English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1079-1089 DOI: 10.7536/PC130116 前一篇   后一篇

• 特约稿 •

二苯乙烯基蒽衍生物:聚集诱导发光性质、机理及应用

徐斌, 张继博, 马愫倩, 陈金龙, 董玉杰, 田文晶*   

  1. 吉林大学超分子结构与材料国家重点实验室 长春 130012
  • 收稿日期:2013-01-01 修回日期:2013-03-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 田文晶 E-mail:wjtian@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21074045, 21204027)资助

9,10-Distyrylanthracene Derivatives: Aggregation Induced Emission, Mechanism and Their Applications

Xu Bin, Zhang Jibo, Ma Suqian, Chen Jinlong, Dong Yujie, Tian Wenjing*   

  1. State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
  • Received:2013-01-01 Revised:2013-03-01 Online:2013-07-25 Published:2013-04-16

与传统的发光分子相比,具有聚集诱导发光(AIE)性质的分子,在聚集态或固态条件下,由于独特的分子结构和聚集态结构,表现出显著增强的荧光发射,因而在光电器件、生物化学检测等领域展现出广阔的应用前景。本文总结了二苯乙烯基蒽(DSA)及其衍生物的AIE性质,分析了DSA类分子AIE现象的机理,如分子内转动受限、扭曲的分子结构及分子间聚集结构等,同时介绍了此类分子在固态发光、刺激-响应材料,以及生物检测和生物成像等方面的应用。

Comparing the conventional luminescent molecules, whose fluorescence is quenched once they aggregate, molecules with aggregation-induced emission properties exhibit significantly enhanced emission in solid state or aggregates due to their unique molecular structures and stacking modes, showing potential applications in optoelectronic devices, biochemical sensors and bioimaging. This paper mainly focus on the AIE properties of 9,10-distyrylanthracene (DSA) derivatives, and the AIE mechanism such as the restriction of intramolecular rotation, the twisted conformation of molecules and the packing structures. Also, the applications of DSA derivatives in solid state emitters, stimuli-responsive materials, biochemical sensors and bioimaging are introduced. Contents
1 Introduction
2 AIE molecules based on 9,10-distyrylanthracene
2.1 Small molecules
2.2 Macromolecules
3 The AIE mechanism of 9,10-distyrylanthracene based molecules
4 Applications of AIE luminogens based on 9,10-distyrylanthracene derivatives
4.1 High efficiency solid emitter
4.2 Piezallochromy
4.3 Fluorescent sensor
4.4 Bioimaging
5 Conclusion and outlook

中图分类号: 

()

[1] Birks J B. Photophysics of Aromatic Molecules, Wiley, 1970
[2] Jenekhe S A, Osaheni J A. Science, 1994, 265: 765-768
[3] Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R. Nature, 1999, 397: 121-128
[4] 钱立军(Qian L J), 支俊格(Zhi J G), 佟斌(Tong B), 杨帆(Yang F), 赵玮(Zhao W), 董宇平(Dong Y P). 化学进展(Progress in Chemistry), 2008, 20(5): 673-678
[5] 张双(Zhang S), 秦安军(Qin A J), 孙景志(Sun J Z), 唐本忠(Tang B Z). 化学进展(Progress in Chemistry), 2011, 23(4): 623-636
[6] Borisov S M, Wolfbeis O S. Chem. Rev., 2008, 108: 423-461
[7] Chen L, Xu S, McBranch D, Whitten D. J. Am. Chem. Soc., 2000, 122: 9302-9303
[8] Taylor P N, O’Connell M J, McNeill L A, Hall M J, Aplin R T, Anderson H L. Angew. Chem. Int. Ed., 2000, 39: 3456-3460
[9] Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Chem. Commun., 2001, 1740-1741
[10] Tang B Z, Zhan X, Yu G, Lee P P S, Liu Y, Zhu D. J. Mater. Chem., 2001, 11: 2974-2978
[11] Itami K, Ohashi Y, Yoshida J I. J. Org. Chem., 2005, 70: 2778-2792
[12] Nakatsuji S, Matsuda K, Uesugi Y, Nakashima K, Akiyama S, Katzer G, Fabian W. J. Chem. Soc., 1991, 6: 861-867
[13] Kim S, Zheng Q D, He G S, Bharali D J, Pudavar H E, Baev A, Prasad P N. Adv. Funct. Mater., 2006, 16: 2317-2323
[14] He J T, Xu B, Chen F P, Xia H J, Li K, Ye L, Tian W J. J. Phys. Chem. C, 2009, 113: 9892-9899
[15] Xu B, Fang H H, Dong Y J, Chen F P, Chen Q D, Sun H B, Tian W J. New J. Chem., 2010, 34: 1838-1842
[16] Dong Y J, Xu B, Zhang J B, Lu H G, Wen S P, Chen F P, He J T, Li B, Ye L, Tian W J. CrystEngComm, 2012, 14: 6593-6598
[17] Lu H G, Xu B, Dong Y J, Chen F P, Li Y W, Li Z F, He J T, Li H, Tian W J. Langmuir, 2010, 26: 6838-6844
[18] Dong Y J, Xu B, Zhang J B, Tan X, Wang L J, Chen J L, Lu H G, Wen S P, Li B, Ye L, Zou B, Tian W J. Angew. Chem. Int. Ed., 2012, 51: 10782-1078
[19] Xu B, He J T, Dong Y J, Chen F P, Yu W L, Tian W J. Chem. Commun., 2011, 47: 6602-6604
[20] Li H Y, Zhang X Q, Chi Z G, Xu B J, Zhou W, Liu S W, Zhang Y, Xu J R. Org. Lett., 2011, 13: 556-559
[21] Zhang X Q, Chi Z G, Zhang J Y, Li H Y, Xu B J, Li X F, Liu S W, Zhang Y, Xu J R. J. Phys. Chem. B, 2011, 115: 7606-7611
[22] Xu B, Zhang J B, Fang H H, Lu H G, Chen J L, Chen F P, Dong Y J, He J T, Xia H J, Chen Q D, Sun H B, Im C, Tian W J. unpublished result
[23] Lu H G, Su F Y, Mei Q, Zhou X F, Tian Y Q, Tian W J, Johnson R H. Polym. Chem., 2012, 50: 890-899
[24] Lu H G, Su F Y, Mei Q, Tian Y Q, Tian W J, Johnsona R H, Meldruma D R. J. Mater. Chem., 2012, 22: 9890-9900
[25] Hong Y N, Lam J W Y, Tang B Z. Chem. Soc. Rev., 2011, 40: 5361-5388
[26] Hong Y N, Lam J W Y, Tang B Z. Chem. Commun., 2009, 4332-4353
[27] Thomas S. Angew. Chem. Int. Ed., 2002, 41: 48-76
[28] Katharina R, Heike I S, Jürg H. Chem. Soc. Rev., 2005, 34: 22-30
[29] Robin T, Olga K. J. Am. Chem. Soc., 1982, 104: 5063-5070
[30] Hu R R, Lager E, Aguilar-Aguilar A, Liu J Z, Lam J W Y, Sung H H Y, Williams I D, Zhong Y C, Wong K S, Peña-Cabrera E, Tang B Z. J. Phys. Chem. C, 2009, 113: 15845-15853
[31] Cornil J, Beljonne D, Calbert J, Brédas J. Adv. Mater., 2001, 13: 1053-1067
[32] Kasha M, Rawls H R, Ashraf El-Bayoumi M. Pure Appl. Chem., 1965, 11: 371-392
[33] Michael D M, Alan J. H. Adv. Mater., 2000, 12: 1655-1668
[34] Kim S, Pudavar H E, Bonoiu A, Prasad P N. Adv. Mater., 2007, 19: 3791-3795
[35] Kim S, Ohulchanskyy T Y, Pudavar H E, Pandey R K, Prasad P N. J. Am. Chem. Soc., 2007, 129: 2669-2675
[37] Davis D A, Hamilton A, Yang J, Cremar L D, Gough D V, Potisek S L, Ong M T, Braun P V, Martínez T J, White S R, Moore J S, Sottos N R. Nature, 2009, 459: 68-72
[38] Wang Z L, Xu B, Zhang Lei, Zhang J B, Ma T H, Zhang J B, Fu X Q, Tian W J. Nanoscale, 2013, 5: 2065-2072
[39] Li X, Xu B, Lu H G, Wang Z L, Zhang J B, Zhang Y, Dong Y J, Ma K, Wen S P, Tian W J. Anal. Methods, 2013, 5: 438-441
[40] Wang L J, Xu B, Zhang J B, Dong Y J, Wen S P, Zhang H Y, Tian W J. Phys. Chem. Chem. Phys., 2013, 15: 2449-2458
[41] Yuan W Z, Gong Y, Chen S, Shen X Y, Lam J W Y, Lu P, Lu Y, Wang Z, Hu R, Xie N, Kwok H S, Zhang Y, Sun J Z, Tang B Z. Chem. Mater., 2012, 24: 1518-1528

[1] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[2] 韩鹏博, 徐赫, 安众福, 蔡哲毅, 蔡政旭, 巢晖, 陈彪, 陈明, 陈禹, 池振国, 代淑婷, 丁丹, 董宇平, 高志远, 管伟江, 何自开, 胡晶晶, 胡蓉, 胡毅雄, 黄秋忆, 康苗苗, 李丹霞, 李济森, 李树珍, 李文朗, 李振, 林新霖, 刘骅莹, 刘佩颖, 娄筱叮, 吕超, 马东阁, 欧翰林, 欧阳娟, 彭谦, 钱骏, 秦安军, 屈佳敏, 石建兵, 帅志刚, 孙立和, 田锐, 田文晶, 佟斌, 汪辉亮, 王东, 王鹤, 王涛, 王晓, 王誉澄, 吴水珠, 夏帆, 谢育俊, 熊凯, 徐斌, 闫东鹏, 杨海波, 杨清正, 杨志涌, 袁丽珍, 袁望章, 臧双全, 曾钫, 曾嘉杰, 曾卓, 张国庆, 张晓燕, 张学鹏, 张艺, 张宇凡, 张志军, 赵娟, 赵征, 赵子豪, 赵祖金, 唐本忠. 聚集诱导发光[J]. 化学进展, 2022, 34(1): 1-130.
[3] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[4] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[5] 彭邦银, 许适当, 池振国, 张锡奇, 张艺, 许家瑞. 压致变色聚集诱导发光材料[J]. 化学进展, 2013, 25(11): 1805-1820.
[6] 赵跃智, 蔡敏敏, 钱妍*, 解令海, 黄维*. 聚集诱导发光体系:化合物种类、发光机制及其应用[J]. 化学进展, 2013, 25(0203): 296-321.
[7] 张双, 秦安军, 孙景志, 唐本忠. 聚集诱导发光机理研究[J]. 化学进展, 2011, 23(4): 623-636.
[8] 钱立军,支俊格,佟斌,杨帆,赵玮,董宇平. 具有聚集诱导发光性质的化合物*[J]. 化学进展, 2008, 20(05): 673-678.