, Tang D T, Yan X Z, Zhang Z Y, Zhou Z X, Song B, Wang H, Li X P, Yin S C, Sepehrpour H, Stang P J. J. Am. Chem. Soc., 2018,140(24): 7674.

doi: 10.1021/jacs.8b03781     URL    
[69]
Lei Y X, Lai Y Y, Dong L C, Shang G J, Cai Z X, Shi J B, Zhi J G, Li P F, Huang X B, Tong B, Dong Y P. Chem. Eur. J., 2018,24(2): 434.

doi: 10.1002/chem.v24.2     URL    
[70]
Ren F, Liu Z Q, Lei Y X, Dai W B, Shi J B, Cai Z X, Tong B, Dong Y P. Dyes Pigments, 2021,188: 109222.

doi: 10.1016/j.dyepig.2021.109222     URL    
[71]
Dong L C, Shang G J, Shi J B, Zhi J G, Tong B, Dong Y P. J. Phys. Chem. C, 2017,121(21): 11658.

doi: 10.1021/acs.jpcc.7b02125     URL    
[72]
Feng G X, Zhang G Q, Ding D. Chem. Soc. Rev., 2020,49(22): 8179.

doi: 10.1039/D0CS00671H     URL    
[73]
Wang Q, Dai Y N, Xu J Z, Cai J, Niu X R, Zhang L, Chen R F, Shen Q M, Huang W, Fan Q L. Adv. Funct. Mater., 2019,29(31): 1901480.

doi: 10.1002/adfm.v29.31     URL    
[74]
Ren F, Liu P, Gao Y, Shi J B, Tong B, Cai Z X, Dong Y P. Mater. Chem. Front., 2019,3(1): 57.

doi: 10.1039/C8QM00425K     URL    
[75]
Ren F, Li Z S, Li K, Zheng X Y, Shi J B, Zhang C, Guo H, Tong B, Xi L, Cai Z X, Dong Y P. Sci. China Chem., 2021,64(9): 1530.

doi: 10.1007/s11426-021-1055-0     URL    
[76]
Ren F, Shi J B, Tong B, Cai Z X, Dong Y P. Mater. Chem. Front., 2019,3(10): 2072.

doi: 10.1039/C9QM00372J     URL    
[77]
Qu J M, Ren F, Shi J B, Tong B, Cai Z X, Dong Y P. Chem. Eur. J., 2020,26(65): 14947.

doi: 10.1002/chem.v26.65     URL    
[78]
Ji Y C, Peng Z, Tong B, Shi J B, Zhi J G, Dong Y P. Dyes Pigments, 2017,139: 664.

doi: 10.1016/j.dyepig.2016.12.061     URL    
[79]
Peng Z, Ji Y C, Huang Z H, Tong B, Shi J B, Dong Y P. Mater. Chem. Front., 2018,2(6): 1175.

doi: 10.1039/C8QM00096D     URL    
[80]
Dai S X, Cai Z X, Peng Z, Wang Z, Tong B, Shi J B, Gan S L, He Q M, Chen W, Dong Y P. Mater. Chem. Front., 2019,3(6): 1105.

doi: 10.1039/C9QM00124G     URL    
[81]
Liu L Q, Wang X, Wang L J, Guo L Q, Li Y B, Bai B, Fu F, Lu H G, Zhao X W. ACS Appl. Mater. Interfaces, 2021,13(17): 19668.

doi: 10.1021/acsami.1c02260     URL    
[82]
Dai S X, Zhou Y D, Zhang H L, Cai Z X, Tong B, Shi J B, Dong Y P. J. Mater. Chem. C, 2020,8(32): 11177.

doi: 10.1039/D0TC01902J     URL    
[83]
Xu B J, Chi Z G, Zhang J Y, Zhang X Q, Li H Y, Li X F, Liu S W, Zhang Y, Xu J R. Chem. Asian J., 2011,6(6): 1470.

doi: 10.1002/asia.v6.6     URL    
[84]
Leung N L C, Xie N, Yuan W Z, Liu Y, Wu Q Y, Peng Q, Miao Q, Lam J W Y, Tang B Z. Chem. Eur. J., 2014,20(47): 15349.

doi: 10.1002/chem.v20.47     URL    
[85]
Yang Z Y, Chi Z H, Mao Z, Zhang Y, Liu S W, Zhao J, Aldred M P, Chi Z G. Mater. Chem. Front., 2018,2(5): 861.

doi: 10.1039/C8QM00062J     URL    
[230]
Guo Z W, Li G F, Wang H, Zhao J, Liu Y H, Tan H W, Li X P, Stang P J, Yan X Z. J. Am. Chem. Soc., 2021,143(24): 9215.

doi: 10.1021/jacs.1c04288     URL    
[231]
Jeyakkumar P, Liang Y P, Guo M Y, Lu S, Xu D H, Li X P, Guo B L, He G, Chu D K, Zhang M M. Angew. Chem. Int. Ed., 2020,59(35): 15199.

doi: 10.1002/anie.v59.35     URL    
[232]
Yu G C, Zhang M M, Saha M L, Mao Z W, Chen J, Yao Y, Zhou Z J, Liu Y J, Gao C Y, Huang F H, Chen X Y, Stang P J. J. Am. Chem. Soc., 2017,139(44): 15940.

doi: 10.1021/jacs.7b09224     URL    
[233]
Zhang C W, Jiang S T, Yin G Q, Li X P, Zhao X L, Yang H B. Isr. J. Chem., 2018,58(11): 1265.

doi: 10.1002/ijch.201800062     URL    
[234]
Chen L, Chen C L, Sun Y, Lu S, Huo H H, Tan T Y, Li A Q, Li X P, Ungar G, Liu F, Zhang M M. Angew. Chem. Int. Ed., 2020,59(25): 10143.

doi: 10.1002/anie.v59.25     URL    
[235]
Li Y, An Y Y, Fan J Z, Liu X X, Li X, Hahn F E, Wang Y Y, Han Y F. Angew. Chem. Int. Ed., 2020,59(25): 10073.

doi: 10.1002/anie.v59.25     URL    
[236]
Jiao J J, Li Z J, Qiao Z W, Li X, Liu Y, Dong J Q, Jiang J W, Cui Y. Nat. Commun., 2018,9(1): 4423.

doi: 10.1038/s41467-018-06872-0     URL    
[237]
Zhang T, Zhang G L, Yan Q Q, Zhou L P, Cai L X, Guo X Q, Sun Q F. Inorg. Chem., 2018,57(7): 3596.

doi: 10.1021/acs.inorgchem.7b02502     pmid: 29206034
[238]
Kennedy A D W, De Haas N, Iranmanesh H, Luis E T, Shen C, Wang P, Price J R, Donald W A, AndrÉasson J, Huang F H, Beves J E. Chem. Eur. J., 2019,25(22): 5708.

doi: 10.1002/chem.v25.22     URL    
[239]
Gong Q H, Hu Z C, Deibert B J, Emge T J, Teat S J, Banerjee D, Mussman B, Rudd N D, Li J. J. Am. Chem. Soc., 2014,136(48): 16724.

doi: 10.1021/ja509446h     URL    
[240]
Jiang B, Zhang C W, Shi X L, Yang H B. Chin. J. Polym. Sci., 2019,37(4): 372.

doi: 10.1007/s10118-019-2216-1     URL    
[241]
Chen L J, Ren Y Y, Wu N W, Sun B, Ma J Q, Zhang L, Tan H W, Liu M H, Li X P, Yang H B. J. Am. Chem. Soc., 2015,137(36): 11725.

doi: 10.1021/jacs.5b06565     pmid: 26322626
[242]
Hu Y X, Wu G Y, Wang X Q, Yin G Q, Zhang C W, Li X P, Xu L, Yang H B. Molecules, 2021,26(3): 716.

doi: 10.3390/molecules26030716     URL    
[243]
Shi Z T, Hu Y X, Hu Z B, Zhang Q, Chen S Y, Chen M, Yu J J, Yin G Q, Sun H T, Xu L, Li X P, Feringa B L, Yang H B, Tian H, Qu D H. J. Am. Chem. Soc., 2021,143(1): 442.

doi: 10.1021/jacs.0c11752     URL    
[244]
Chen L J, Ren Y Y, Wu N W, Sun B, Ma J Q, Zhang L, Tan H W, Liu M H, Li X P, Yang H B. J. Am. Chem. Soc., 2015,137(36): 11725.

doi: 10.1021/jacs.5b06565     pmid: 26322626
[245]
Tian Y, Yan X Z, Saha M L, Niu Z W, Stang P J. J. Am. Chem. Soc., 2016,138(37): 12033.

doi: 10.1021/jacs.6b07402     pmid: 27608138
[246]
Yan X Z, Wang H Z, Hauke C E, Cook T R, Wang M, Saha M L, Zhou Z X, Zhang M M, Li X P, Huang F H, Stang P J. J. Am. Chem. Soc., 2015,137(48): 15276.

doi: 10.1021/jacs.5b10130     URL    
[247]
Yin G Q, Wang H, Wang X Q, Song B, Chen L J, Wang L, Hao X Q, Yang H B, Li X P. Nat. Commun., 2018,9(1): 567.

doi: 10.1038/s41467-018-02959-w     URL    
[248]
Hu Y X, Hao X T, Xu L, Xie X L, Xiong B J, Hu Z B, Sun H T, Yin G Q, Li X P, Peng H Y, Yang H B. J. Am. Chem. Soc., 2020,142(13): 6285.

doi: 10.1021/jacs.0c00698     pmid: 32160466
[249]
Zhang D Q, Yu W, Li S W, Xia Y, Li X Y, Li Y R, Yi T. J. Am. Chem. Soc., 2021,143(3): 1313.

doi: 10.1021/jacs.0c12522     URL    
[250]
Yan X Z, Cook T R, Wang P, Huang F H, Stang P J. Nat. Chem., 2015,7(4): 342.

doi: 10.1038/nchem.2201     URL    
[251]
Zhang Z Y, Zhao Z Q, Hou Y L, Wang H, Li X P, He G, Zhang M M. Angew. Chem. Int. Ed., 2019,58(26): 8862.

doi: 10.1002/anie.v58.26     URL    
[252]
Feng J, Yao L, Zhang J Y, Mu Y X, Chi Z G, Su C Y. Dalton Trans., 2016,45(4): 1668.

doi: 10.1039/C5DT04319K     URL    
[253]
Dong J Q, Pan Y T, Wang H, Yang K W, Liu L M, Qiao Z W, Yuan Y D, Peh S B, Zhang J, Shi L L, Liang H, Han Y, Li X P, Jiang J W, Liu B, Zhao D. Angew. Chem. Int. Ed., 2020,59(25): 10151.

doi: 10.1002/anie.v59.25     URL    
[254]
Yan X Z, Wei P F, Liu Y H, Wang M, Chen C S, Zhao J, Li G F, Saha M L, Zhou Z X, An Z, Li X P, Stang P J. J. Am. Chem. Soc., 2019,141(24): 9673.

doi: 10.1021/jacs.9b03885     URL    
[255]
Shustova N B, McCarthy B D, Dincă M. J. Am. Chem. Soc., 2011,133(50): 20126.

doi: 10.1021/ja209327q     pmid: 22074054
[256]
Shustova N B, Cozzolino A F, Reineke S, Baldo M, Dincă M. J. Am. Chem. Soc., 2013,135(36): 13326.

doi: 10.1021/ja407778a     pmid: 23981174
[257]
Wei Z W, Gu Z Y, Arvapally R K, Chen Y P, McDougald R N Jr, Ivy J F, Yakovenko A A, Feng D W, Omary M A, Zhou H C. J. Am. Chem. Soc., 2014,136(23): 8269.

doi: 10.1021/ja5006866     URL    
[258]
Zhang Q, Su J, Feng D W, Wei Z W, Zou X D, Zhou H C. J. Am. Chem. Soc., 2015,137(32): 10064.

doi: 10.1021/jacs.5b04695     URL    
[259]
Zhang M, Feng G X, Song Z G, Zhou Y P, Chao H Y, Yuan D Q, Tan T T Y, Guo Z G, Hu Z G, Tang B Z, Liu B, Zhao D. J. Am. Chem. Soc., 2014,136(20): 7241.

doi: 10.1021/ja502643p     pmid: 24824627
[260]
Hu Z C, Lustig W P, Zhang J M, Zheng C, Wang H, Teat S J, Gong Q H, Rudd N D, Li J. J. Am. Chem. Soc., 2015,137(51): 16209.

doi: 10.1021/jacs.5b10308     URL    
[261]
Peng Q, Shuai Z G. Aggregate, 2021,2(5): 91.
[262]
Oelkrug D, Tompert A, Gierschner J, Egelhaaf H J, Hanack M, Hohloch M, Steinhuber E. J. Phys. Chem. B, 1998,102(11): 1902.

doi: 10.1021/jp973225d     URL    
[263]
Peng Q, Yi Y P, Shuai Z G, Shao J S. J. Am. Chem. Soc., 2007,129(30): 9333.

doi: 10.1021/ja067946e     URL    
[264]
Xie Z Q, Yang B, Cheng G, Liu L L, He F, Shen F Z, Ma Y G, Liu S Y. Chem. Mater., 2005,17(6): 1287.

doi: 10.1021/cm048400z     URL    
[265]
Yang G Q, Li S Y, Wang S Q, Li Y. Comptes Rendus Chimie, 2011,14(9): 789.

doi: 10.1016/j.crci.2011.08.003     URL    
[266]
Li Q S, Blancafort L. Chem. Commun., 2013,49(53): 5966.

doi: 10.1039/c3cc41730a     URL    
[267]
Ma H L, Shi W, Ren J J, Li W Q, Peng Q, Shuai Z G. J. Phys. Chem. Lett., 2016,7(15): 2893.

doi: 10.1021/acs.jpclett.6b01156     URL    
[268]
Yin P A, Wan Q, Niu Y L, Peng Q, Wang Z M, Li Y X, Qin A J, Shuai Z G, Tang B Z. Adv. Electron. Mater., 2020,6(7): 2000255.

doi: 10.1002/aelm.v6.7     URL    
[269]
Spano F C. Acc. Chem. Res., 2010,43(3): 429.

doi: 10.1021/ar900233v     URL    
[270]
Li W Q, Peng Q, Xie Y J, Zhang T, Shuai Z G. Acta Chim. Sinica, 2016,74(11): 902.

doi: 10.6023/A16080452     URL    
[271]
Hestand N J, Spano F C. Acc. Chem. Res., 2017,50(2): 341.

doi: 10.1021/acs.accounts.6b00576     URL    
[272]
Song J, Gao F, Shi B, Liang W Z. Phys. Chem. Chem. Phys., 2010,12(40): 13070.

doi: 10.1039/c003944f     URL    
[273]
Sun Q, Ren J J, Jiang T, Peng Q, Ou Q, Shuai Z G. Nano Lett., 2021,21(12): 5394.

doi: 10.1021/acs.nanolett.1c01734     pmid: 34125544
[274]
Tu Y J, Zhao Z, Lam J W Y, Tang B Z. Natl. Sci. Rev., 2021,8(6): nwaa260. DOI: 10.1093/nsr/nwaa260.

doi: 10.1093/nsr/nwaa260     URL    
[275]
Zhang J Y, Zhang H K, Lam J W Y, Tang B Z. Chem. Res. Chin. Univ., 2021,37(1): 1.

doi: 10.1007/s40242-021-0381-6     URL    
[276]
Zhang H K, Zhao Z, Turley A T, Wang L, McGonigal P R, Tu Y J, Li Y Y, Wang Z Y, Kwok R T K, Lam J W Y, Tang B Z. Adv. Mater., 2020: 2001457.
[277]
Yu G, Yin S W, Liu Y Q, Chen J, Xu X, Sun X, Ma D, Zhan X, Peng Q, Shuai Z G, Tang B Z, Zhu D B, Fang W H, Luo Y. J. Am. Chem. Soc., 2005,127(17): 6335.

doi: 10.1021/ja044628b     URL    
[278]
Peng Q, Yi Y P, Shuai Z G, Shao J S. J. Chem. Phys., 2007,126(11): 114302.

doi: 10.1063/1.2710274     URL    
[279]
Li M C, Hayashi M, Lin S H. J. Phys. Chem. A, 2011,115(50): 14531.

doi: 10.1021/jp208199t     URL    
[280]
Wu Q Y, Peng Q, Niu Y L, Gao X, Shuai Z G. J. Phys. Chem. A, 2012,116(15): 3881.

doi: 10.1021/jp3002367     URL    
[281]
Gao X, Peng Q, Niu Y L, Wang D, Shuai Z G. Phys. Chem. Chem. Phys., 2012,14(41): 14207.

doi: 10.1039/c2cp40347a     URL    
[282]
Zhang T, Ma H L, Niu Y L, Li W Q, Wang D, Peng Q, Shuai Z G, Liang W Z. J. Phys. Chem. C, 2015,119(9): 5040.

doi: 10.1021/acs.jpcc.5b01323     URL    
[283]
Zhang T, Peng Q, Quan C Y, Nie H, Niu Y L, Xie Y J, Zhao Z J, Tang B Z, Shuai Z G. Chem. Sci., 2016,7(8): 5573.

doi: 10.1039/c6sc00839a     pmid: 30034698
[284]
Lin S Y, Peng Q, Ou Q, Shuai Z G. Inorg. Chem., 2019,58(21): 14403.

doi: 10.1021/acs.inorgchem.9b01705     URL    
[285]
Zhao Z, Zheng X Y, Du L L, Xiong Y, He W, Gao X X, Li C L, Liu Y J, Xu B, Zhang J, Song F Y, Yu Y, Zhao X Q, Cai Y J, He X W, Kwok R T K, Lam J W Y, Huang X H, Lee Phillips D, Wang H, Tang B Z. Nat. Commun., 2019,10(1): 2952.

doi: 10.1038/s41467-019-10818-5     pmid: 31273202
[286]
Fan J Z, Lin L L, Wang C K. J. Mater. Chem. C, 2017,5(33): 8390.

doi: 10.1039/C7TC02541F     URL    
[287]
Zhou C J, Zhang S T, Gao Y, Liu H C, Shan T, Liang X M, Yang B, Ma Y G. Adv. Funct. Mater., 2018,28(32): 1802407.

doi: 10.1002/adfm.v28.32     URL    
[288]
Feng H T, Zeng J J, Yin P G, Wang X D, Peng Q, Zhao Z J, Lam J W Y, Tang B Z. Nat. Commun., 2020,11(1): 2617.

doi: 10.1038/s41467-020-16412-4     URL    
[289]
Jiang Q, Xu X H, Yin P A, Ma K, Zhen Y G, Duan P F, Peng Q, Chen W Q, Ding B Q. J. Am. Chem. Soc., 2019,141(24): 9490.

doi: 10.1021/jacs.9b03305     pmid: 31184485
[290]
Ni J S, Zhang P F, Jiang T, Chen Y C, Su H F, Wang D, Yu Z Q, Kwok R T K, Zhao Z J, Lam J W Y, Tang B Z. Adv. Mater., 2018,30(50): 1805220.

doi: 10.1002/adma.v30.50     URL    
[291]
Wu Y, Sun H Z, Cao H T, Li H B, Shan G G, Duan Y A, Geng Y, Su Z M, Liao Y. Chem. Commun., 2014,50(75): 10986.

doi: 10.1039/C4CC03423F     URL    
[292]
Crespo-Otero R, Li Q S, Blancafort L. Chem. Asian J., 2019,14(6): 700.

doi: 10.1002/asia.v14.6     URL    
[293]
Wang B, Wang X J, Wang W L, Liu F Y. J. Phys. Chem. C, 2016,120(38): 21850.

doi: 10.1021/acs.jpcc.6b07963     URL    
[294]
Gao Y J, Chang X P, Liu X Y, Li Q S, Cui G L, Thiel W. J. Phys. Chem. A, 2017,121(13): 2572.

doi: 10.1021/acs.jpca.7b00197     URL    
[295]
Londesborough M G S, Dolansk J, Cerdn L, Lang K, Jelínek T, Oliva J M, Hnyk D, Roca-Sanjun D, Francs-Monerris A, Martiník J, Nikl M, Kennedy J D. Adv. Opt. Mater., 2017,5(6): 1600694.

doi: 10.1002/adom.201600694     URL    
[296]
Guan J X, Wei R, Prlj A, Peng J, Lin K H, Liu J T, Han H, Corminboeuf C, Zhao D H, Yu Z H, Zheng J R. Angew. Chem. Int. Ed., 2020,59(35): 14903.

doi: 10.1002/anie.v59.35     URL    
[297]
Zhou P W, Li P, Zhao Y L, Han K L. J. Phys. Chem. Lett., 2019,10(21): 6929.

doi: 10.1021/acs.jpclett.9b02922     URL    
[298]
Yang L, Ye P, Li W Q, Zhang W J, Guan Q, Ye C, Dong T, Wu X X, Zhao W J, Gu X G, Peng Q, Tang B Z, Huang H. Adv. Opt. Mater., 2018,6(9): 1701394.

doi: 10.1002/adom.v6.9     URL    
[299]
Hu R R, Lager E, Aguilar-Aguilar A, Liu J Z, Lam J W Y, Sung H H Y, Williams I D, Zhong Y C, Wong K S, Peña-Cabrera E, Tang B Z. J. Phys. Chem. C, 2009,113(36): 15845.

doi: 10.1021/jp902962h     URL    
[300]
Yang S J, Yin P A, Li L, Peng Q, Gu X G, Gao G, You J S, Tang B Z. Angew. Chem. Int. Ed., 2020,59(25): 10136.

doi: 10.1002/anie.v59.25     URL    
[301]
Wykes M, Parambil R, Beljonne D, Gierschner J. J. Chem. Phys., 2015,143(11): 114116.

doi: 10.1063/1.4930606     pmid: 26395696
[302]
Niday G J, Seybold P G. Anal. Chem., 1978,50(11): 1577.

doi: 10.1021/ac50033a044     URL    
[303]
Lewis G N, Lipkin D, Magel T T. J. Am. Chem. Soc., 1941,63(11): 3005.

doi: 10.1021/ja01856a043     URL    
[304]
Niday G J, Seybold P G. Anal. Chem., 1978,50(11): 1577.

doi: 10.1021/ac50033a044     URL    
[305]
Lewis G N, Lipkin D, Magel T T. J. Am. Chem. Soc., 1941,63(11): 3005.

doi: 10.1021/ja01856a043     URL    
[306]
Clapp D B. J. Am. Chem. Soc., 1939,61(2): 523.
[307]
Lewis G N, Kasha M. J. Am. Chem. Soc., 1944,66(12): 2100.

doi: 10.1021/ja01240a030     URL    
[308]
McClure D S. J. Chem. Phys., 1949,17(10): 905.

doi: 10.1063/1.1747085     URL    
[309]
Kasha M. Discuss. Faraday Soc., 1950,9: 14.

doi: 10.1039/df9500900014     URL    
[310]
Lower S K, El-Sayed M A. Chem. Rev., 1966,66(2): 199.

doi: 10.1021/cr60240a004     URL    
[311]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010,114(13): 6090.

doi: 10.1021/jp909388y     URL    
[312]
Sun C, Ran X, Wang X, Cheng Z, Wu Q, Cai S, Gu L, Gan N, Shi H, An Z, Shi H, Huang W, J. Phys. Chem. Lett., 2018,9(2): 335.

doi: 10.1021/acs.jpclett.7b02953     pmid: 29298070
[313]
Chen X F, Xu C, Wang T, Zhou C, Du J J, Wang Z P, Xu H X, Xie T Q, Bi G Q, Jiang J, Zhang X P, Demas J N, Trindle C O, Luo Y, Zhang G Q. Angew. Chem., 2016,128(34): 10026.

doi: 10.1002/ange.201601252     URL    
[314]
An Z F, Zheng C, Tao Y, Chen R F, Shi H F, Chen T, Wang Z X, Li H H, Deng R R, Liu X G, Huang W. Nat. Mater., 2015,14(7): 685.

doi: 10.1038/nmat4259     URL    
[315]
Cai S Z, Shi H F, Zhang Z Y, Wang X, Ma H L, Gan N, Wu Q, Cheng Z C, Ling K, Gu M X, Ma C Q, Gu L, An Z F, Huang W. Angew. Chem. Int. Ed., 2018,57(15): 4005.

doi: 10.1002/anie.201800697     URL    
[316]
Yao W, Ma C Q, Ma H L, Fu L S, Lu S, Lv A, Cai S Z, Hang X C, Singh M, Shi H F, An Z F, Huang W. Giant, 2020,1: 100007.

doi: 10.1016/j.giant.2020.100007     URL    
[317]
Song L L, Wang X, Zhang M, Jia W Y, Wang Q, Ye W P, Wang H, Lv A, Ma H L, Gu L, Shi H F, An Z F, Huang W. CCS Chem., 2021: 466.
[318]
Bian L F, Shi H F, Wang X, Ling K, Ma H L, Li M P, Cheng Z C, Ma C Q, Cai S Z, Wu Q, Gan N, Xu X F, An Z F, Huang W. J. Am. Chem. Soc., 2018,140(34): 10734.

doi: 10.1021/jacs.8b03867     URL    
[319]
Cheng Z C, Shi H F, Ma H L, Bian L F, Wu Q, Gu L, Cai S Z, Wang X, Xiong W W, An Z F, Huang W. Angew. Chem. Int. Ed., 2018,57(3): 678.

doi: 10.1002/anie.v57.3     URL    
[320]
Cai S Z, Ma H L, Shi H F, Wang H, Wang X, Xiao L X, Ye W P, Huang K W, Cao X D, Gan N, Ma C Q, Gu M X, Song L L, Xu H, Tao Y T, Zhang C F, Yao W, An Z F, Huang W. Nat. Commun., 2019,10(1): 4247.

doi: 10.1038/s41467-019-11749-x     URL    
[321]
Wang H, Shi H F, Ye W P, Yao X K, Wang Q, Dong C M, Jia W Y, Ma H L, Cai S Z, Huang K W, Fu L S, Zhang Y Y, Zhi J H, Gu L, Zhao Y L, An Z F, Huang W. Angew. Chem., 2019,131(52): 18952.

doi: 10.1002/ange.v131.52     URL    
[322]
Gu L, Wu H W, Ma H L, Ye W P, Jia W Y, Wang H, Chen H Z, Zhang N, Wang D D, Qian C, An Z F, Huang W, Zhao Y L. Nat. Commun., 2020,11(1): 944.

doi: 10.1038/s41467-020-14792-1     URL    
[323]
Gu L, Shi H F, Miao C Y, Wu Q, Cheng Z C, Cai S Z, Gu M X, Ma C Q, Yao W, Gao Y R, An Z F, Huang W. J. Mater. Chem. C, 2018,6(2): 226.

doi: 10.1039/C7TC04452F     URL    
[324]
Li M P, Ling K, Shi H F, Gan N, Song L L, Cai S Z, Cheng Z C, Gu L, Wang X, Ma C Q, Gu M X, Wu Q, Bian L F, Liu M L, An Z F, Ma H L, Huang W. Adv. Opt. Mater., 2019,7(10): 1800820.

doi: 10.1002/adom.v7.10     URL    
[325]
Zhao W J, He Z K, Lam J W Y, Peng Q, Ma H L, Shuai Z G, Bai G X, Hao J H, Tang B Z. Chem, 2016,1(4): 592.

doi: 10.1016/j.chempr.2016.08.010     URL    
[326]
He Z K, Zhao W J, Lam J W Y, Peng Q, Ma H L, Liang G D, Shuai Z G, Tang B Z. Nat. Commun., 2017,8(1): 416.

doi: 10.1038/s41467-017-00362-5     URL    
[327]
Xiong Y, Zhao Z, Zhao W J, Ma H L, Peng Q, He Z K, Zhang X P, Chen Y C, He X W, Lam J W Y, Tang B Z. Angew. Chem. Int. Ed., 2018,57(27): 7997.

doi: 10.1002/anie.v57.27     URL    
[328]
Zhao W J, Cheung T S, Jiang N, Huang W B, Lam J W Y, Zhang X P, He Z K, Tang B Z. Nat. Commun., 2019,10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[329]
Tian S, Ma H L, Wang X, Lv A, Shi H F, Geng Y, Li J, Liang F S, Su Z M, An Z F, Huang W. Angew. Chem. Int. Ed., 2019,58(20): 6645.

doi: 10.1002/anie.v58.20     URL    
[330]
Cai S Z, Shi H F, Tian D, Ma H L, Cheng Z C, Wu Q, Gu M X, Huang L, An Z F, Peng Q, Huang W. Adv. Funct. Mater., 2018,28(9): 1705045.

doi: 10.1002/adfm.v28.9     URL    
[331]
Shi H F, Song L L, Ma H L, Sun C, Huang K W, Lv A, Ye W P, Wang H, Cai S Z, Yao W, Zhang Y J, Zheng R L, An Z F, Huang W. J. Phys. Chem. Lett., 2019,10(3): 595.
[332]
Tu D S, Cai S Z, Fernandez C, Ma H L, Wang X, Wang H, Ma C Q, Yan H, Lu C S, An Z F. Angew. Chem. Int. Ed., 2019,58(27): 9129.

doi: 10.1002/anie.v58.27     URL    
[333]
Liao F, Du J J, Nie X C, Wu Z Y, Su H, Huang W H, Wang T, Chen B, Jiang J, Zhang X P, Zhang G Q. Dyes Pigments, 2021,193: 109505.

doi: 10.1016/j.dyepig.2021.109505     URL    
[334]
Sun W, Wang Z W, Wang T, Yang L, Jiang J, Zhang X Y, Luo Y, Zhang G Q. J. Phys. Chem. A, 2017,121(22): 4225.

doi: 10.1021/acs.jpca.7b01711     URL    
[335]
Chen B, Zhang X P, Wang Y C, Miao H, Zhang G Q. Chem. Asian J., 2019,14(6): 751.

doi: 10.1002/asia.v14.6     URL    
[336]
Huang L K, Chen B, Zhang X P, Trindle C O, Liao F, Wang Y C, Miao H, Luo Y, Zhang G Q. Angew. Chem., 2018,130(49): 16278.

doi: 10.1002/ange.v130.49     URL    
[337]
Wang T, Hu Z B, Nie X C, Huang L K, Hui M, Sun X, Zhang G Q. Nat. Commun., 2021,12(1): 1364.

doi: 10.1038/s41467-021-21676-5     pmid: 33649318
[338]
Gu L, Shi H F, Bian L F, Gu M X, Ling K, Wang X, Ma H L, Cai S Z, Ning W H, Fu L S, Wang H, Wang S, Gao Y R, Yao W, Huo F W, Tao Y T, An Z F, Liu X G, Huang W. Nat. Photonics, 2019,13(6): 406.

doi: 10.1038/s41566-019-0408-4     URL    
[339]
Bian L F, Ma H L, Ye W P, Lv A, Wang H, Jia W Y, Gu L, Shi H F, An Z F, Huang W. Sci. China Chem., 2020,63(10): 1443.

doi: 10.1007/s11426-020-9761-x     URL    
[340]
Wang X, Shi H F, Ma H L, Ye W P, Song L L, Zan J, Yao X K, Ou X Y, Yang G H, Zhao Z, Singh M, Lin C Y, Wang H, Jia W Y, Wang Q, Zhi J H, Dong C M, Jiang X Y, Tang Y, Xie X J, Yang Y, Wang J P, Chen Q S, Wang Y, Yang H H, Zhang G Q, An Z F, Liu X G, Huang W. Nat. Photonics, 2021,15(3): 187.

doi: 10.1038/s41566-020-00744-0     URL    
[341]
Cai S Z, Shi H F, Li J W, Gu L, Ni Y, Cheng Z C, Wang S, Xiong W W, Li L, An Z F, Huang W. Adv. Mater., 2017,29(35): 1701244.

doi: 10.1002/adma.201701244     URL    
[342]
Gu L, Shi H F, Gu M X, Ling K, Ma H L, Cai S Z, Song L L, Ma C Q, Li H, Xing G C, Hang X C, Li J W, Gao Y R, Yao W, Shuai Z G, An Z F, Liu X G, Huang W. Angew. Chem. Int. Ed., 2018,57(28): 8425.

doi: 10.1002/anie.v57.28     URL    
[343]
Gu M X, Shi H F, Ling K, Lv A, Huang K W, Singh M, Wang H, Gu L, Yao W, An Z F, Ma H L, Huang W. Research, 2020,2020: 1.
[344]
Chen B, Huang W H, Su H, Miao H, Zhang X P, Zhang G Q. Angew. Chem. Int. Ed., 2020,59(25): 10023.

doi: 10.1002/anie.v59.25     URL    
[345]
Chen B, Huang W H, Nie X C, Liao F, Miao H, Zhang X P, Zhang G Q. Angew. Chem. Int. Ed., 2021,60(31): 16970.

doi: 10.1002/anie.v60.31     URL    
[346]
Chen C J, Chi Z G, Chong K C, Batsanov A S, Yang Z, Mao Z, Yang Z Y, Liu B. Nat. Mater., 2021,20(2): 175.

doi: 10.1038/s41563-020-0797-2     URL    
[347]
Wang Y S, Yang J, Fang M M, Yu Y S, Zou B, Wang L W, Tian Y, Cheng J X, Tang B Z, Li Z. Matter, 2020,3(2): 449.

doi: 10.1016/j.matt.2020.05.005     URL    
[348]
Zhang X P, Du L L, Zhao W J, Zhao Z, Xiong Y, He X W, Gao P F, Alam P, Wang C, Li Z, Leng J, Liu J X, Zhou C Y, Lam J W Y, Phillips D L, Zhang G Q, Tang B Z. Nat. Commun., 2019,10(1): 5161.

doi: 10.1038/s41467-019-13048-x     URL    
[349]
Wang T, Su X G, Zhang X P, Nie X C, Huang L K, Zhang X Y, Sun X, Luo Y, Zhang G Q. Adv. Mater., 2019,31(51): 1904273.

doi: 10.1002/adma.v31.51     URL    
[350]
You Y Q, Huang K W, Liu X J, Pan X, Zhi J H, He Q J, Shi H F, An Z F, Ma X, Huang W. Small, 2020,16(8): 1906733.

doi: 10.1002/smll.v16.8     URL    
[351]
Shi H F, Zou L, Huang K W, Wang H, Sun C, Wang S, Ma H L, He Y R, Wang J P, Yu H D, Yao W, An Z F, Zhao Q, Huang W. ACS Appl. Mater. Interfaces, 2019,11(20): 18103.

doi: 10.1021/acsami.9b01615     URL    
[352]
Wang S, Xu M, Huang K W, Zhi J H, Sun C, Wang K, Zhou Q, Gao L L, Jia Q Y, Shi H F, An Z F, Li P, Huang W. Sci. China Mater., 2020,63(2): 316.

doi: 10.1007/s40843-019-1191-9     URL    
[353]
Wu Q, Ma H L, Ling K, Gan N, Cheng Z C, Gu L, Cai S Z, An Z F, Shi H F, Huang W. ACS Appl. Mater. Interfaces, 2018,10(39): 33730.

doi: 10.1021/acsami.8b13713     URL    
[354]
Chen X H, Wang Y Z, Zhang Y M, Yuan W Z. Prog. Chem. 2019,31(11): 1560.
( 陈晓红, 王允中, 张永明, 袁望章. 化学进展, 2019,31(11): 1560.)

doi: 10.7536/PC190812    
[355]
Feng Z, Zhao W, Liang Z, Lv Y, Xiang F, Sun D, Xiong C, Duan C, Dai L, Ni Y. ACS Appl. Mater. Interfaces, 2020,12(9): 11005.

doi: 10.1021/acsami.9b22475     URL    
[356]
Tarekegne A T, Janting J, Ou H Y. Opt. Mater. Express., 2020,10(12): 3424.

doi: 10.1364/OME.411329     URL    
[357]
Lee W I, Bae Y, Bard A J. J. Am. Chem. Soc., 2004,126(27): 8358.

doi: 10.1021/ja0475914     URL    
[358]
Wang D J, Imae T. J. Am. Chem. Soc., 2004,126(41): 13204.

doi: 10.1021/ja0454992     URL    
[359]
Zhou Q, Yang T J, Zhong Z H, Kausar F, Wang Z Y, Zhang Y M, Yuan W Z. Chem. Sci., 2020,11(11): 2926.

doi: 10.1039/C9SC06518K     URL    
[360]
Zheng S Y, Zhu T W, Wang Y Z, Yang T J, Yuan W Z. Angew. Chem. Int. Ed., 2020,59(25): 10018.

doi: 10.1002/anie.v59.25     URL    
[361]
Chen X H, Luo W J, Ma H L, Peng Q, Yuan W Z, Zhang Y M. Sci. China Chem., 2018,61(3): 351.

doi: 10.1007/s11426-017-9114-4     URL    
[362]
Lin S Y, Wu T H, Jao Y C, Liu C P, Lin H Y, Lo L W, Yang C S. Chem. Eur. J., 2011,17(26): 7158.

doi: 10.1002/chem.v17.26     URL    
[363]
Lu H, Feng L L, Li S S, Zhang J, Lu H F, Feng S Y. Macromolecules, 2015,48(3): 476.

doi: 10.1021/ma502352x     URL    
[364]
Homchaudhuri L, Swaminathan R. Chem. Lett., 2001,30(8): 844.

doi: 10.1246/cl.2001.844     URL    
[365]
Shukla A, Mukherjee S, Sharma S, Agrawal V, Radha Kishan K V, Guptasarma P. Arch. Biochem. Biophys., 2004,428(2): 144.

doi: 10.1016/j.abb.2004.05.007     URL    
[366]
Gong Y Y, Tan Y Q, Mei J, Zhang Y R, Yuan W Z, Zhang Y M, Sun J Z, Tang B Z. Sci. China Chem., 2013,56(9): 1178.

doi: 10.1007/s11426-013-4923-8     URL    
[367]
Zhou Q, Cao B Y, Zhu C X, Xu S, Gong Y Y, Yuan W Z, Zhang Y M. Small, 2016,12(47): 6586.

doi: 10.1002/smll.v12.47     URL    
[368]
Zhao E G, Lam J W Y, Meng L M, Hong Y N, Deng H Q, Bai G X, Huang X H, Hao J H, Tang B Z. Macromolecules, 2015,48(1): 64.

doi: 10.1021/ma502160w     URL    
[369]
Liu B, Chu B, Wang Y L, Chen Z, Zhang X H. Adv. Optical Mater., 2020,8(14): 1902176.

doi: 10.1002/adom.v8.14     URL    
[370]
Yu W, Wang Z Y, Yang D J, Ouyang X P, Qiu X Q, Li Y. RSC Adv., 2016,6(53): 47632.

doi: 10.1039/C6RA00718J     URL    
[371]
Huang W, Yan H X, Niu S, Du Y Q, Yuan L Y. J. Polym. Sci. A: Polym. Chem., 2017,55(22): 3690.

doi: 10.1002/pola.v55.22     URL    
[372]
Guo L L, Yan H X, Yan L R, Bai L H, Niu S, Zhao Y. Polym. Chem., 2021, 12(4):3582. DOI: 10.1039/d1py00430a.

doi: 10.1039/d1py00430a     URL    
[373]
Hu C X, Ru Y, Guo Z Y, Liu Z J, Song J H, Song W B, Zhang X H, Qiao J L. J. Mater. Chem. C, 2019,7(2): 387.

doi: 10.1039/C8TC05197F     URL    
[374]
Shang C, Zhao Y X, Long J Y, Ji Y, Wang H L. J. Mater. Chem. C, 2020,8(3): 1017.

doi: 10.1039/C9TC05948B     URL    
[375]
Shang C, Wei N, Zhuo H M, Shao Y M, Zhang Q, Zhang Z X, Wang H L. J. Mater. Chem. C, 2017,5(32): 8082.

doi: 10.1039/C7TC02381B     URL    
[376]
Shang C, Zhao Y X, Wei N, Zhuo H M, Shao Y M, Wang H L. Macromol. Chem. Phys., 2019,220(19): 1900324.

doi: 10.1002/macp.v220.19     URL    
[377]
Huang Q, Cheng J Q, Tang Y R, Wu Y Q, Xia D, Zheng Y C, Guo M M. Macromol. Rapid Commun., 2021,42(14): 2100174.

doi: 10.1002/marc.v42.14     URL    
[378]
Lai Y Y, Zhu T W, Geng T, Zheng S Y, Yang T J, Zhao Z H, Xiao G J, Zou B, Yuan W Z. Small, 2020,16(49): 2005035.

doi: 10.1002/smll.v16.49     URL    
[379]
Lai Y Y, Zhao Z H, Zheng S Y, Yuan W Z. Acta Chimica Sin., 2021,79(1): 93.
[380]
Wang Y Z, Tang S X, Wen Y T, Zheng S Y, Yang B, Yuan W Z. Mater. Horiz., 2020,7(8): 2105.

doi: 10.1039/D0MH00688B     URL    
[381]
Jia D D, Cao L, Wang D N, Guo X M, Liang H, Zhao F F, Gu Y H, Wang D J. Chem. Commun., 2014,50(78): 11488.

doi: 10.1039/C4CC05342G     URL    
[382]
Song G S, Lin Y N, Zhu Z C, Zheng H Y, Qiao J P, He C C, Wang H L. Macromol. Rapid Commun., 2015,36(3): 278.

doi: 10.1002/marc.201400516     URL    
[383]
Zhao Z H, Chen X H, Wang Q, Yang T J, Zhang Y M, Yuan W Z. Polym. Chem., 2019,10(26): 3639.

doi: 10.1039/C9PY00519F     URL    
[384]
Sagara Y, Kato T. Nat. Chem., 2009,1(8): 605.

doi: 10.1038/nchem.411     URL    
[385]
Davis D A, Hamilton A, Yang J L, Cremar L D, Van Gough D, Potisek S L, Ong M T, Braun P V, Martínez T J, White S R, Moore J S, Sottos N R. Nature, 2009,459(7243): 68.

doi: 10.1038/nature07970     URL    
[386]
Löwe C, Weder C. Adv. Mater., 2002,14(22): 1625.

doi: 10.1002/1521-4095(20021118)14:22【-逻*辑*与-】#x00026;lt;1625::AID-ADMA1625【-逻*辑*与-】#x00026;gt;3.0.CO;2-Q     URL    
[387]
Lim S J, An B K, Jung S D, Chung M A, Park S Y. Angew. Chem. Int. Ed., 2004,43(46): 6346.

doi: 10.1002/(ISSN)1521-3773     URL    
[388]
Dong Y Q, Lam J W Y, Li Z, Qin A J, Tong H, Dong Y P, Feng X D, Tang B Z. J. Inorg. Organomet. Polym. Mater., 2005,15(2): 287.

doi: 10.1007/s10904-005-5546-0     URL    
[389]
Dong Y Q, Lam J W Y, Qin A J, Sun J X, Liu J Z, Li Z, Sun J Z, Sung H H Y, Williams I D, Kwok H S, Tang B Z. Chem. Commun., 2007(31): 3255.
[390]
Dong Y Q, Lam J W Y, Qin A J, Li Z, Sun J Z, Sung H H Y, Williams I D, Tang B Z. Chem. Commun., 2007(1): 40.
[391]
Fan X, Sun J L, Wang F Z, Chu Z Z, Wang P, Dong Y Q, Hu R R, Tang B Z, Zou D C. Chem. Commun., 2008(26): 2989.
[392]
Chung J W, An B K, Hirato F, Kim J H, Jinnai H, Park S Y. J. Mater. Chem., 2010,20(36): 7715.

doi: 10.1039/c0jm00896f     URL    
[393]
Zhang X Q, Chi Z G, Li H Y, Xu B J, Li X F, Zhou W, Liu S W, Zhang Y, Xu J R. Chem. Asian J., 2011,6(3): 808.

doi: 10.1002/asia.201000802     URL    
[394]
Xu B J, Chi Z G, Zhang X Q, Li H Y, Chen C J, Liu S W, Zhang Y, Xu J R. Chem. Commun., 2011,47(39): 11080.

doi: 10.1039/c1cc13790e     URL    
[395]
Shan G G, Li H B, Qin J S, Zhu D X, Liao Y, Su Z M. Dalton Trans., 2012,41(32): 9590.

doi: 10.1039/c2dt31013a     URL    
[396]
Xu B J, Xie M Y, He J J, Xu B, Chi Z G, Tian W J, Jiang L, Zhao F L, Liu S W, Zhang Y, Xu Z Z, Xu J R. Chem. Commun., 2013,49(3): 273.

doi: 10.1039/C2CC36806D     URL    
[397]
Cheng X, Zhang Z Y, Zhang H Y, Han S H, Ye K Q, Wang L, Zhang H Y, Wang Y. J. Mater. Chem. C, 2014,2(35): 7385.

doi: 10.1039/C4TC01099J     URL    
[398]
Mao Z, Yang Z Y, Mu Y X, Zhang Y, Wang Y F, Chi Z G, Lo C C, Liu S W, Lien A L, Xu J R. Angew. Chem. Int. Ed., 2015,54(21): 6270.

doi: 10.1002/anie.201500426     URL    
[399]
Xie Z L, Chen C J, Xu S D, Li J, Zhang Y, Liu S W, Xu J R, Chi Z G. Angew. Chem. Int. Ed., 2015,54(24): 7181.

doi: 10.1002/anie.201502180     URL    
[400]
Xu B J, Mu Y X, Mao Z, Xie Z L, Wu H Z, Zhang Y, Jin C J, Chi Z G, Liu S W, Xu J R, Wu Y C, Lu P Y, Lien A L, Bryce M R. Chem. Sci., 2016,7(3): 2201.

doi: 10.1039/C5SC04155D     URL    
[401]
Li C Y, Tang X, Zhang L Q, Li C H, Liu Z P, Bo Z S, Dong Y Q, Tian Y H, Dong Y P, Tang B Z. Adv. Opt. Mater., 2015,3(9): 1184.

doi: 10.1002/adom.v3.9     URL    
[402]
Yang Z Y, Mao Z, Zhang X P, Ou D P, Mu Y X, Zhang Y, Zhao C Y, Liu S W, Chi Z G, Xu J R, Wu Y C, Lu P Y, Lien A L, Bryce M R. Angew. Chem. Int. Ed., 2016,55(6): 2181.

doi: 10.1002/anie.201509224     URL    
[403]
Zhu J Y, Li C X, Chen P Z, Ma Z W, Zou B, Niu L Y, Cui G L, Yang Q Z. Mater. Chem. Front., 2020,4(1): 176.

doi: 10.1039/C9QM00518H     URL    
[404]
Chen J R, Zhao J, Xu B J, Yang Z Y, Liu S W, Xu J R, Zhang Y, Wu Y C, Lv P Y, Chi Z G. Chin. J. Polym. Sci., 2017,35(2): 282.

doi: 10.1007/s10118-017-1894-9     URL    
[405]
Xu S D, Liu T T, Mu Y X, Wang Y F, Chi Z G, Lo C C, Liu S W, Zhang Y, Lien A L, Xu J R. Angew. Chem. Int. Ed., 2015,54(3): 874.

doi: 10.1002/anie.201409767     URL    
[406]
Han M M, Chen Y W, Xie Y J, Zhang F Y, Li X N, Huang A R, Fan Y H, Fan Y Y, Gong Y B, Peng Q, Li Q Q, Ma D G, Li Z. Cell Rep. Phys. Sci., 2020,1(11): 100252.
[407]
Zhan L S, Chen Z X, Gong S L, Xiang Y P, Ni F, Zeng X, Xie G H, Yang C L. Angew. Chem. Int. Ed., 2019,58(49): 17651.

doi: 10.1002/anie.v58.49     URL    
[408]
Guo J J, Li X L, Nie H, Luo W W, Gan S F, Hu S M, Hu R R, Qin A J, Zhao Z J, Su S J, Tang B Z. Adv. Funct. Mater., 2017,27(13): 1606458. DOI: 10.1002/adfm.201770084.

doi: 10.1002/adfm.201770084     URL    
[409]
Yang J, Qin J W, Geng P Y, Wang J Q, Fang M M, Li Z. Angew. Chem. Int. Ed., 2018,57(43): 14174.

doi: 10.1002/anie.201809463     URL    
[410]
Zhang L, Wang S B, Zhou Y, Wang C, Zhang X Z, Deng H X. Angew. Chem. Int. Ed., 2019,58(40): 14213.

doi: 10.1002/anie.v58.40     URL    
[411]
Fang M M, Yang J, Liao Q Y, Gong Y B, Xie Z L, Chi Z G, Peng Q, Li Q Q, Li Z. J. Mater. Chem. C, 2017,5(38): 9879.

doi: 10.1039/C7TC03641H     URL    
[412]
Tu J, Fan Y H, Wang J Q, Li X Y, Liu F, Han M M, Wang C, Li Q Q, Li Z. J. Mater. Chem. C, 2019,7(39): 12256.

doi: 10.1039/C9TC03515J     URL    
[413]
Yu Y, Wang C, Wei Y, Fan Y Y, Yang J, Wang J Q, Han M M, Li Q Q, Li Z. Adv. Optical Mater., 2019,7(18): 1900505.

doi: 10.1002/adom.v7.18     URL    
[414]
Xu B J, Li W L, He J J, Wu S K, Zhu Q Z, Yang Z Y, Wu Y C, Zhang Y, Jin C J, Lu P Y, Chi Z G, Liu S W, Xu J R, Bryce M R. Chem. Sci., 2016,7(8): 5307.

doi: 10.1039/C6SC01325B     URL    
[415]
Jiang Y Q, Wang J Q, Huang G X, Li Z, Li B S, Tang B Z. J. Mater. Chem. C, 2019,7(38): 11790.

doi: 10.1039/C9TC04140K     URL    
[416]
Huang G X, Jiang Y Q, Wang J G, Li Z, Li B S, Tang B Z. J. Mater. Chem. C, 2019,7(40): 12709.

doi: 10.1039/C9TC04501E     URL    
[417]
Xie Y J, Tu J, Zhang T Q, Wang J Q, Xie Z L, Chi Z G, Peng Q, Li Z. Chem. Commun., 2017,53(82): 11330.

doi: 10.1039/C7CC04663D     URL    
[418]
Liu F, Tu J, Wang X R, Wang J Q, Gong Y B, Han M M, Dang X X, Liao Q Y, Peng Q, Li Q Q, Li Z. Chem. Commun., 2018,54(44): 5598.

doi: 10.1039/C8CC03083A     URL    
[419]
Jiang Y Q, Chang X Y, Xie W W, Huang G X, Li B S. Mater. Chem. Front., 2021,5(2): 885.

doi: 10.1039/D0QM00720J     URL    
[420]
Neena K K, Sudhakar P, Dipak K, Thilagar P. Chem. Commun., 2017,53(26): 3641.

doi: 10.1039/C6CC09717K     URL    
[421]
Wang C, Yu Y, Yuan Y H, Ren C Y, Liao Q Y, Wang J Q, Chai Z F, Li Q Q, Li Z. Matter, 2020,2(1): 181.

doi: 10.1016/j.matt.2019.10.002     URL    
[422]
Xu B J, He J J, Mu Y X, Zhu Q Z, Wu S K, Wang Y F, Zhang Y, Jin C J, Lo C, Chi Z G, Lien A L, Liu S W, Xu J R. Chem. Sci., 2015,6(5): 3236.

doi: 10.1039/C5SC00466G     URL    
[423]
Wang C, Xu B J, Li M S, Chi Z G, Xie Y J, Li Q Q, Li Z. Mater. Horiz., 2016,3(3): 220.

doi: 10.1039/C6MH00025H     URL    
[424]
Wang C, Yu Y, Chai Z F, He F D, Wu C Z, Gong Y B, Han M M, Li Q Q, Li Z. Mater. Chem. Front., 2019,3(1): 32.

doi: 10.1039/C8QM00411K     URL    
[425]
Xie Z L, Yu T, Chen J R, Ubba E, Wang L Y, Mao Z, Su T T, Zhang Y, Aldred M P, Chi Z G. Chem. Sci., 2018,9(26): 5787.

doi: 10.1039/C8SC01703D     URL    
[426]
Liu X J, Jia Y R, Jiang H, Gao G L, Xia M. Acta Chimica Sin., 2019,77(11): 1194.
[427]
Wang J F, Chai Z F, Wang J Q, Wang C, Han M M, Liao Q Y, Huang A R, Lin P X, Li C G, Li Q Q, Li Z. Angew. Chem. Int. Ed., 2019,58(48): 17297.

doi: 10.1002/anie.v58.48     URL    
[428]
Zink J I, Klimt W. J. Am. Chem. Soc., 1974,96(14): 4690.

doi: 10.1021/ja00821a064     URL    
[429]
Yang J, Ren Z C, Xie Z L, Liu Y J, Wang C, Xie Y J, Peng Q, Xu B, Tian W J, Zhang F, Chi Z G, Li Q Q, Li Z. Angew. Chem. Int. Ed., 2017,56(3): 880.

doi: 10.1002/anie.v56.3     URL    
[430]
Mu Y X, Yang Z Y, Chen J R, Yang Z, Li W L, Tan X B, Mao Z, Yu T, Zhao J, Zheng S Z, Liu S W, Zhang Y, Chi Z G, Xu J R, Aldred M P. Chem. Sci., 2018,9(15): 3782.

doi: 10.1039/C8SC00429C     URL    
[431]
Li J A, Zhou J H, Mao Z, Xie Z L, Yang Z, Xu B J, Liu C, Chen X, Ren D Y, Pan H, Shi G, Zhang Y, Chi Z G. Angew. Chem. Int. Ed., 2018,57(22): 6449.

doi: 10.1002/anie.v57.22     URL    
[432]
Li W L, Huang Q Y, Mao Z, Li Q, Jiang L, Xie Z L, Xu R, Yang Z Y, Zhao J, Yu T, Zhang Y, Aldred M P, Chi Z G. Angew. Chem. Int. Ed., 2018,57(39): 12727.

doi: 10.1002/anie.201806861     URL    
[433]
Sun Q K, Zhang K, Zhang Z Z, Tang L, Xie Z L, Chi Z G, Xue S F, Zhang H C, Yang W J. Chem. Commun., 2018,54(59): 8206.

doi: 10.1039/C8CC04358B     URL    
[434]
Hoskins B F, Robson R. J. Am. Chem. Soc., 1989,111(15): 5962.

doi: 10.1021/ja00197a079     URL    
[435]
Brunet P, Simard M, Wuest J D. J. Am. Chem. Soc., 1997,119(11): 2737.

doi: 10.1021/ja963905e     URL    
[436]
Yu T, Ou D P, Yang Z Y, Huang Q Y, Mao Z, Chen J R, Zhang Y, Liu S W, Xu J R, Bryce M R, Chi Z G. Chem. Sci., 2017,8(2): 1163.

doi: 10.1039/C6SC03177C     URL    
[437]
Zhao W J, He Z K, Peng Q, Lam J W Y, Ma H L, Qiu Z J, Chen Y C, Zhao Z, Shuai Z G, Dong Y Q, Tang B Z. Nat. Commun., 2018,9(1): 3044.

doi: 10.1038/s41467-018-05476-y     URL    
[438]
Suzuki Y, Tohnai N, Hisaki I. Chem. Eur. J., 2020,26(71): 17056.

doi: 10.1002/chem.v26.71     URL    
[439]
Huang Q Y, Li W L, Mao Z, Qu L J, Li Y, Zhang H, Yu T, Yang Z Y, Zhao J, Zhang Y, Aldred M P, Chi Z G. Nat. Commun., 2019,10(1): 3074.

doi: 10.1038/s41467-019-10575-5     URL    
[440]
Huang Q Y, Li W L, Yang Z, Zhao J, Li Y, Mao Z, Yang Z Y, Liu S W, Zhang Y, Chi Z G. CCS Chem., 2021: 1499.
[441]
Huang Q Y, Li W L, Mao Z, Zhang H, Li Y, Ma D Y, Wu H Y, Zhao J, Yang Z Y, Zhang Y, Gong L, Aldred M P, Chi Z G. Chem, 2021,7(5): 1321.

doi: 10.1016/j.chempr.2021.02.017     URL    
[442]
Chen C X, Yin S Y, Wei Z W, Qiu Q F, Zhu N X, Fan Y N, Pan M, Su C Y. Angew. Chem. Int. Ed., 2019,58(40): 14379.

doi: 10.1002/anie.v58.40     URL    
[443]
Zhao W J, Liu Z Y, Yu J, Lu X F, Lam J W Y, Sun J Y, He Z K, Ma H L, Tang B Z. Adv. Mater., 2021,33(2): 2006844.

doi: 10.1002/adma.v33.2     URL    
[444]
Kim D, Archer L A. Langmuir, 2011,27(6): 3083.

doi: 10.1021/la104937t     URL    
[445]
Lin Y J, Wang J R, Evans D G, Li D Q. J. Phys. Chem. Solids, 2006,67(5/6): 998.

doi: 10.1016/j.jpcs.2006.01.016     URL    
[446]
Wang Z P, Wang C, Qin Y, Huang A M, Liu R. Polym. Compos., 2021,42(2): 987.

doi: 10.1002/pc.v42.2     URL    
[447]
Xu S, Li S Y, Zhang M, Zeng H Y, Du J Z, Chen C R. Appl. Clay Sci., 2018,163: 196.

doi: 10.1016/j.clay.2018.07.024     URL    
[448]
Jana S C, Jain S. Polymer, 2001,42(16): 6897.

doi: 10.1016/S0032-3861(01)00175-6     URL    
[449]
Ma P C, Mo S Y, Tang B Z, Kim J K. Carbon, 2010,48(6): 1824.

doi: 10.1016/j.carbon.2010.01.028     URL    
[450]
Chandran S, Begam N, Padmanabhan V, Basu J K. Nat. Commun., 2014,5(1): 3697.

doi: 10.1038/ncomms4697     URL    
[451]
Balazs A C, Emrick T, Russell T P. Science, 2006,314(5802): 1107.

pmid: 17110567
[452]
Wang J F, Lin L, Cheng Q F, Jiang L. Angew. Chem. Int. Ed., 2012,51(19): 4676.

doi: 10.1002/anie.201200267     URL    
[453]
Ojijo V, Ray S S. Prog. Mater. Sci., 2014,62: 1.

doi: 10.1016/j.pmatsci.2014.01.001     URL    
[454]
Johnson Z I, Zinser E R, Coe A, McNulty N P, Woodward E M S, Chisholm S W. Science, 2006,311(5768): 1737.

doi: 10.1126/science.1118052     URL    
[455]
Yang B, Treweek J B, Kulkarni R P, Deverman B E, Chen C K, Lubeck E, Shah S, Cai L, Gradinaru V. Cell, 2014,158(4): 945.

doi: S0092-8674(14)00931-3     pmid: 25088144
[456]
Ameloot R, Vermoortele F, Hofkens J, De Schryver F C, De Vos D E, Roeffaers M B J. Angew. Chem. Int. Ed., 2013,52(1): 401.
[457]
Carlsson K, Åslund N. Appl. Opt., 1987,26(16): 3232.

doi: 10.1364/AO.26.003232     URL    
[458]
Teng X, Li F, Lu C. Chem. Soc. Rev., 2020,49(8): 2408.

doi: 10.1039/c8cs00061a     pmid: 32134417
[459]
Iijima M, Kobayakawa M, Yamazaki M, Ohta Y, Kamiya H. J. Am. Chem. Soc., 2009,131(45): 16342.

doi: 10.1021/ja906655r     URL    
[460]
Schmidt D F, ClÉment F, Giannelis E P. Adv. Funct. Mater., 2006,16(3): 417.

doi: 10.1002/(ISSN)1616-3028     URL    
[461]
Guan W J, Wang S, Lu C, Tang B Z. Nat. Commun., 2016,7(1): 11811.

doi: 10.1038/ncomms11811     URL    
[462]
Chen G S, Qiu J L, Xu J Q, Fang X A, Liu Y, Liu S Q, Wei S B, Jiang R F, Luan T G, Zeng F, Zhu F, Ouyang G F. Chem. Sci., 2016,7(2): 1487.

doi: 10.1039/C5SC03992D     URL    
[463]
Liu Y, Deng C M, Tang L, Qin A J, Hu R R, Sun J Z, Tang B Z. J. Am. Chem. Soc., 2011,133(4): 660.

doi: 10.1021/ja107086y     pmid: 21171593
[464]
Tian R, Zhong J P, Lu C, Duan X. Chem. Sci., 2018,9(1): 218.

doi: 10.1039/c7sc03897f     pmid: 29629090
[465]
Zhong J P, Li Z Q, Guan W J, Lu C. Anal. Chem., 2017,89(22): 12472.

doi: 10.1021/acs.analchem.7b03575     URL    
[466]
Zhang Z K, Feng Z M, Tian R, Li K T, Lin Y J, Lu C, Wang S H, Xue X J. Anal. Chem., 2020,92(11): 7794.

doi: 10.1021/acs.analchem.0c00957     URL    
[467]
Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987,51(12): 913.

doi: 10.1063/1.98799     URL    
[468]
Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Chem. Commun., 2001, (18):1740.
[469]
Cai Y J, Qin A J, Tang B Z. J. Mater. Chem. C, 2017,5(30): 7375.

doi: 10.1039/C7TC02511D     URL    
[470]
Yu G, Yin S W, Liu Y Q, Chen J S, Xu X J, Sun X B, Ma D G, Zhan X W, Peng Q, Shuai Z G, Tang B Z, Zhu D B, Fang W H, Luo Y. J. Am. Chem. Soc., 2005,127(17): 6335.

doi: 10.1021/ja044628b     URL    
[471]
Nie H, Chen B, Zeng J J, Xiong Y, Zhao Z J, Tang B Z. J. Mater. Chem. C, 2018,6(14): 3690.

doi: 10.1039/C7TC05062C     URL    
[472]
Zhao Z J, Lam J W Y, Tang B Z. J. Mater. Chem., 2012,22(45): 23726.

doi: 10.1039/c2jm31949g     URL    
[473]
Dong Y Q, Lam J W Y, Qin A J, Liu J Z, Li Z, Tang B Z, Sun J X, Kwok H S. Appl. Phys. Lett., 2007,91(1): 011111.

doi: 10.1063/1.2753723     URL    
[474]
Zhao Z J, Chen S M, Lam J W Y, Lu P, Zhong Y C, Wong K S, Kwok H S, Tang B Z. Chem. Commun., 2010,46(13): 2221.

doi: 10.1039/b921451h     URL    
[475]
Zhao Z J, Deng C M, Chen S M, Lam J W Y, Qin W, Lu P, Wang Z M, Kwok H S, Ma Y G, Qiu H Y, Tang B Z. Chem. Commun., 2011,47(31): 8847.

doi: 10.1039/c1cc12775f     URL    
[476]
Chen L, Jiang Y B, Nie H, Hu R R, Kwok H S, Huang F, Qin A J, Zhao Z J, Tang B Z. ACS Appl. Mater. Interfaces, 2014,6(19): 17215.

doi: 10.1021/am505036a     URL    
[477]
Chen L, Jiang Y B, Nie H, Lu P, Sung H H Y, Williams I D, Kwok H S, Huang F, Qin A J, Zhao Z J, Tang B Z. Adv. Funct. Mater., 2014,24(23): 3621.

doi: 10.1002/adfm.201303867     URL    
[478]
Lin G W, Peng H R, Chen L, Nie H, Luo W W, Li Y H, Chen S M, Hu R R, Qin A J, Zhao Z J, Tang B Z. ACS Appl. Mater. Interfaces, 2016,8(26): 16799.

doi: 10.1021/acsami.6b04924     URL    
[479]
Tang X Y, Bai Q, Shan T, Li J Y, Gao Y, Liu F T, Liu H, Peng Q M, Yang B, Li F, Lu P. Adv. Funct. Mater., 2018,28(11): 1705813.

doi: 10.1002/adfm.v28.11     URL    
[480]
Sasaki S, Suzuki S, Sameera W M C, Igawa K, Morokuma K, Konishi G I. J. Am. Chem. Soc., 2016,138(26): 8194.

doi: 10.1021/jacs.6b03749     URL    
[481]
Han P B, Lin C W, Wang K J, Qiu Y P, Wu H Z, Qin A J, Ma D G, Tang B Z. Mater. Horiz., 2021, DOI: 10.1039/d1mh01129d.

doi: 10.1039/d1mh01129d    
[482]
Zhang H, Zeng J J, Luo W W, Wu H Z, Zeng C, Zhang K X, Feng W Q, Wang Z M, Zhao Z J, Tang B Z. J. Mater. Chem. C, 2019,7(21): 6359.

doi: 10.1039/c9tc01453e    
[483]
Wan Q, Tong J L, Zhang B, Li Y, Wang Z M, Tang B Z. Adv. Optical Mater., 2020,8(4): 1901520.

doi: 10.1002/adom.v8.4     URL    
[484]
Guo X M, Yuan P S, Fan J Z, Qiao X F, Yang D Z, Dai Y F, Sun Q, Qin A J, Tang B Z, Ma D G. Adv. Mater., 2021,33(11): 2006953.

doi: 10.1002/adma.v33.11     URL    
[485]
Guo X M, Yuan P S, Qiao X F, Yang D Z, Dai Y F, Sun Q, Qin A J, Tang B Z, Ma D G. Adv. Funct. Mater., 2020,30(9): 1908704.

doi: 10.1002/adfm.v30.9     URL    
[486]
Goushi K, Yoshida K, Sato K, Adachi C. Nat. Photonics, 2012,6(4): 253.

doi: 10.1038/nphoton.2012.31     URL    
[487]
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv. Mater., 2014,26(47): 7931.

doi: 10.1002/adma.v26.47     URL    
[488]
Guo J J, Zhao Z J, Tang B Z. Adv. Opt. Mater., 2018,6(15): 1800264.

doi: 10.1002/adom.v6.15     URL    
[489]
Gan S F, Zhou J, Smith T A, Su H F, Luo W W, Hong Y N, Zhao Z J, Tang B Z. Mater. Chem. Front., 2017,1(12): 2554.

doi: 10.1039/C7QM00286F     URL    
[490]
Guo J J, Li X L, Nie H, Luo W W, Hu R R, Qin A J, Zhao Z J, Su S J, Tang B Z. Chem. Mater., 2017,29(8): 3623.

doi: 10.1021/acs.chemmater.7b00450     URL    
[491]
Huang J, Nie H, Zeng J J, Zhuang Z Y, Gan S F, Cai Y J, Guo J J, Su S J, Zhao Z J, Tang B Z. Angew. Chem. Int. Ed., 2017,56(42): 12971.

doi: 10.1002/anie.201706752     URL    
[492]
Xu J W, Zhu X Y, Guo J J, Fan J Z, Zeng J J, Chen S M, Zhao Z J, Tang B Z. ACS Mater. Lett., 2019,1(6): 613.
[493]
Liu H J, Zeng J J, Guo J J, Nie H, Zhao Z J, Tang B Z. Angew. Chem. Int. Ed., 2018,57(30): 9290.

doi: 10.1002/anie.201802060     URL    
[494]
Guo J J, Fan J Z, Lin L L, Zeng J J, Liu H, Wang C K, Zhao Z J, Tang B Z. Adv. Sci., 2019,6(3): 1801629.

doi: 10.1002/advs.v6.3     URL    
[495]
Zeng J J, Guo J J, Liu H, Zhao Z J, Tang B Z. Adv. Funct. Mater., 2020,30(17): 2000019.

doi: 10.1002/adfm.v30.17     URL    
[496]
Zeng J J, Guo J J, Liu H, Lam J W Y, Zhao Z J, Chen S M, Tang B Z. Chem. Asian J., 2019,14(6): 828.

doi: 10.1002/asia.v14.6     URL    
[497]
Chen J K, Zeng J J, Zhu X Y, Guo J J, Zhao Z J, Tang B Z. CCS Chem., 2021, 230.
[498]
Chen H, Liu H J, Shen P C, Zeng J J, Jiang R M, Fu Y, Zhao Z J, Tang B Z. Adv. Optical Mater., 2021,9(9): 2002019.

doi: 10.1002/adom.v9.9     URL    
[499]
Zhang P P, Zeng J J, Guo J J, Zhen S J, Xiao B, Wang Z M, Zhao Z J, Tang B Z. Front. Chem., 2019,7: 199.

doi: 10.3389/fchem.2019.00199     URL    
[500]
Huang J, Xu Z, Cai Z Y, Guo J J, Guo J L, Shen P C, Wang Z M, Zhao Z J, Ma D G, Tang B Z. J. Mater. Chem. C, 2019,7(2): 330.

doi: 10.1039/c8tc04842h    
[501]
Wu K L, Wang Z A, Zhan L S, Zhong C, Gong S L, Xie G H, Yang C L. J. Phys. Chem. Lett., 2018,9(7): 1547.

doi: 10.1021/acs.jpclett.8b00344     URL    
[502]
Zhou X, Yang H N, Chen Z X, Gong S L, Lu Z H, Yang C L. J. Mater. Chem. C, 2019,7(22): 6607.

doi: 10.1039/c9tc00346k    
[503]
Kim H J, Kim S K, Godumala M, Yoon J, Kim C Y, Jeong J E, Woo H Y, Kwon J H, Cho M J, Choi D H. Chem. Commun., 2019,55(64): 9475.

doi: 10.1039/C9CC05391C     URL    
[504]
Xiang S P, Huang Z, Sun S Q, Lv X, Fan L W, Ye S F, Chen H T, Guo R D, Wang L. J. Mater. Chem. C, 2018,6(42): 11436.

doi: 10.1039/C8TC03648A     URL    
[505]
Zhao J, Feng Z, Zhong D K, Yang X L, Wu Y, Zhou G J, Wu Z X. Chem. Mater., 2018,30(3): 929.

doi: 10.1021/acs.chemmater.7b04708     URL    
[506]
Yang Z, Mao Z, Xu C, Chen X J, Zhao J, Yang Z Y, Zhang Y, Wu W, Jiao S B, Liu Y, Aldred M P, Chi Z G. Chem. Sci., 2019,10(35): 8129.

doi: 10.1039/c9sc01686d     pmid: 31857879
[507]
Liu Y, Wu X F, Chen Y H, Chen L, Li H, Wang W J, Wang S M, Tian H K, Tong H, Wang L X. J. Mater. Chem. C, 2019,7(31): 9719.

doi: 10.1039/C9TC02927C     URL    
[508]
Wang Z J, Zhu X Y, Zhang S K, Xu L T, Zhao Z J, He G. Adv. Optical Mater., 2021,9(5): 2001764.

doi: 10.1002/adom.v9.5     URL    
[509]
Wang X D, Wang S M, Lv J, Shao S Y, Wang L X, Jing X B, Wang F S. Chem. Sci., 2019,10(10): 2915.

doi: 10.1039/C8SC04991B     URL    
[510]
Song F Y, Xu Z, Zhang Q S, Zhao Z, Zhang H K, Zhao W J, Qiu Z J, Qi C X, Zhang H, Sung H H Y, Williams I D, Lam J W Y, Zhao Z J, Qin A J, Ma D G, Tang B Z. Adv. Funct. Mater., 2018,28(17): 1800051.

doi: 10.1002/adfm.v28.17     URL    
[511]
Yang H, Li H Y, Yue L, Chen X, Song D D, Yang X L, Sun Y H, Zhou G J, Wu Z X. J. Mater. Chem. C, 2021,9(7): 2334.

doi: 10.1039/D0TC05527A     URL    
[512]
Kim H U, Jang H J, Choi W, Park S, Park T, Lee J Y, Bejoymohandas K S. J. Mater. Chem. C, 2020,8(14): 4789.

doi: 10.1039/C9TC06813A     URL    
[513]
Xu Z, Gu J B, Huang J, Lin C W, Li Y Z, Yang D Z, Qiao X F, Qin A J, Zhao Z J, Tang B Z, Ma D G. Mater. Chem. Front., 2019,3(12): 2652.

doi: 10.1039/C9QM00539K     URL    
[514]
Hu F, Xu S D, Liu B. Adv. Mater., 2018,30(45): 1801350.

doi: 10.1002/adma.v30.45     URL    
[515]
Yang L, Wang X J, Zhang G Z, Chen X F, Zhang G Q, Jiang J. Nanoscale, 2016,8(40): 17422.

pmid: 27738688
[516]
Cai X L, Liu B. Angew. Chem. Int. Ed., 2020,59(25): 9868.

doi: 10.1002/anie.v59.25     URL    
[517]
Feng G X, Zhang G Q, Ding D. Chem. Soc. Rev., 2020,49(22): 8179.

doi: 10.1039/D0CS00671H     URL    
[518]
Kang M M, Zhang Z J, Song N, Li M, Sun P P, Chen X H, Wang D, Tang B Z. Aggregate, 2020,1(1): 80.

doi: 10.1002/agt2.v1.1     URL    
[519]
Tian M G, Ma Y Y, Lin W Y. Acc. Chem. Res., 2019,52(8): 2147.

doi: 10.1021/acs.accounts.9b00289     URL    
[520]
Mei J, Huang Y H, Tian H. ACS Appl. Mater. Interfaces, 2018,10(15): 12217.

doi: 10.1021/acsami.7b14343     URL    
[521]
Ding D, Li K, Liu B, Tang B Z. Acc. Chem. Res., 2013,46(11): 2441.

doi: 10.1021/ar3003464     URL    
[522]
Zhang W, Chen Q, Wu F, Dai J, Ding D F, Wu J, Lou X D, Xia F. Nanoscale Adv., 2021,3(2): 302.

doi: 10.1039/D0NA00899K     URL    
[523]
Wang W Z, Hu Z Y. Adv. Mater., 2019,31(45): 1804827.

doi: 10.1002/adma.v31.45     URL    
[524]
Lee S, Xie J, Chen X Y. Biochemistry, 2010,49(7): 1364.

doi: 10.1021/bi901135x     URL    
[525]
Araste F, Abnous K, Hashemi M, Taghdisi S M, Ramezani M, Alibolandi M. J. Control. Release, 2018,292: 141.

doi: 10.1016/j.jconrel.2018.11.004     URL    
[526]
Nakayama N, Takaoka S, Ota M, Takagaki K, Sano K I. Langmuir, 2018,34(47): 14286.

doi: 10.1021/acs.langmuir.8b02616     URL    
[527]
Lehto T, Ezzat K, Wood M J A, EL Andaloussi S. Adv. Drug Deliv. Rev., 2016,106: 172.

doi: 10.1016/j.addr.2016.06.008     URL    
[528]
Temsamani J, Vidal P. Drug Discov. Today, 2004,9(23): 1012.

pmid: 15574317
[529]
Lundberg P, Langel U. J. Mol. Recognit., 2003,16(5): 227.

doi: 10.1002/(ISSN)1099-1352     URL    
[530]
Green M, Ishino M, Loewenstein P M. Cell, 1989,58(1): 215.

pmid: 2752420
[531]
Schellinger J G, Pahang J A, Johnson R N, Chu D S H, Sellers D L, Maris D O, Convertine A J, Stayton P S, Horner P J, Pun S H. Biomaterials, 2013,34(9): 2318.

doi: 10.1016/j.biomaterials.2012.09.072     pmid: 23261217
[532]
Lo S L, Wang S. Biomaterials, 2008,29(15): 2408.

doi: 10.1016/j.biomaterials.2008.01.031     URL    
[533]
Brogden K A. Nat. Rev. Microbiol., 2005,3(3): 238.

pmid: 15703760
[534]
Midoux P, Monsigny M. Bioconjugate Chem., 1999,10(3): 406.

pmid: 10346871
[535]
Muroski M E, Morgan T J Jr, Levenson C W, Strouse G F. J. Am. Chem. Soc., 2014,136(42): 14763.

doi: 10.1021/ja505190q     pmid: 25198921
[536]
Xu Y Y, Liang W L, Qiu Y S, Cespi M, Palmieri G F, Mason A J, Lam J K W. Mol. Pharmaceutics, 2016,13(9): 3141.

doi: 10.1021/acs.molpharmaceut.6b00338     URL    
[537]
Robbins J, Dilwortht S M, Laskey R A, Dingwall C. Cell, 1991,64(3): 615.

pmid: 1991323
[538]
Yang J L, Wei J M, Luo F, Dai J, Hu J J, Lou X D, Xia F. Topics in Current Chemistry, 2020,378(6):47.

doi: 10.1007/s41061-020-00311-9     URL    
[539]
Wu F, Wu X, Duan Z J, Huang Y, Lou X D, Xia F. Small, 2019,15(32): 1804839.

doi: 10.1002/smll.v15.32     URL    
[540]
Xia F, Wu J, Wu X, Hu Q Y, Dai J, Lou X D. Acc. Chem. Res., 2019,52(11): 3064.

doi: 10.1021/acs.accounts.9b00348     URL    
[541]
Yuan Q M, Cheng Y, Lou X D, Xia F. Chin. J. Chem., 2019,37(10): 1072.

doi: 10.1002/cjoc.v37.10     URL    
[542]
Xu M, Wang X D, Wang Q, Hu Q Y, Huang K X, Lou X D, Xia F. Sci. China Mater., 2019,62(9): 1236.

doi: 10.1007/s40843-019-9407-9     URL    
[543]
Liu Y, Li D, Ding J X, Chen X S. Chin. Chem. Lett., 2020,31(12): 3001.

doi: 10.1016/j.cclet.2020.04.029     URL    
[544]
Long Z, Dai J, Hu Q Y, Wang Q, Zhen S J, Zhao Z J, Liu Z T, Hu J J, Lou X D, Xia F. Theranostics, 2020,10(5): 2260.

doi: 10.7150/thno.41317     pmid: 32104506
[545]
Yi X Q, Hu J J, Dai J, Lou X D, Zhao Z J, Xia F, Tang B Z. ACS Nano, 2021,15(2): 3026.

doi: 10.1021/acsnano.0c09407     URL    
[546]
Jiang R M, Dai J, Dong X Q, Wang Q, Meng Z J, Guo J J, Yu Y J, Wang S X, Xia F, Zhao Z J, Lou X D, Tang B Z. Adv. Mater., 2021,33(22): 2101158.

doi: 10.1002/adma.v33.22     URL    
[547]
Cui Y, Zhang R W, Yang L, Lv S. Chin. Chem. Lett., 2019,30(5): 1078.

doi: 10.1016/j.cclet.2018.10.017     URL    
[548]
Cheng Y, Sun C L, Ou X W, Liu B F, Lou X D, Xia F. Chem. Sci., 2017,8(6): 4571.

doi: 10.1039/c7sc00402h     pmid: 28626568
[549]
Cheng Y, Huang F J, Min X H, Gao P C, Zhang T C, Li X C, Liu B F, Hong Y N, Lou X D, Xia F. Anal. Chem., 2016,88(17): 8913.

doi: 10.1021/acs.analchem.6b02833     pmid: 27503607
[550]
Cheng Y, Sun C L, Liu R, Yang J L, Dai J, Zhai T Y, Lou X D, Xia F. Angew. Chem. Int. Ed., 2019,58(15): 5049.

doi: 10.1002/anie.v58.15     URL    
[551]
Yang J L, Dai J, Wang Q, Cheng Y, Guo J J, Zhao Z J, Hong Y N, Lou X D, Xia F. Angew. Chem. Int. Ed., 2020,59(46): 20405.

doi: 10.1002/anie.v59.46     URL    
[552]
Dai J, Cheng Y, Wu J, Wang Q, Wang W W, Yang J L, Zhao Z J, Lou X D, Xia F, Wang S X, Tang B Z. ACS Nano, 2020,14(11): 14698.

doi: 10.1021/acsnano.9b09818     URL    
[553]
Duan C, Hu J J, Liu R, Dai J, Duan M J, Yuan L Z, Xia F, Lou X D. Angew. Chem. Int. Ed., 2021,60(33): 18280.

doi: 10.1002/anie.v60.33     URL    
[554]
Hansson O. Nat. Med., 2021,27(6): 954.

doi: 10.1038/s41591-021-01382-x     pmid: 34083813
[555]
Broza Y Y, Zhou X, Yuan M M, Qu D Y, Zheng Y B, Vishinkin R, Khatib M, Wu W W, Haick H. Chem. Rev., 2019,119(22): 11761.

doi: 10.1021/acs.chemrev.9b00437     pmid: 31729868
[556]
Chen Y C, Tan X T, Sun Q H, Chen Q S, Wang W J, Fan X D. Nat. Biomed. Eng., 2017,1(9): 724.

doi: 10.1038/s41551-017-0128-3     URL    
[557]
Ho E, Karimi Galougahi K, Liu C C, Bhindi R, Figtree G A. Redox Biol., 2013,1(1): 483.

doi: 10.1016/j.redox.2013.07.006     URL    
[558]
Wu Y L, Huang S L, Wang J, Sun L H, Zeng F, Wu S Z. Nat. Commun., 2018,9(1): 3983.

doi: 10.1038/s41467-018-06499-1     URL    
[559]
Li J W, Baird M A, Davis M A, Tai W Y, Zweifel L S, Waldorf K M A, Gale Jr M, Rajagopal L, Pierce R H, Gao X H. Nat. Biomed. Eng., 2017,1(6): 1.

doi: 10.1038/s41551-016-0001     URL    
[560]
Hong G S, Antaris A L, Dai H J. Nat. Biomed. Eng., 2017,1: 10.

doi: 10.1038/s41551-016-0010     URL    
[561]
Kuchimaru T, Iwano S, Kiyama M, Mitsumata S, Kadonosono T, Niwa H, Maki S, Kizaka-Kondoh S. Nat. Commun., 2016,7(1): 11856.

doi: 10.1038/ncomms11856     URL    
[562]
Wu Y L, Chen J J, Sun L H, Zeng F, Wu S Z. Adv. Funct. Mater., 2019,29(8): 1807960.

doi: 10.1002/adfm.v29.8     URL    
[563]
Wang L V, Hu S. Science, 2012,335(6075): 1458.

doi: 10.1126/science.1216210     URL    
[564]
Razansky D, Buehler A, Ntziachristos V. Nat. Protoc., 2011,6(8): 1121.

doi: 10.1038/nprot.2011.351     pmid: 21738125
[565]
Weissleder R, Ntziachristos V. Nat. Med., 2003,9(1): 123.

pmid: 12514725
[566]
Jiang X Y, Du B J, Tang S H, Hsieh J T, Zheng J. Angew. Chem. Int. Ed., 2019,58(18): 5994.

doi: 10.1002/anie.v58.18     URL    
[567]
Gu K Z, Qiu W S, Guo Z Q, Yan C X, Zhu S Q, Yao D F, Shi P, Tian H, Zhu W H. Chem. Sci., 2019,10(2): 398.

doi: 10.1039/C8SC04266G     URL    
[568]
Li B H, Zhao M Y, Zhang F. ACS Mater. Lett., 2020,2(8): 905.
[569]
Cai Y, Wei Z, Song C H, Tang C C, Han W, Dong X C. Chem. Soc. Rev., 2019,48(1): 22.

doi: 10.1039/c8cs00494c     pmid: 30444505
[570]
Zhen X, Zhang J J, Huang J G, Xie C, Miao Q Q, Pu K Y. Angew. Chem. Int. Ed., 2018,57(26): 7804.

doi: 10.1002/anie.v57.26     URL    
[571]
Sun Y Q, Liu J, Lv X, Liu Y L, Zhao Y, Guo W. Angew. Chem. Int. Ed., 2012,51(31): 7634.

doi: 10.1002/anie.201202264     URL    
[572]
Huang J, Lin M G, Zeng F, Wu S Z. Mater. Chem. Front., 2021,5(4): 1962.

doi: 10.1039/D0QM00904K     URL    
[573]
Ouyang J, Sun L H, Zeng Z, Zeng C, Zeng F, Wu S Z. Angew. Chem. Int. Ed., 2020,59(25): 10111.

doi: 10.1002/anie.v59.25     URL    
[574]
Huang Y, Qi Y, Zhan C Y, Zeng F, Wu S Z. Anal. Chem., 2019,91(13): 8085.

doi: 10.1021/acs.analchem.9b00107     pmid: 31145584
[575]
Zeng Z, Ouyang J, Sun L H, Zeng C, Zeng F, Wu S Z. Anal. Chem., 2020,92(13): 9257.

doi: 10.1021/acs.analchem.0c01596     URL    
[576]
Lafourcade A, His M, Baglietto L, Boutron-Ruault M C, Dossus L, Rondeau V. BMC Cancer, 2018,18(1): 171.

doi: 10.1186/s12885-018-4076-4     pmid: 29426294
[577]
Yan J C, Huang Q H. Cancer Metastasis Rev., 2012,31(3/4): 419.

doi: 10.1007/s10555-012-9362-z     URL    
[578]
Gupta G P, MassaguÉ J. Cell, 2006,127(4): 679.

doi: 10.1016/j.cell.2006.11.001     URL    
[579]
Wang J B, Xia S, Bi J H, Fang M X, Mazi W F, Zhang Y B, Conner N, Luo F T, Lu H P, Liu H Y. Bioconjugate Chem., 2018,29(4): 1406.

doi: 10.1021/acs.bioconjchem.8b00111     URL    
[580]
Xie X, Zhan C Y, Wang J, Zeng F, Wu S Z. Small, 2020,16(38): 2003451.

doi: 10.1002/smll.v16.38     URL    
[581]
Yu W L, Huang J, Lin M G, Wei G M, Yang F, Tang Z X, Zeng F, Wu S Z. Anal. Chem., 2021,93(10): 4647.

doi: 10.1021/acs.analchem.1c00223     URL    
[582]
Lv M, Zhang Y H, Fan J Y, Yang Y Y, Chen S, Liang G L, Zhang S S. Anal., 2020,145(24): 7985.

doi: 10.1039/D0AN01468K     URL    
[583]
Fan X X, Li Y R, Feng Z, Chen G Q, Zhou J, He M B, Wu L, Li S L, Qian J, Lin H. Adv. Sci., 2021,8(9): 2003972.

doi: 10.1002/advs.v8.9     URL    
[584]
Zhou Q, Chen Z Y, Robin J, Deán-Ben X L, Razansky D. Optica, 2021,8(6): 796.

doi: 10.1364/OPTICA.420378     URL    
[585]
Hu Z H, Fang C, Li B, Zhang Z Y, Cao C G, Cai M S, Su S, Sun X W, Shi X J, Li C, Zhou T J, Zhang Y X, Chi C W, He P, Xia X M, Chen Y, Gambhir S S, Cheng Z, Tian J. Nat. Biomed. Eng., 2020,4(3): 259.

doi: 10.1038/s41551-019-0494-0     URL    
[586]
Yu W B, Guo B, Zhang H Q, Zhou J, Yu X M, Zhu L, Xue D W, Liu W, Sun X H, Qian J. Sci. Bull., 2019,64(6): 410.

doi: 10.1016/j.scib.2019.02.019     URL    
[587]
Qi J, Sun C W, Zebibula A, Zhang H Q, Kwok R T K, Zhao X Y, Xi W, Lam J W Y, Qian J, Tang B Z. Adv. Mater., 2018,30(12): 1706856.

doi: 10.1002/adma.v30.12     URL    
[588]
Diao S, Blackburn J L, Hong G S, Antaris A L, Chang J L, Wu J Z, Zhang B, Cheng K, Kuo C J, Dai H J. Angew. Chem. Int. Ed., 2015,54(49): 14758.

doi: 10.1002/anie.v54.49     URL    
[589]
Hong G S, Diao S, Chang J L, Antaris A L, Chen C X, Zhang B, Zhao S, Atochin D N, Huang P L, Andreasson K I, Kuo C J, Dai H J. Nat. Photonics, 2014,8(9): 723.

doi: 10.1038/nphoton.2014.166     URL    
[590]
Wang W, Feng Z, Li B, Chang Y L, Li X, Yan X, Chen R Z, Yu X M, Zhao H Y, Lu G Y, Kong X G, Qian J, Liu X M. J. Mater. Chem. B, 2021,9(12): 2899.

doi: 10.1039/d0tb02728f     pmid: 33725037
[591]
Liu M X, Gu B B, Wu W B, Duan Y K, Liu H J, Deng X Q, Fan M Z, Wang X M, Wei X B, Yong K T, Wang K, Xu G X, Liu B. Chem. Mater., 2020,32(15): 6437.

doi: 10.1021/acs.chemmater.0c01577     URL    
[592]
Zhong Y T, Ma Z R, Wang F F, Wang X, Yang Y J, Liu Y L, Zhao X, Li J C, Du H T, Zhang M X, Cui Q H, Zhu S J, Sun Q C, Wan H, Tian Y, Liu Q, Wang W Z, Garcia K C, Dai H J. Nat. Biotechnol., 2019,37(11): 1322.

doi: 10.1038/s41587-019-0262-4     URL    
[593]
Zhong Y T, Ma Z R, Zhu S J, Yue J Y, Zhang M X, Antaris A L, Yuan J, Cui R, Wan H, Zhou Y, Wang W Z, Huang N F, Luo J, Hu Z Y, Dai H J. Nat. Commun., 2017,8(1): 737.

doi: 10.1038/s41467-017-00917-6     URL    
[594]
Zhang M X, Yue J Y, Cui R, Ma Z R, Wan H, Wang F F, Zhu S J, Zhou Y, Kuang Y, Zhong Y T, Pang D W, Dai H J. PNAS, 2018,115(26): 6590.

doi: 10.1073/pnas.1806153115     URL    
[595]
Kou L H, Labrie D, Chylek P. Appl. Opt., 1993,32(19): 3531.

doi: 10.1364/AO.32.003531     URL    
[596]
Carr J A, Aellen M, Franke D, So P T C, Bruns O T, Bawendi M G. PNAS, 2018,115(37): 9080.

doi: 10.1073/pnas.1803210115     URL    
[597]
Tanzid M, Hogan N J, Sobhani A, Robatjazi H, Pediredla A K, Samaniego A, Veeraraghavan A, Halas N J. ACS Photonics, 2016,3(10): 1787.

doi: 10.1021/acsphotonics.6b00558     URL    
[598]
Feng Z, Tang T, Wu T X, Yu X M, Zhang Y H, Wang M, Zheng J Y, Ying Y Y, Chen S Y, Zhou J, Fan X X, Li S L, Zhang M X, Qian J. bioRxiv, 2021, 2021. 04.19.440389. DOI: 10.1038/s41377-021-00628-0.

doi: 10.1038/s41377-021-00628-0    
[599]
Li S, Cheng T Y, Yin C F, Zhou S S, Fan Q L, Wu W, Jiang X Q. ACS Appl. Mater. Interfaces, 2020,12(39): 43466.

doi: 10.1021/acsami.0c12773     URL    
[600]
Xu W H, Wang D, Tang B Z. Angew. Chem. Int. Ed., 2021,60(14): 7476.

doi: 10.1002/anie.v60.14     URL    
[601]
Liu S J, Chen C, Li Y Y, Zhang H K, Liu J K, Wang R, Wong S T H, Lam J W Y, Ding D, Tang B Z. Adv. Funct. Mater., 2020,30(7): 1908125.

doi: 10.1002/adfm.v30.7     URL    
[602]
Xu P F, Kang F, Yang W D, Zhang M R, Dang R L, Jiang P, Wang J. Nanoscale, 2020,12(8): 5084.

doi: 10.1039/C9NR09999A     URL    
[603]
Qu C R, Xiao Y L, Zhou H, Ding B B, Li A G, Lin J C, Zeng X D, Chen H, Qian K, Zhang X, Fang W, Wu J Z, Deng Z X, Cheng Z, Hong X C. Adv. Optical Mater., 2019,7(15): 1900229.

doi: 10.1002/adom.v7.15     URL    
[604]
Wu W, Yang Y Q, Yang Y, Yang Y M, Wang H, Zhang K Y, Guo L, Ge H F, Liu J, Feng H. Int. J. Nanomed., 2019,14: 3571.

doi: 10.2147/IJN     URL    
[605]
Liu S, Li Y, Zhang J, Zhang H, Wang Y, Chuah C, Tang Y, Lam J W Y, Kwok R T K, Ou H, Ding D, Tang B Z. Mater. Today Bio, 2021,10: 100087.
[606]
Liu S J, Chen R Z, Zhang J Q, Li Y Y, He M B, Fan X X, Zhang H K, Lu X F, Kwok R T K, Lin H, Lam J W Y, Qian J, Tang B Z. ACS Nano, 2020,14(10): 14228.

doi: 10.1021/acsnano.0c07527     URL    
[607]
Alifu N, Zebibula A, Qi J, Zhang H Q, Sun C W, Yu X M, Xue D W, Lam J W Y, Li G H, Qian J, Tang B Z. ACS Nano, 2018,12(11): 11282.

doi: 10.1021/acsnano.8b05937     URL    
[608]
Wu W, Yang Y Q, Yang Y, Yang Y M, Zhang K Y, Guo L, Ge H F, Chen X W, Liu J, Feng H. Small, 2019,15(20): 1805549.

doi: 10.1002/smll.v15.20     URL    
[609]
Min X H, Zhang J, Li R H, Xia F F, Cheng S Q, Li M, Zhu W W, Zhou W, Li F, Sun Y. ACS Appl. Mater. Interfaces, 2021,13(15): 17372.

doi: 10.1021/acsami.1c02691     URL    
[610]
Li Y X, Hu D H, Sheng Z H, Min T L, Zha M L, Ni J S, Zheng H R, Li K. Biomaterials, 2021,264: 120365.

doi: 10.1016/j.biomaterials.2020.120365     URL    
[611]
Sheng Z H, Li Y X, Hu D H, Min T L, Gao D Y, Ni J S, Zhang P F, Wang Y N, Liu X, Li K, Zheng H R, Tang B Z. Research, 2020,2020: 1.
[612]
Du J, Liu S J, Zhang P F, Liu H X, Li Y Y, He W, Li C B, Chau J H C, Kwok R T K, Lam J W Y, Cai L T, Huang Y H, Zhang W J, Hou J Q, Tang B Z. ACS Appl. Mater. Interfaces, 2020,12(7): 8040.

doi: 10.1021/acsami.9b22957     URL    
[613]
Wu D, Liu S J, Zhou J, Chen R Z, Wang Y F, Feng Z, Lin H, Qian J, Tang B Z, Cai X J. ACS Nano, 2021,15(3): 5011.

doi: 10.1021/acsnano.0c09981     URL    
[614]
Feng Z, Bai S Y, Qi J, Sun C W, Zhang Y H, Yu X M, Ni H W, Wu D, Fan X X, Xue D W, Liu S J, Chen M, Gong J Y, Wei P F, He M B, Lam J W Y, Li X J, Tang B Z, Gao L X, Qian J. Adv. Mater., 2021,33(17): 2008123.

doi: 10.1002/adma.v33.17     URL    
[615]
Göppert-Mayer M. Ann. Phys., 1931,401(3): 273.

doi: 10.1002/(ISSN)1521-3889     URL    
[616]
Kaiser W, Garrett C G B. Phys. Rev. Lett., 1961,7(6): 229.

doi: 10.1103/PhysRevLett.7.229     URL    
[617]
Abella I D. Phys. Rev. Lett., 1962,9(11): 453.

doi: 10.1103/PhysRevLett.9.453     URL    
[618]
Helmchen F, Waters J. Eur. J. Pharmacol., 2002,447(2/3): 119.

doi: 10.1016/S0014-2999(02)01836-8     URL    
[619]
Svoboda K, Tank D W, Denk W. Science, 1996,272(5262): 716.

pmid: 8614831
[620]
Xu C, Zipfel W, Shear J B, Williams R M, Webb W W. PNAS, 1996,93(20): 10763.

pmid: 8855254
[621]
Wang T, Ouzounov D G, Wu C Y, Horton N G, Zhang B, Wu C H, Zhang Y P, Schnitzer M J, Xu C. Nat. Methods, 2018,15(10): 789.
[622]
Ouzounov D G, Wang T, Wang M R, Feng D D, Horton N G, Cruz-Hernández J C, Cheng Y T, Reimer J, Tolias A S, Nishimura N, Xu C. Nat. Methods, 2017,14(4): 388.

doi: 10.1038/nmeth.4183     pmid: 28218900
[623]
Wang M R, Wu C Y, Sinefeld D, Li B, Xia F, Xu C. Biomed. Opt. Express, 2018,9(8): 3534.

doi: 10.1364/BOE.9.003534     URL    
[624]
Horton N G, Wang K, Kobat D, Clark C G, Wise F W, Schaffer C B, Xu C. Nat. Photonics, 2013,7(3): 205.

doi: 10.1038/nphoton.2012.336     URL    
[625]
Li D Y, Ni X, Zhang X Y, Liu L W, Qu J L, Ding D, Qian J. Nano Research, 2018,11(11): 6023.

doi: 10.1007/s12274-018-2118-5     URL    
[626]
Li D Y, Qin W, Xu B, Qian J, Tang B Z. Adv. Mater., 2017,29(43): 1703643.

doi: 10.1002/adma.201703643     URL    
[627]
Zhang H Q, Alifu N, Jiang T, Zhu Z G, Wang Y L, Hua J L, Qian J. J. Mater. Chem. B, 2017,5(15): 2757.

doi: 10.1039/C7TB00156H     URL    
[628]
Li D Y, Zhao X Y, Qin W, Zhang H Q, Fei Y, Liu L W, Yong K T, Chen G D, Tang B Z, Qian J. Nano Res., 2016,9(7): 1921.

doi: 10.1007/s12274-016-1084-z     URL    
[629]
Liu W, Wang Y L, Han X, Lu P, Zhu L, Sun C W, Qian J, He S L. Nanoscale, 2018,10(21): 10025.

doi: 10.1039/C8NR00066B     URL    
[630]
Zong L Y, Zhang H Q, Li Y Q, Gong Y B, Li D Y, Wang J Q, Wang Z, Xie Y J, Han M M, Peng Q, Li X F, Dong J F, Qian J, Li Q Q, Li Z. ACS Nano, 2018,12(9): 9532.

doi: 10.1021/acsnano.8b05090     URL    
[631]
Qian J, Zhu Z F, Qin A J, Qin W, Chu L L, Cai F H, Zhang H Q, Wu Q, Hu R R, Tang B Z, He S L. Adv. Mater., 2015,27(14): 2332.

doi: 10.1002/adma.v27.14     URL    
[632]
Zhu Z F, Qian J, Zhao X Y, Qin W, Hu R R, Zhang H Q, Li D Y, Xu Z P, Tang B Z, He S L. ACS Nano, 2016,10(1): 588.

doi: 10.1021/acsnano.5b05606     URL    
[633]
Wang Y L, Han X, Xi W, Li J Y, Roe A W, Lu P, Qian J. Adv. Healthcare Mater., 2017,6(21): 1700685.

doi: 10.1002/adhm.v6.21     URL    
[634]
Li D Y, Zhang H Q, Streich L L, Wang Y L, Lu P, Wang L, Prevedel R, Qian J. Mater. Chem. Front., 2021,5(7): 3201.

doi: 10.1039/D1QM00243K     URL    
[635]
Wang Y L, Chen M, Alifu N, Li S W, Qin W, Qin A J, Tang B Z, Qian J. ACS Nano, 2017,11(10): 10452.

doi: 10.1021/acsnano.7b05645     URL    
[636]
Collot M, Fam T K, Ashokkumar P, Faklaris O, Galli T, Danglot L, Klymchenko A S. J. Am. Chem. Soc., 2018,140(16): 5401.

doi: 10.1021/jacs.7b12817     URL    
[637]
Xie N, Feng K, Shao J Q, Chen B, Tung C H, Wu L Z. Biomacromolecules, 2018,19(7): 2750.

doi: 10.1021/acs.biomac.8b00338     URL    
[638]
Park I S, Matsuo K, Aizawa N, Yasuda T. Adv. Funct. Mater., 2018,28(34): 1802031.

doi: 10.1002/adfm.201802031     URL    
[639]
Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J P, Ono Y, Ikuta T. Adv. Mater., 2016,28(14): 2777.

doi: 10.1002/adma.201505491     URL    
[640]
Zhu X, Wang J X, Niu L Y, Yang Q Z. Chem. Mater., 2019,31(9): 3573.

doi: 10.1021/acs.chemmater.9b01338     URL    
[641]
Gu X G, Zhang X Y, Ma H L, Jia S R, Zhang P F, Zhao Y J, Liu Q, Wang J G, Zheng X Y, Lam J W Y, Ding D, Tang B Z. Adv. Mater., 2018,30(26): 1801065.

doi: 10.1002/adma.v30.26     URL    
[642]
Chen C, Ni X, Tian H W, Liu Q, Guo D S, Ding D. Angew. Chem. Int. Ed., 2020,59(25): 10008.

doi: 10.1002/anie.v59.25     URL    
[643]
Pan Y C, Hu X Y, Guo D S. Angew. Chem. Int. Ed., 2021,60(6): 2768.

doi: 10.1002/anie.v60.6     URL    
[644]
Smith A M, Mancini M C, Nie S M. Nat. Nanotechnol., 2009,4(11): 710.

doi: 10.1038/nnano.2009.326     URL    
[645]
Dodeigne C. Talanta, 2000,51(3): 415.

pmid: 18967873
[646]
Green O, Gnaim S, Blau R, Eldar-Boock A, Satchi-Fainaro R, Shabat D. J. Am. Chem. Soc., 2017,139(37): 13243.

doi: 10.1021/jacs.7b08446     pmid: 28853880
[647]
Ni X, Zhang X Y, Duan X C, Zheng H L, Xue X S, Ding D. Nano Lett., 2019,19(1): 318.

doi: 10.1021/acs.nanolett.8b03936     URL    
[648]
Celli J P, Spring B Q, Rizvi I, Evans C L, Samkoe K S, Verma S, Pogue B W, Hasan T. Chem. Rev., 2010,110(5): 2795.

doi: 10.1021/cr900300p     URL    
[649]
Zhao J Z, Wu W H, Sun J F, Guo S. Chem. Soc. Rev., 2013,42(12): 5323.

doi: 10.1039/c3cs35531d     URL    
[650]
Wang D, Su H F, Kwok R T K, Shan G G, Leung A C S, Lee M M S, Sung H H Y, Williams I D, Lam J W Y, Tang B Z. Adv. Funct. Mater., 2017,27(46): 1704039.

doi: 10.1002/adfm.v27.46     URL    
[651]
Kang M M, Zhou C C, Wu S M, Yu B R, Zhang Z J, Song N, Lee M M S, Xu W H, Xu F J, Wang D, Wang L, Tang B Z. J. Am. Chem. Soc., 2019,141(42): 16781.

doi: 10.1021/jacs.9b07162     URL    
[652]
Yang Z M, Zhang Z J, Sun Y Q, Lei Z Q, Wang D, Ma H C, Tang B Z. Biomaterials, 2021,275: 120934.

doi: 10.1016/j.biomaterials.2021.120934     URL    
[653]
Song N, Xiao P H, Ma K, Kang M M, Zhu W, Huang J C, Wang D, Tang B Z. Chem. Res. Chin. Univ., 2021,37(1): 52.

doi: 10.1007/s40242-021-0430-1     URL    
[654]
Xu W H, Lee M M S, Zhang Z H, Sung H H Y, Williams I D, Kwok R T K, Lam J W Y, Wang D, Tang B Z. Chem. Sci., 2019,10(12): 3494.

doi: 10.1039/C8SC05805A     URL    
[655]
Kang M M, Kwok R T K, Wang J G, Zhang H, Lam J W Y, Li Y, Zhang P F, Zou H, Gu X G, Li F, Tang B Z. J. Mater. Chem. B, 2018,6(23): 3894.

doi: 10.1039/C8TB00572A     URL    
[656]
Wang D, Lee M M S, Shan G G, Kwok R T K, Lam J W Y, Su H F, Cai Y C, Tang B Z. Adv. Mater., 2018,30(39): 1802105.

doi: 10.1002/adma.v30.39     URL    
[657]
Wang D, Su H F, Kwok R T K, Hu X L, Zou H, Luo Q X, Lee M M S, Xu W H, Lam J W Y, Tang B Z. Chem. Sci., 2018,9(15): 3685.

doi: 10.1039/C7SC04963C     URL    
[658]
Xu W H, Lee M M S, Nie J J, Zhang Z H, Kwok R T K, Lam J W Y, Xu F J, Wang D, Tang B Z. Angew. Chem. Int. Ed., 2020,59(24): 9610.

doi: 10.1002/anie.v59.24     URL    
[659]
Kang M M, Zhang Z J, Xu W H, Wen H F, Zhu W, Wu Q, Wu H Z, Gong J Y, Wang Z J, Wang D, Tang B Z. Adv. Sci., 2021,8(14): 2100524.

doi: 10.1002/advs.v8.14     URL    
[660]
Chen C, Song Z G, Zheng X Y, He Z K, Liu B, Huang X H, Kong D L, Ding D, Tang B Z. Chem. Sci., 2017,8(3): 2191.

doi: 10.1039/C6SC03859J     URL    
[661]
Chen C, Ni X, Jia S R, Liang Y, Wu X L, Kong D L, Ding D. Adv. Mater., 2019,31(52): 1904914.

doi: 10.1002/adma.v31.52     URL    
[662]
Galluzzi L, BuquÉ A, Kepp O, Zitvogel L, Kroemer G. Nat. Rev. Immunol., 2017,17(2): 97.

doi: 10.1038/nri.2016.107     pmid: 27748397
[663]
Neelgund G M, Oki A. Mater. Chem. Front., 2018,2(1): 64.

doi: 10.1039/C7QM00337D     URL    
[664]
Li H X, Wen H F, Li J, Huang J C, Wang D, Tang B Z. ACS Appl. Mater. Interfaces, 2020,12(23): 26033.

doi: 10.1021/acsami.0c06181     URL    
[665]
Ou H L, Li J, Chen C, Gao H Q, Xue X, Ding D. Sci. China Mater., 2019,62(11): 1740.

doi: 10.1007/s40843-019-9470-3     URL    
[666]
Liu S J, Li Y Y, Zhang H K, Zhao Z, Lu X F, Lam J W Y, Tang B Z. ACS Mater. Lett., 2019,1(4): 425.
[667]
Wang H R, Xing H, Gong J Y, Zhang H K, Zhang J, Wei P F, Yang G J, Lam J W Y, Lu R, Tang B Z. Mater. Horiz., 2020,7(6): 1566.

doi: 10.1039/D0MH00447B     URL    
[668]
Zhao Z, Chen C, Wu W T, Wang F F, Du L L, Zhang X Y, Xiong Y, He X W, Cai Y J, Kwok R T K, Lam J W Y, Gao X K, Sun P C, Phillips D L, Ding D, Tang B Z. Nat. Commun., 2019,10(1): 768.

doi: 10.1038/s41467-019-08722-z     URL    
[669]
Mei J G, Bao Z N. Chem. Mater., 2014,26(1): 604.

doi: 10.1021/cm4020805     URL    
[670]
Pu K Y, Shuhendler A J, Jokerst J V, Mei J G, Gambhir S S, Bao Z N, Rao J H. Nat. Nanotechnol., 2014,9(3): 233.

doi: 10.1038/nnano.2013.302     URL    
[671]
Song K H, Stein E W, Margenthaler J A, Wang L V. J. Biomed. Opt., 2008,13(5) 054033.

doi: 10.1117/1.2976427     URL    
[672]
Liu S J, Zhou X, Zhang H K, Ou H L, Lam J W Y, Liu Y, Shi L Q, Ding D, Tang B Z. J. Am. Chem. Soc., 2019,141(13): 5359.

doi: 10.1021/jacs.8b13889     URL    
[673]
Pei G C, Zhang Z G, Peng J, Liu L, Zhang C X, Yu C, Ma Z F, Huang Y, Liu W, Yao Y, Zeng R, Xu G. J. Am. Soc. Nephrol., 2020,31(6): 1157.

doi: 10.1681/ASN.2020030276     URL    
[674]
Abraham J P, Plourde B D, Cheng L J. Rev. Med. Virol., 2020,30(5): e2115. DOI: 10.1002/rmv.2115.

doi: 10.1002/rmv.2115    
[675]
Khan J, Tarar S M, Gul I, Nawaz U, Arshad M. 3 Biotech, 2021,11(4):169.
[676]
Flemming H C, Wingender J, Szewzyk U, Steinberg P, Rice S A, Kjelleberg S. Nat. Rev. Microbiol., 2016,14(9): 563.

doi: 10.1038/nrmicro.2016.94     URL    
[677]
He W, Wang Z Y, Bai H T, Zhao Z, Kwok R T K, Lam J W Y, Tang B Z. Nanoscale, 2021,13(32): 13610.

doi: 10.1039/D1NR03471E     URL    
[678]
Jeevarathinam A S, Lemaster J E, Chen F, Zhao E, Jokerst J V. Angew. Chem. Int. Ed., 2020,59(12): 4678.

doi: 10.1002/anie.v59.12     URL    
[679]
Ohata J, Bruemmer K J, Chang C J. Acc. Chem. Res., 2019,52(10): 2841.

doi: 10.1021/acs.accounts.9b00386     URL    
[680]
Qi J, Feng L Y, Zhang X Y, Zhang H K, Huang L W, Zhou Y T, Zhao Z, Duan X C, Xu F, Kwok R T K, Lam J W Y, Ding D, Xue X, Tang B Z. Nat. Commun., 2021,12(1): 960.

doi: 10.1038/s41467-021-21208-1     URL    
[681]
Song X J, Chen Q, Liu Z. Nano Res., 2015,8(2): 340.

doi: 10.1007/s12274-014-0620-y     URL    
[682]
Huang X H, Jain P K, El-Sayed I H, El-Sayed M A. Lasers Med. Sci., 2007,23(3): 217.

doi: 10.1007/s10103-007-0470-x     URL    
[683]
Wang Y J, Gong N Q, Li Y J, Lu Q C, Wang X, Li J H. J. Am. Chem. Soc., 2020,142(4): 1735.

doi: 10.1021/jacs.9b11553     URL    
[684]
Zhao X Z, Long S R, Li M L, Cao J F, Li Y C, Guo L Y, Sun W, Du J J, Fan J L, Peng X J. J. Am. Chem. Soc., 2020,142(3): 1510.

doi: 10.1021/jacs.9b11800     URL    
[685]
Chen Z Y, Mu X L, Han Z, Yang S P, Zhang C L, Guo Z J, Bai Y, He W J. J. Am. Chem. Soc., 2019,141(45): 17973.

doi: 10.1021/jacs.9b09181     URL    
[686]
Huang J C, He B Z, Zhang Z J, Li Y M, Kang M M, Wang Y W, Li K, Wang D, Tang B Z. Adv. Mater., 2020,32(37): 2003382.

doi: 10.1002/adma.v32.37     URL    
[687]
Song N, Zhang Z J, Liu P Y, Dai D H, Chen C, Li Y M, Wang L, Han T, Yang Y W, Wang D, Tang B Z. Adv. Funct. Mater., 2021,31(21): 2009924.

doi: 10.1002/adfm.v31.21     URL    
[688]
Antaris A L, Chen H, Cheng K, Sun Y, Hong G S, Qu C R, Diao S, Deng Z X, Hu X M, Zhang B, Zhang X D, Yaghi O K, Alamparambil Z R, Hong X C, Cheng Z, Dai H J. Nat. Mater., 2016,15(2): 235.

doi: 10.1038/nmat4476     URL    
[689]
Zhu W, Kang M M, Wu Q, Zhang Z J, Wu Y, Li C B, Li K, Wang L, Wang D, Tang B Z. Adv. Funct. Mater., 2021,31(3): 2007026.

doi: 10.1002/adfm.v31.3     URL    
[690]
Wen H F, Zhang Z J, Kang M M, Li H X, Xu W H, Guo H, Li Y M, Tan Y H, Wen Z Y, Wu Q, Huang J C, Xi L, Li K, Wang L, Wang D, Tang B Z. Biomaterials, 2021,274: 120892.

doi: 10.1016/j.biomaterials.2021.120892     URL    
[691]
Xu W H, Zhang Z J, Kang M M, Guo H, Li Y M, Wen H F, Lee M M S, Wang Z Y, Kwok R T K, Lam J W Y, Li K, Xi L, Chen S J, Wang D, Tang B Z. ACS Materials Letters, 2020,2:1033.

doi: 10.1021/acsmaterialslett.0c00263     URL    
[692]
Wang D, Lee M M S, Xu W H, Shan G G, Zheng X Y, Kwok R T K, Lam J W Y, Hu X L, Tang B Z. Angew. Chem. Int. Ed., 2019,58(17): 5628.

doi: 10.1002/anie.v58.17     URL    
[693]
Zhang Z J, Xu W H, Kang M M, Wen H F, Guo H, Zhang P F, Xi L, Li K, Wang L, Wang D, Tang B Z. Adv. Mater., 2020: 2003210.
[694]
Yang Z M, Zhang Z J, Lei Z Q, Wang D, Ma H C, Tang B Z. ACS Nano, 2021,15(4): 7328.

doi: 10.1021/acsnano.1c00585     URL    
[86]
An B K, Kwon S K, Jung S D, Park S Y. J. Am. Chem. Soc., 2002,124(48): 14410.

doi: 10.1021/ja0269082     URL    
[87]
Shi J Q, Aguilar Suarez L E, Yoon S J, Varghese S, Serpa C, Park S Y, Lüer L, Roca-Sanjuán D, Milián-Medina B, Gierschner J. J. Phys. Chem. C, 2017,121(41): 23166.

doi: 10.1021/acs.jpcc.7b08060     URL    
[88]
Hirata S, Vacha M. J. Phys. Chem. Lett., 2016,7(8): 1539.

doi: 10.1021/acs.jpclett.6b00554     pmid: 27058743
[89]
Tang Y Z, Yu Y M, Xiong J B, Tan Y H, Wen H R. J. Am. Chem. Soc., 2015,137(41): 13345.

doi: 10.1021/jacs.5b08061     URL    
[90]
Bai L Y, Bose P, Gao Q, Li Y X, Ganguly R, Zhao Y L. J. Am. Chem. Soc., 2017,139(1): 436.

doi: 10.1021/jacs.6b11057     URL    
[91]
Zhu W G, Zheng R H, Zhen Y G, Yu Z Y, Dong H L, Fu H B, Shi Q, Hu W P. J. Am. Chem. Soc., 2015,137(34):11038.

doi: 10.1021/jacs.5b05586     URL    
[92]
Yan D P, Yang H J, Meng Q Y, Lin H Y, Wei M. Adv. Funct. Mater., 2014,24(5): 587.

doi: 10.1002/adfm.v24.5     URL    
[93]
Zhang J, Liu G F, Zhou Y C, Long G K, Gu P Y, Zhang Q C. ACS Appl. Mater. Interfaces, 2017,9(2): 1183.

doi: 10.1021/acsami.6b15027     URL    
[94]
Aitipamula S, Banerjee R, Bansal A K, Biradha K, Cheney M L, Choudhury A R, Desiraju G R, Dikundwar A G, Dubey R, Duggirala N, Ghogale P P, Ghosh S, Goswami P K, Goud N R, Jetti R R K R, Karpinski P, Kaushik P, Kumar D, Kumar V, Moulton B, Mukherjee A, Mukherjee G, Myerson A S, Puri V, Ramanan A, Rajamannar T, Reddy C M, Rodriguez-Hornedo N, Rogers R D, Row T N G, Sanphui P, Shan N, Shete G, Singh A, Sun C C, Swift J A, Thaimattam R, Thakur T S, Kumar Thaper R, Thomas S P, Tothadi S, Vangala V R, Variankaval N, Vishweshwar P, Weyna D R, Zaworotko M J. Cryst. Growth Des., 2012,12(5): 2147.

doi: 10.1021/cg3002948     URL    
[95]
Li S Z, Lu B, Fang X Y, Yan D P. Angew. Chem. Int. Ed., 2020,59(50): 22623.

doi: 10.1002/anie.v59.50     URL    
[96]
Zhou J, Yu G C, Huang F H. J. Mater. Chem. B, 2016,4(48): 7761.

doi: 10.1039/C6TB02681H     URL    
[97]
Zhang T T, Gao H Q, Lv A, Wang Z Y, Gong Y Y, Ding D, Ma H L, Zhang Y M, Yuan W Z. J. Mater. Chem. C, 2019,7(29): 9095.

doi: 10.1039/C9TC02879J     URL    
[98]
Yan D P, Delori A, Lloyd G O, Friši T, Day G M, Jones W, Lu J, Wei M, Evans D G, Duan X. Angew. Chem. Int. Ed., 2011,50(52): 12483.

doi: 10.1002/anie.201106391     URL    
[99]
Quentin J, MacGillivray L R. ChemPhysChem, 2020,21(2): 154.

doi: 10.1002/cphc.201900961     pmid: 31600417
[100]
Li S Z, Yan D P. Adv. Opt. Mater., 2018,6(19):1800445.

doi: 10.1002/adom.v6.19     URL    
[101]
Coleman L B, Cohen M J, Sandman D J, Yamagishi F G, Garito A F, Heeger A J. Solid State Commun., 1973,12(11): 1125.

doi: 10.1016/0038-1098(73)90127-0     URL    
[102]
Sun L J, Wang Y, Yang F X, Zhang X T, Hu W P. Adv. Mater., 2019,31(39): 1902328.

doi: 10.1002/adma.v31.39     URL    
[103]
Ding F, Zhan Y B, Lu X J, Sun Y. Chem. Sci., 2018,9(19): 4370.

doi: 10.1039/C8SC01153B     URL    
[104]
Li S Z, Lin Y J, Yan D P. J. Mater. Chem. C, 2016,4(13): 2527.

doi: 10.1039/C6TC00067C     URL    
[105]
Zheng T T, Xu J L, Wang X J, Zhang J, Jiao X L, Wang T, Chen D R. Chem. Commun., 2016,52(42): 6922.

doi: 10.1039/C6CC02857H     URL    
[106]
Chai J, Wu Y B, Yang B S, Liu B. J. Mater. Chem. C, 2018,6(15): 4057.

doi: 10.1039/C8TC00509E     URL    
[107]
Yuan Y Y, Liu B. Chem. Sci., 2017,8(4): 2537.

doi: 10.1039/C6SC05421H     URL    
[108]
Dong Z Z, Bi Y Z, Cui H R, Wang Y D, Wang C L, Li Y, Jin H W, Wang C Q. ACS Appl. Mater. Interfaces, 2019,11(27): 23840.

doi: 10.1021/acsami.9b04938     URL    
[109]
Dai D H, Li Z, Yang J, Wang C Y, Wu J R, Wang Y, Zhang D M, Yang Y W. J. Am. Chem. Soc., 2019,141(11): 4756.

doi: 10.1021/jacs.9b01546     URL    
[110]
Shen F F, Chen Y, Xu X F, Yu H J, Wang H R, Liu Y. Small, 2021,17(30): 2101185.

doi: 10.1002/smll.v17.30     URL    
[111]
Yoon S J, Park S. J. Mater. Chem., 2011,21(23): 8338.

doi: 10.1039/c0jm03711g     URL    
[112]
Yoon S J, Chung J W, Gierschner J, Kim K S, Choi M G, Kim D, Park S Y. J. Am. Chem. Soc., 2010,132(39): 13675.

doi: 10.1021/ja1044665     URL    
[113]
Peng B Y, Xu S D, Chi Z G, Zhang X Q, Zhang Y, Xu J R. Progress in Chemistry, 2013,25: 1806.
( 彭邦银, 许适当, 池振国, 张锡奇, 张艺, 许家瑞. 化学进展, 2013,25: 1806.)
[114]
Lu B, Zhang Y J, Yang X G, Wang K, Zou B, Yan D P. J. Mater. Chem. C, 2018,6(36): 9660.

doi: 10.1039/C8TC02444H     URL    
[115]
Hu R, Qin A J, Tang B Z. Prog. Polym. Sci., 2020,100: 101176.

doi: 10.1016/j.progpolymsci.2019.101176     URL    
[116]
Qin A J, Lam J W Y, Tang B Z. Prog. Polym. Sci., 2012,37(1): 182.

doi: 10.1016/j.progpolymsci.2011.08.002     URL    
[117]
Zhang X Y, Wang K, Liu M Y, Zhang X Q, Tao L, Chen Y W, Wei Y. Nanoscale, 2015,7(27): 11486.

doi: 10.1039/C5NR01444A     URL    
[118]
Chen J W, Xie Z L, Lam J W Y, Law C C W, Tang B Z. Macromolecules, 2003,36(4): 1108.

doi: 10.1021/ma0213504     URL    
[119]
Hu R, Yang X Z, Qin A J, Tang B Z. Mater. Chem. Front., 2021,5(11): 4073.

doi: 10.1039/D1QM00078K     URL    
[120]
Zhang X Q, Zhang X Y, Yang B, Yang Y, Wei Y. Polym. Chem., 2014,5(20): 5885.

doi: 10.1039/C4PY00794H     URL    
[121]
Shao L, Sun J F, Hua B, Huang F H. Chem. Commun., 2018,54(38): 4866.

doi: 10.1039/C8CC02077A     URL    
[122]
Yin G Q, Kandapal S, Liu C H, Wang H, Huang J X, Jiang S T, Ji T, Yan Y, Khalife S, Zhou R H, Ye L B, Xu B Q, Yang H B, Nieh M P, Li X P. Angew. Chem. Int. Ed., 2021,60(3): 1281.

doi: 10.1002/anie.v60.3     URL    
[123]
Wang K, Lu H, Liu B B, Yang J P. Eur. Polym. J., 2018,101: 225.

doi: 10.1016/j.eurpolymj.2018.02.014     URL    
[124]
Li J W, Li Y, Chan C Y K, Kwok R T K, Li H K, Zrazhevskiy P, Gao X H, Sun J Z, Qin A J, Tang B Z. Angew. Chem. Int. Ed., 2014,53(49): 13518.

doi: 10.1002/anie.201408757     URL    
[125]
Hu R, Zhou T T, Li B X, Kwok R T K, Shen J L, Qin A J, Tang B Z. Biomaterials, 2020,230: 119658.

doi: 10.1016/j.biomaterials.2019.119658     URL    
[126]
Zheng Z Y, Zhou T T, Hu R, Huang M J, Ao X, Chu J, Jiang T, Qin A J, Zhang Z M. Bioact. Mater., 2020,5(4): 1018.
[127]
Ma H C, Qin Y F, Yang Z M, Yang M Y, Ma Y C, Yin P, Yang Y, Wang T, Lei Z Q, Yao X Q. ACS Appl. Mater. Interfaces, 2018,10(23): 20064.

doi: 10.1021/acsami.8b05073     URL    
[128]
Deng G J, Peng X H, Sun Z H, Zheng W, Yu J, Du L L, Chen H J, Gong P, Zhang P F, Cai L T, Tang B Z. ACS Nano, 2020,14(9): 11452.

doi: 10.1021/acsnano.0c03824     URL    
[129]
Hu Y B, Han T, Yan N, Liu J K, Liu X L, Wang W X, Lam J W Y, Tang B Z. Adv. Funct. Mater., 2019,29(31): 1902240.

doi: 10.1002/adfm.v29.31     URL    
[130]
Zhao Y J, Wu Y, Chen S, Deng H P, Zhu X Y. Macromolecules, 2018,51(14): 5234.

doi: 10.1021/acs.macromol.8b00656     URL    
[131]
Ma H C, Ma Y C, Lei L, Yang M Y, Qin Y F, Lei Z Q, Chang L, Wang T, Yang Y, Yao X Q. New J. Chem., 2018,42(12): 9702.

doi: 10.1039/C8NJ00381E     URL    
[132]
Zhu T L, Ren N, Liu X, Dong Y, Wang R C, Gao J Z, Sun J, Zhu Y, Wang L H, Fan C H, Tian H, Li J, Zhao C C. Angew. Chem. Int. Ed., 2021,60(15): 8450.

doi: 10.1002/anie.v60.15     URL    
[133]
Li Y, Wu X, Yang B, Zhang X K, Li H, Umar A, de Rooij N F, Zhou G F, Wang Y. ACS Appl. Mater. Interfaces, 2019,11(40): 37077.

doi: 10.1021/acsami.9b11945     URL    
[134]
Zhan R Y, Pan Y T, Manghnani P N, Liu B. Macromol. Biosci., 2017,17(5): 1600433.

doi: 10.1002/mabi.v17.5     URL    
[135]
Li Z L, Bai H T, Jia S C, Yuan H X, Gao L H, Liang H Y. Mater. Chem. Front., 2021,5(3): 1236.

doi: 10.1039/D0QM00837K     URL    
[136]
Qiu Z J, Liu X L, Lam J W Y, Tang B Z. Macromol. Rapid Commun., 2019,40(1): 1800568.

doi: 10.1002/marc.201800568     URL    
[137]
Hu Y B, Lam J W Y, Tang B Z. Chin. J. Polym. Sci., 2019,37(4): 289.

doi: 10.1007/s10118-019-2221-4     URL    
[138]
Qi G B, Hu F, Kenry, Chong K C, Wu M, Gan Y H, Liu B. Adv. Funct. Mater., 2020,30(31): 2001338.

doi: 10.1002/adfm.v30.31     URL    
[139]
Zhou T T, Hu R, Wang L R, Qiu Y P, Zhang G Q, Deng Q Y, Zhang H Y, Yin P G, Bo S T, Zhan C L, Qin A J, Tang B Z. Angew. Chem. Int. Ed., 2020,59(25): 9952.

doi: 10.1002/anie.v59.25     URL    
[140]
Qi R L, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E D, Lv F, Huang Y M, Liu L B, Wang Y L, Wang S. Angew. Chem. Int. Ed., 2021,60(11): 5759.

doi: 10.1002/anie.v60.11     URL    
[141]
Hu R, Chen X, Zhou T T, Si H, He B Z, Kwok R T K, Qin A J, Tang B Z. Sci. China Chem., 2019,62(9): 1198.

doi: 10.1007/s11426-019-9517-9     URL    
[142]
Cheng Y, Dai J, Sun C L, Liu R, Zhai T Y, Lou X D, Xia F. Angew. Chem. Int. Ed., 2018,57(12): 3123.

doi: 10.1002/anie.201712803     URL    
[143]
Chen M H, He J, Xie S Z, Wang T, Ran P, Zhang Z L, Li X H. J. Control. Release, 2020,322: 326.

doi: 10.1016/j.jconrel.2020.03.037     URL    
[144]
Zhu C H, Li Y L. J. Control. Release, 2017,259:e14.

doi: 10.1016/j.jconrel.2017.03.059     URL    
[145]
Wu P, Wang X F, Wang Z G, Ma W, Guo J S, Chen J J, Yu Z Q, Li J Z, Zhou D F. ACS Appl. Mater. Interfaces, 2019,11(20): 18691.

doi: 10.1021/acsami.9b02346     URL    
[146]
Liow S S, Dou Q Q, Kai D, Li Z B, Sugiarto S, Yu C Y Y, Kwok R T K, Chen X H, Wu Y L, Ong S T, Kizhakeyil A, Verma N K, Tang B Z, Loh X J. Small, 2017,13(7): 1603404.

doi: 10.1002/smll.v13.7     URL    
[147]
Yuan Y Y, Zhang C J, Liu B. Angew. Chem. Int. Ed., 2015,54(39): 11419.

doi: 10.1002/anie.v54.39     URL    
[148]
Alam P, Climent C, Alemany P, Laskar I R. J. Photochem. Photobiol. C: Photochem. Rev., 2019,41: 100317.

doi: 10.1016/j.jphotochemrev.2019.100317     URL    
[149]
Zhao J, Zhou Z X, Li G F, Stang P J, Yan X Z. Natl. Sci. Rev., 2021,8(6): nwab045. DOI: 10.1093/nsr/nwab045.

doi: 10.1093/nsr/nwab045     pmid: 34691672
[150]
Ravotto L, Ceroni P. Coord. Chem. Rev., 2017,346: 62.

doi: 10.1016/j.ccr.2017.01.006     URL    
[151]
Yang Y M, Zhao Q, Feng W, Li F Y. Chem. Rev., 2013,113(1): 192.

doi: 10.1021/cr2004103     URL    
[152]
Leung S Y L, Evariste S, Lescop C, Hissler M, Yam V W W. Chem. Sci., 2017,8(6): 4264.

doi: 10.1039/C7SC00041C     URL    
[153]
Aliprandi A, Mauro M, De Cola L. Nat. Chem., 2016,8(1): 10.

doi: 10.1038/nchem.2383     URL    
[154]
Chen Y, Li K, Lu W, Chui S Y, Ma C W, Che C M. Angew. Chem. Int. Ed., 2009,48(52): 9909.

doi: 10.1002/anie.v48:52     URL    
[155]
Wong K M C, Yam V W W. Acc. Chem. Res., 2011,44(6): 424.

doi: 10.1021/ar100130j     URL    
[156]
Cheng H K, Yeung M C L, Yam V W W. ACS Appl. Mater. Interfaces, 2017,9(41): 36220.

doi: 10.1021/acsami.7b11807     URL    
[157]
Jin C Z, Liu J P, Chen Y, Guan R L, Ouyang C, Zhu Y J, Ji L N, Chao H. Sci. Rep., 2016,6(1): 22039.

doi: 10.1038/srep22039     URL    
[158]
Liu J P, Jin C Z, Yuan B, Liu X G, Chen Y, Ji L N, Chao H. Chem. Commun., 2017,53(12): 2052.

doi: 10.1039/C6CC10015E     URL    
[159]
Li L J, Zhang L P, Tong X F, Li Y T, Yang Z Y, Zhu D X, Su Z M, Xie Z G. Dalton Trans., 2020,49(43): 15332.

doi: 10.1039/D0DT02962A     URL    
[160]
Chen Y, Xu W C, Kou J F, Yu B L, Wei X H, Chao H, Ji L N. Inorg. Chem. Commun., 2010,13(10): 1140.

doi: 10.1016/j.inoche.2010.06.029     URL    
[161]
Chen Y, Xu W C, Kou J F, Wei X H, Yu B L, Chao H, Ji L N. Sci. China Chem., 2010,53(10): 2099.

doi: 10.1007/s11426-010-4099-4     URL    
[162]
Sheet S K, Sen B, Patra S K, Rabha M, Aguan K, Khatua S. ACS Appl. Mater. Interfaces, 2018,10(17): 14356.

doi: 10.1021/acsami.7b19290     URL    
[163]
Xu H L, Zhang X J, Li X C, Zhang X C, Deng J, Zou D F, Yang J. J. Inorg. Biochem., 2020,212: 111233.

doi: 10.1016/j.jinorgbio.2020.111233     URL    
[164]
Zhao Q, Li L, Li F Y, Yu M X, Liu Z P, Yi T, Huang C H. Chem. Commun., 2008(6): 685.
[165]
You Y, Huh H S, Kim K S, Lee S W, Kim D, Park S Y. Chem. Commun., 2008(34): 3998.
[166]
Huang K W, Wu H Z, Shi M, Li F Y, Yi T, Huang C H. Chem. Commun., 2009(10): 1243.
[167]
Maji S, Alam P, Kumar G S, Biswas S, Sarkar P K, Das B, Rehman I, Das B B, Jana N R, Laskar I R, Acharya S. Small, 2017,13(15): 1603780.

doi: 10.1002/smll.v13.15     URL    
[168]
Alam P, Kaur G, Climent C, Pasha S, Casanova D, Alemany P, Roy Choudhury A, Laskar I R. Dalton Trans., 2014,43(43): 16431.

doi: 10.1039/C4DT02266A     URL    
[169]
Alam P, Karanam M, Roy Choudhury A, Rahaman Laskar I. Dalton Trans., 2012,41(31): 9276.

doi: 10.1039/c2dt30771e     URL    
[170]
Climent C, Alam P, Pasha S S, Kaur G, Choudhury A R, Laskar I R, Alemany P, Casanova D. J. Mater. Chem. C, 2017,5(31): 7784.

doi: 10.1039/C7TC02250F     URL    
[171]
Alam P, Kaur G, Kachwal V, Gupta A, Roy Choudhury A, Laskar I R. J. Mater. Chem. C, 2015,3(21): 5450.

doi: 10.1039/C5TC00963D     URL    
[172]
Alam P, Kaur G, Sarmah A, Roy R K, Choudhury A R, Laskar I R. Organometallics, 2015,34(18): 4480.

doi: 10.1021/acs.organomet.5b00447     URL    
[173]
Alam P, Dash S, Climent C, Kaur G, Choudhury A R, Casanova D, Alemany P, Chowdhury R, Laskar I R. RSC Adv., 2017,7(10): 5642.

doi: 10.1039/C6RA24792J     URL    
[174]
Jain N, Alam P, Laskar I R, Panwar J. RSC Adv., 2015,5(76): 61983.

doi: 10.1039/C5RA10161A     URL    
[175]
Alam P, Das P, Climent C, Karanam M, Casanova D, Choudhury A R, Alemany P, Jana N R, Laskar I R. J. Mater. Chem. C, 2014,2(28): 5615.

doi: 10.1039/C4TC00466C     URL    
[176]
Alam P, Climent C, Kaur G, Casanova D, Roy Choudhury A, Gupta A, Alemany P, Laskar I R. Cryst. Growth Des., 2016,16(10): 5738.

doi: 10.1021/acs.cgd.6b00810     URL    
[177]
Zhao K Y, Song W L, Yang Y, Duan Y C, Li G F, Shan G G, Fu Q, Su Z M. Dyes Pigments, 2021,184: 108817.

doi: 10.1016/j.dyepig.2020.108817     URL    
[178]
Mao H T, Yang Y, Zhao K Y, Duan Y C, Song W L, Shan G G, Su Z M. Dyes Pigments, 2021,192: 109439.

doi: 10.1016/j.dyepig.2021.109439     URL    
[179]
Hou X G, Wu Y, Cao H T, Sun H Z, Li H B, Shan G G, Su Z M. Chem. Commun., 2014,50(45): 6031.

doi: 10.1039/C3CC49395D     URL    
[180]
Wen L L, Hou X G, Shan G G, Song W L, Zhang S R, Sun H Z, Su Z M. J. Mater. Chem. C, 2017,5(41): 10847.

doi: 10.1039/C7TC03535G     URL    
[181]
Gao H, Zhang N, Pan J B, Quan Y W, Cheng Y X, Chen H Y, Xu J J. ACS Appl. Mater. Interfaces, 2020,12(48): 54012.

doi: 10.1021/acsami.0c18197     URL    
[182]
Zhang L P, Li Y Y, Che W L, Zhu D X, Li G F, Xie Z G, Song N, Liu S, Tang B Z, Liu X M, Su Z M, Bryce M R. Adv. Sci., 2019,6(5): 1802050.

doi: 10.1002/advs.v6.5     URL    
[183]
Jiang Y, Li G F, Che W L, Liu Y J, Xu B, Shan G G, Zhu D X, Su Z M, Bryce M R. Chem. Commun., 2017,53(21): 3022.

doi: 10.1039/C7CC00769H     URL    
[184]
Jiang Y, Li G F, Zhu D X, Su Z M, Bryce M R. J. Mater. Chem. C, 2017,5(46): 12189.

doi: 10.1039/C7TC04066K     URL    
[185]
Qiu K Q, Ouyang M, Liu Y K, Huang H Y, Liu C F, Chen Y, Ji L N, Chao H. J. Mater. Chem. B, 2017,5(27): 5488.

doi: 10.1039/C7TB00731K     URL    
[186]
Chao D B, Zhang Y X. Sens. Actuat. B: Chem., 2017,245: 599.

doi: 10.1016/j.snb.2017.02.022     URL    
[187]
Sathish V, Ramdass A, Thanasekaran P, Lu K L, Rajagopal S. J. Photochem. Photobiol. C: Photochem. Rev., 2015,23: 25.

doi: 10.1016/j.jphotochemrev.2015.04.001     URL    
[188]
Singh V D, Paitandi R P, Dwivedi B K, Singh R S, Pandey D S. Organometallics, 2018,37(21): 3827.

doi: 10.1021/acs.organomet.8b00520     URL    
[189]
Gupta A, Prasad P, Gupta S, Sasmal P K. ACS Appl. Mater. Interfaces, 2020,12(32): 35967.

doi: 10.1021/acsami.0c11161     URL    
[190]
Wang Y, Yang T Z, Liu X M, Li G F, Che W L, Zhu D X, Su Z M. J. Mater. Chem. C, 2018,6(45): 12217.

doi: 10.1039/C8TC04512G     URL    
[191]
Pei Y, Xie J X, Cui D X, Liu S N, Li G F, Zhu D X, Su Z M. Dalton Trans., 2020,49(37): 13066.

doi: 10.1039/d0dt02526g     pmid: 32926051
[192]
Zhang K Y, Gao P L, Sun G L, Zhang T W, Li X L, Liu S J, Zhao Q, Lo K K W, Huang W. J. Am. Chem. Soc., 2018,140(25): 7827.

doi: 10.1021/jacs.8b02492     URL    
[193]
Bejoymohandas K S, George T M, Bhattacharya S, Natarajan S, Reddy M L P. J. Mater. Chem. C, 2014,2(3): 515.

doi: 10.1039/C3TC31941E     URL    
[194]
Chakraborty P, Nag A, Chakraborty A, Pradeep T. Acc. Chem. Res., 2019,52(1): 2.

doi: 10.1021/acs.accounts.8b00369     URL    
[195]
Chakraborty I, Pradeep T. Chem. Rev., 2017,117(12): 8208.

doi: 10.1021/acs.chemrev.6b00769     pmid: 28586213
[1] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[2] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[3] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[4] 彭邦银, 许适当, 池振国, 张锡奇, 张艺, 许家瑞. 压致变色聚集诱导发光材料[J]. 化学进展, 2013, 25(11): 1805-1820.
[5] 徐斌, 张继博, 马愫倩, 陈金龙, 董玉杰, 田文晶*. 二苯乙烯基蒽衍生物:聚集诱导发光性质、机理及应用[J]. 化学进展, 2013, 25(07): 1079-1089.
[6] 赵跃智, 蔡敏敏, 钱妍*, 解令海, 黄维*. 聚集诱导发光体系:化合物种类、发光机制及其应用[J]. 化学进展, 2013, 25(0203): 296-321.
[7] 张双, 秦安军, 孙景志, 唐本忠. 聚集诱导发光机理研究[J]. 化学进展, 2011, 23(4): 623-636.
[8] 钱立军,支俊格,佟斌,杨帆,赵玮,董宇平. 具有聚集诱导发光性质的化合物*[J]. 化学进展, 2008, 20(05): 673-678.
阅读次数
全文


摘要

聚集诱导发光