English
新闻公告
More
化学进展 2013, Vol. 25 Issue (0203): 296-321 DOI: 10.7536/PC120711 前一篇   后一篇

• 综述与评论 •

聚集诱导发光体系:化合物种类、发光机制及其应用

赵跃智, 蔡敏敏, 钱妍*, 解令海, 黄维*   

  1. 南京邮电大学有机电子与信息显示国家重点实验室培育基地 信息材料与 纳米技术研究院 南京 210046
  • 收稿日期:2012-07-01 修回日期:2012-09-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 钱妍, 黄维 E-mail:iamyqian@njupt.edu.cn,iamwhuang@njupt.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2009CB930600)、国家自然科学基金项目(No.21003076, 21144004, 1136003, 51173081)、江苏高校优势学科建设工程资助项目(PAPD)和江苏省基础研究自然科学基金项目(No.BK2009025, SBK201122680, BK2008053, BK2009025)资助

The Systems with Aggregation Induced Emission: Compounds,Emission Mechanisms and Their Applications

Zhao Yuezhi, Cai Minmin, Qian Yan*, Xie Linghai, Huang Wei*   

  1. Key Laboratory for Organic Electronic & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210046, China
  • Received:2012-07-01 Revised:2012-09-01 Online:2013-02-24 Published:2012-12-28

聚集诱导发光(AIE)体系是近年来备受关注的一个研究领域,目前该领域已经积累了较为丰富的AIE化合物的分子设计理念和相应的对AIE机制的理解。AIE体系的研究为固态强发光材料特别是备受聚集发光猝灭难题困扰的有机电致发光材料提供了全新的分子设计思路。本文纵观该领域的研究进展,对AIE化合物种类、发光机制及其相关应用做出了较为详尽的综述报道。具有AIE性质的化合物主要包括多芳基取代的杂环化合物、多芳基乙烯类化合物、分子内电荷转移化合物、含有氢键的化合物、聚合物等。这些化合物的AIE发光机制也各有不同,包括分子内旋转受限、非辐射失活衰减受限、分子构象扭曲以避免形成激基缔合物以及利用特殊的分子堆积方式如J-聚集、交叉分子堆积、由分子间的 C-H…π 作用或特殊的氢键作用形成相应的发光聚集体等。基于其特殊的AIE性能,AIE化合物可广泛应用于化学传感、生物传感、生物标记、电致发光以及逻辑门器件等领域。

Organic systems with aggregation induced emission (AIE) have received increasing interest in recent years, resulting in the accumulation of a wealth of information on molecular design of AIE luminogens and mechanistic understanding of the AIE processes. The studies on the AIE systems have opened a new route to develop solid-state highly-emissive organic materials, especially for the high performance organic electroluminescent (EL) materials, which usually suffer from the severe aggregation-caused quenching (ACQ) effect. This review summarizes the recent advances in this research field, including the typical AIE systems, the AIE mechanisms and their various applications. The organic AIE systems mainly include aryl-substituted heterocyclic compounds, aryl-substituted vinyl compounds, intramolecular charge transfer compounds, hydrogen-bonding compounds, polymers and so on. Investigations of their structure-property relationships reveal that these compounds may possess different AIE mechanisms. The AIE phenomenon can be caused by restriction of intramolecular rotation, prohibition of non-radiative deactivation, distortion of molecular configuration to prevent from the excimer formation, or some specific molecular packing modes such as the J-aggregation, the cross dipole stacking and some unique molecular aggregates induced by intermolecular C-H…π interaction or some unusual hydrogen bonding. Finally, the various applications of these AIE compounds in chemical/biological sensing, bioimaging, organic electroluminescent and logic gate devices are described. Contents
1 Introduction
2 Classification and emissive mechanisms of AIE compounds
2.1 Aryl substituted heterocyclic compounds
2.2 Intramolecular charge transfer compounds
2.3 Hydrogen-bonding compounds
2.4 Polymers
3 Applications of AIE materials
3.1 Chemical sensing
3.2 Biological sensing
3.3 Cell imaging
3.4 Thermochromic and pressure photochromic
3.5 Electroluminescent devices
3.6 Logic gate devices
4 Conclusion and outlook

中图分类号: 

()

[1] Pfeiffer M, Forrest S R, Leo K, Thompson M E. Adv. Mater., 2002, 14: 1633-1636
[2] Kena-Cohen S, Forrest S R. Nat. Photonics, 2010, 4: 371-375
[3] Hagfeldt A, Grätzel M. Chem. Rev., 1995, 95: 49-68
[4] Shipway A N, Katz E, Willner I. ChemPhysChem, 2000, 1: 18-52
[5] Förster T, Kasper K. Z. Phys. Chem., 1954, 1: 275-277
[6] Mayer A, Neuenhofer S. Angew. Chem. Int. Ed., 1994, 33: 1044-1072
[7] Borisov S M, Wolfbeis O S. Chem. Rev., 2008, 108: 423-461
[8] Sapsford K E, Berti L, Medintz I L. Angew. Chem. Int. Ed., 2006, 45: 4562-4588
[9] Domaille D W, Que E L, Chang C J. Nat. Chem. Biol., 2008, 4: 168-175
[10] Thomas S W Ⅲ, Joly G D, Swager T M. Chem. Rev., 2007, 107: 1339-1386
[11] Ning Z, Chen Z, Zhang Q, Yan Y, Qian S, Cao Y, Tian H. Adv. Funct. Mater., 2007, 17: 3799-3807
[12] Qian G, Zhong Z, Luo M, Yu D, Zhang Z, Wang Z Y, Ma D. Adv. Mater., 2009, 21: 111-116
[13] Chiang C L, Tseng S M, Chen C T, Hsu C P, Shu C F. Adv. Funct. Mater., 2008, 18: 248-257
[14] Wang J, Zhao Y, Dou C, Sun H, Xu P, Ye K, Zhang J, Jiang S, Li F, Wang Y. J. Phys. Chem. B, 2007, 111: 5082-5089
[15] Moorthy J N, Natarajan P, Venkatakrishnan P, Huang D F, Chow T J. Org. Lett., 2007, 9: 5215-5218
[16] Yang J S, Yan J L. Chem. Commun., 2008, 1501-1512
[17] Lee Y T, Chiang C L, Chen C T. Chem. Commun., 2008, 217-219
[18] Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Chem. Commun., 2001, 1740-1741
[19] Tang B Z, Zhan X W, Yu G, Lee P P S, Liu Y Q, Zhu D B. J. Mater. Chem., 2001, 11: 2974-2978
[20] Chen J W, Xie Z L, Lam J W Y, Law C C W, Tang B Z. Macromolecules, 2003, 36: 1108-1117
[21] Li Z, Dong Y, Mi B X, Tang Y H, Haussler M, Tong H, Dong Y P, Lam J W Y, Ren Y, Sung H H Y, Wong K S, Gao P, Williams I D, Kwok H S, Tang B Z. J. Phys. Chem. B, 2005, 109: 10061-10066
[22] Liu J, Lam J W Y, Tang B Z. J. Inorg. Organomet. Polym. Mater., 2009, 19: 249-285
[23] Ren Y, Dong Y Q, Lam J W Y, Tang B Z, Wong K S. Chem. Phys. Lett., 2005, 402: 468-473
[24] Yin S W, Peng Q, Shuai Z, Fang W H Y, Wang Y H, Luo Y. Phys. Rev. B, 2006, 73: art. no. 205409
[25] Chen J W, Law C C W, Lam J W Y, Dong Y P, Lo S M F, Williams I D, Zhu D B, Tang B Z. Chem. Mat., 2003, 15: 1535-1546
[26] Zeng Q, Li Z, Dong Y, Di C A, Qin A, Hong Y, Ji L, Zhu Z, Jim C K W, Yu G, Li Q, Li Z, Liu Y, Qin J, Tang B Z. Chem. Commun., 2007, 70-72
[27] Bozeman T C, Edwards K A, Fecteau K M, Verde M G Jr, Blanchard A, Woodall D L, Benfaremo N, Ford J R, Mullin J L, Prudente C K, Tracy H J. J. Inorg. Organomet. Polym. Mater., 2011, 21: 316-326
[28] Mullin J L, Tracy H J, Ford J R, Keenan S R, Fridman F. J. Inorg. Organomet. Polym. Mater., 2007, 17: 201-213
[29] Tracy H J, Mullin J L, Klooster W T, Martin J A, Haug J, Wallace S, Rudloe I, Watts K. Inorg. Chem., 2005, 44: 2003-2011
[30] Bandrowsky T L, Carroll J B, Braddock-Wilking J. Organometallics, 2011, 30: 3559-3569
[31] Shiraishi K, Kashiwabara T, Sanji T, Tanaka M. New J. Chem., 2009, 33: 1680-1684
[32] Su H C, Fadhel O, Yang C J, Cho T Y, Fave C, Hissler M, Wu C C, Reau R. J. Am. Chem. Soc., 2006, 128: 983-995
[33] Liu Y, Deng C, Tang L, Qin A, Hu R, Sun J Z, Tang B Z. J. Am. Chem. Soc., 2011, 133: 660-663
[34] Yuan W Z, Lu P, Chen S, Lam J W Y, Wang Z, Liu Y, Kwok H S, Ma Y, Tang B Z. Adv. Mater., 2010, 22: 2159-2163
[35] Zhao Z, Chen S, Shen X, Mahtab F, Yu Y, Lu P, Lam J W Y, Kwok H S, Tang B Z. Chem. Commun., 2010, 46: 686-688
[36] Dong Y, Lam J W Y, Qin A, Liu J, Li Z, Tang B Z. Appl. Phys. Lett., 2007, 91: art. no. 011111
[37] Wu Y T, Kuo M Y, Chang Y T, Shin C C, Wu T C, Tai C C, Cheng T H, Liu W S. Angew. Chem. Int. Ed., 2008, 47: 9891-9894
[38] Kim S, Zheng Q, He G S, Bharali D J, Pudavar H E, Baev A, Prasad P N. Adv. Funct. Mater., 2006, 16: 2317-2323
[39] Grimme S. Angew. Chem. Int. Ed., 2008, 47: 3430-3434
[40] Saigusa H, Lim E C. J. Phys. Chem., 1995, 99: 15738-15747
[41] Itami K, Ohashi Y, Yoshida J. J. Org. Chem., 2005, 70: 2778-2792
[42] Xie Z, Yang B, Xie W, Liu L, Shen F, Wang H, Yang X, Wang Z, Li Y, Hanif M, Yang G, Ye L, Ma Y. J. Phys. Chem. B, 2006, 110: 20993-21000
[43] Xie Z Q, Yang B, Cheng G, Liu L L, He F, Shen F Z, Ma Y G, Liu S Y. Chem. Mat., 2005, 17: 1287-1289
[44] Wang Z X, Shao H X, Ye J C, Tang L, Lu P. J. Phys. Chem. B, 2005, 109: 19627-19633
[45] He J, Xu B, Chen F, Xia H, Li K, Ye L, Tian W. J. Phys. Chem. C, 2009, 113: 9892-9899
[46] He F, Xu H, Yang B, Duan Y, Tian L L, Huang K K, Ma Y G, Liu S Y, Feng S H, Shen J C. Adv. Mater., 2005, 17: 2710-2714
[47] An B K, Kwon S K, Jung S D, Park S Y. J. Am. Chem. Soc., 2002, 124: 14410-14415
[48] Xu J, Stevens M J, Oleson T A, Last J A, Sahai N. J. Phys. Chem. C, 2009, 113: 2187-2196
[49] Jayanty S, Radhakrishnan T P. Chem. Eur. J., 2004, 10: 791-797
[50] Shimizu M, Takeda Y, Higashi M, Hiyama T. Angew. Chem. Int. Ed., 2009, 48: 3653-3656
[51] Hu R, Lager E, Aguilar-Aguilar A, Liu J, Lam J W Y, Sung H H Y, Williams I D, Zhong Y, Wong K S, Pena-Cabrera E, Tang B Z. J. Phys. Chem. C, 2009, 113: 15845-15853
[52] Kwak G, Kim H, Kang I K, Kim S H. Macromolecules, 2009, 42: 1733-1738
[53] Dong Y, Lam J W Y, Qin A, Li Z, Sun J, Sung H H Y, Williams I D, Tang B Z. Chem. Commun., 2007, 40-42
[54] Xu Z, Zhong G Y, Ding X M, Obbard E, Ding H J, Wang X J, Zhan Y Q, Zhang S T, Zhao J M, Zhao B L, Xiong Z H, Shi H Z, Huang W, Hou X Y. Appl. Phys. A Mater. Sci. Process., 2005, 80: 1753-1756
[55] Wang X, Morales A R, Urakami T, Zhang L, Bondar M V, Komatsu M, Belfield K D. Bioconjugate Chem., 2011, 22: 1438-1450
[56] Tong H, Hong Y, Dong Y, Ren Y, Haussler M, Lam J W Y, Wong K S, Tang B Z. J. Phys. Chem. B, 2007, 111: 2000-2007
[57] Yang Z, Li L, Sun Z, Ming T, Li G, Wang J, Yu J C. J. Mater. Chem., 2009, 19: 7002-7010
[58] Hirano K, Minakata S, Komatsu M, Mizuguchi J. J. Phys. Chem. A, 2002, 106: 4868-4871
[59] Liu Y, Tao X, Wang F, Dang X, Zou D, Ren Y, Jiang M. J. Phys. Chem. C, 2008, 112: 3975-3981
[60] Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, Ma D, Wang Z Y. Chem. Mat., 2008, 20: 6208-6216
[61] Li Y, Li F, Zhang H, Xie Z, Xie W, Xu H, Li B, Shen F, Ye L, Hanif M, Dongge M, Ma Y. Chem. Commun., 2007, 231-233
[62] Yeh H C, Wu W C, Wen Y S, Dai D C, Wang J K, Chen C T. J. Org. Chem., 2004, 69: 6455-6462
[63] Palayangoda S S, Cai X, Adhikari R M, Neckers D C. Abs. Pap. ACS., 2008, 235: 568-ORGN
[64] Palayangoda S S, Cai X, Adhikari R M, Neckers D C. Org. Lett., 2008, 10: 281-284
[65] Gao B R, Wang H Y, Hao Y W, Fu L M, Fang H H, Jiang Y, Wang L, Chen Q D, Xia H, Pan L Y, Ma Y G, Sun H B. J. Phys. Chem. B, 2010, 114: 128-134
[66] Qian Y, Cai M, Xie L, Huang W. Acta Chim. Sin., 2010, 68: 2285-2289
[67] Catalan J, Palomar J, dePaz J L G. J. Phys. Chem. A, 1997, 101: 7914-7921
[68] Chung M W, Lin T Y, Hsieh C C, Tang K C, Fu H, Chou P T, Yang S H, Chi Y. J. Phys. Chem. A, 2010, 114: 7886-7891
[69] Panda D, Mishra P P, Khatua S, Koner A L, Sunoj R B, Datta A. J. Phys. Chem. A, 2006, 110: 5585-5591
[70] Tang W, Xiang Y, Tong A. J. Org. Chem., 2009, 74: 2163-2166
[71] Scheiner S, Kolb V M. P. Natl. Acad. USA, 1980, 77: 5602-5605
[72] Li S Y, He L M, Xiong F, Li Y, Yang G Q. J. Phys. Chem. B, 2004, 108: 10887-10892
[73] Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, Li C, Li Y, Yang G. J. Phys. Chem. B, 2007, 111: 5861-5868
[74] Qian Y, Cai M M, Xie L H, Yang G Q, Wu S K, Huang W. ChemPhysChem, 2011, 12: 397-404
[75] Qian Y, Cai M, Zhou X, Gao Z, Wang X, Zhao Y, Yan X, Wei W, Xie L, Wei H. J. Phys. Chem. C, 2012, 116: 12187-12195
[76] Cai M, Gao Z, Zhou X, Wang X, Chen S, Zhao Y, Qian Y, Shi N, Mi B, Xie L, Huang W. Phys. Chem. Chem. Phys., 2012, 14: 5289-5296
[77] An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. J. Am. Chem. Soc., 2004, 126: 10232-10233
[78] Chen Y, Lv Y, Han Y, Zhu B, Zhang F, Bo Z, Liu C Y. Langmuir, 2009, 25: 8548-8555
[79] Qian Y, Li S, Wang Q, Sheng X, Wu S, Wang S, Li J, Yang G. Soft Matter, 2012, 8: 757-764
[80] Kokado K, Chujo Y. Macromolecules, 2009, 42: 1418-1420
[81] Peterson J J, Davis A R, Werre M, Coughlin E B, Carter K R. ACS Appl. Mater. Interfaces, 2011, 3: 1796-1799
[82] Zhao Z, Liu J, Lam J W Y, Chan C Y K, Qiu H, Tang B Z. Dyes Pigment., 2011, 91: 258-263
[83] Qin A, Jim C K W, Tang Y, Lam J W Y, Liu J, Mahtab F, Gao P, Tang B Z. J. Phys. Chem. B, 2008, 112: 9281-9288
[84] Yuan W Z, Zhao H, Shen X Y, Mahtab F, Lam J W Y, Sun J Z, Tang B Z. Macromolecules, 2009, 42: 9400-9411
[85] Qin A, Lam J W Y, Tang B Z. Chem. Soc. Rev., 2010, 39: 2522-2544
[86] Xu B, He J, Dong Y, Chen F, Yu W, Tian W. Chem. Commun., 2011, 47: 6602-6604
[87] Liu Y, Tang Y, Barashkov N N, Irgibaeva I S, Lam J W Y, Hu R, Birimzhanova D, Yu Y, Tang B Z. J. Am. Chem. Soc., 2010, 132: 13951-13953
[88] Liao S H, Shiu J R, Liu S W, Yeh S J, Chen Y H, Chen C T, Chow T J, Wu C I. J. Am. Chem. Soc., 2009, 131: 763-777
[89] Jang S, Koh Y, Woo H G, Sohn H. J. Nanosci. Nanotechnol., 2011, 11: 1368-1372
[90] Xu B, Wu X, Li H, Tong H, Wang L. Macromolecules, 2011, 44: 5089-5092
[91] Liu J, Zhong Y, Lu P, Hong Y, Lam J W Y, Faisal M, Yu Y, Wong K S, Tang B Z. Polym. Chem., 2010, 1: 426-429
[92] Swallows M D, Campbell G K, Ludlow A D, Boyd M M, Thomsen J W, Martin M J, Blatt S, Nicholson T L, Ye J. Ieee. T. Ultrason. Ferr., 2010, 57: 574-582
[93] Dang S, Yu J, Wang X, Sun L, Deng R, Feng J, Fan W, Zhang H. J. Lumines., 2011, 131: 1857-1863
[94] He Y, Zeng X, Mukherjee S, Rajapaksha S, Kaplan S, Lu H P. Langmuir, 2010, 26: 307-313
[95] Lu H, Xu B, Dong Y, Chen F, Li Y, Li Z, He J, Li H, Tian W. Langmuir, 2010, 26: 6838-6844
[96] Jin J K, Sun J Z, Dong Y Q, Xu H P, Yuan W Z, Tang B Z. J. Lumines., 2009, 129: 19-23
[97] Bian N, Chen Q, Qiu X L, Qi A D, Han B H. New J. Chem., 2011, 35: 1667-1671
[98] Qian L J, Tong B, Zhi J G, Yang F, Shen J B, Shi J B, Dong Y P. Acta Chim. Sin., 2008, 66: 1134-1138
[99] Shen J B, Tong B, Shi J B, Sun S, Feng X, Zhi J G, Dong Y P. Chem. J. Chin. Univ. Chin., 2010, 31: 1656-1660
[100] Smirnov B M. Usp. Fiz. Nau., 1997, 167: 1169-1200
[101] Sanji T, Nakamura M, Tanaka M. Tetrahedron Lett., 2011, 52: 3283-3286
[102] Li D M, Zheng Y S. Chem. Commun., 2011, 47: 10139-10141
[103] Li Y, Xu L, Su B. Chem. Commun., 2012, 48: 4109-4111
[104] He C, Zhu D, He Q, Shi L, Fu Y, Wen D, Cao H, Cheng J. Chem. Commun., 2012, 48: 5739-5741
[105] Germain M E, Knapp M J. Inorg. Chem., 2008, 47: 9748-9750
[106] Hong Y, Lam J W Y, Chen S, Tang B Z. Aust. J. Chem., 2011, 64: 1201-1208
[107] Xu J P, Fang Y, Song Z G, Mei J, Jia L, Qin A J, Sun J Z, Ji J, Tang B Z. Analyst, 2011, 136: 2315-2321
[108] Mahtab F, Yu Y, Lam J W Y, Liu J, Zhang B, Lu P, Zhang X, Tang B Z. Adv. Funct. Mater., 2011, 21: 1733-1740
[109] Yuan C X, Tao X T, Wang L, Yang J X, Jiang M H. J. Phys. Chem. C, 2009, 113: 6809-6814
[110] Dong J, Solntsev K M, Tolbert L M. J. Am. Chem. Soc., 2009, 131: 662-670
[111] Tong H, Hong Y, Dong Y, Haeussler M, Li Z, Lam J W Y, Dong Y, Sung H H Y, Williams I D, Tang B Z. J. Phys. Chem. B, 2007, 111: 11817-11823
[112] Bhalla V, Vij V, Dhir A, Kumar M. Chem. Eur. J., 2012, 18: 3765-3772
[113] Wang B, Yu C. Angew. Chem. Int. Ed., 2010, 49: 1485-1488
[114] Wang J X, Chen Q, Bian N, Yang F, Sun J, Qi A D, Yan C G, Han B H. Organic & Biomolecular Chemistry, 2011, 9: 2219-2226
[115] Xu J P, Song Z G, Fang Y, Mei J, Jia L, Qin A J, Sun J Z, Ji J, Tang B Z. Analyst, 2010, 135: 3002-3007
[116] Hong Y, Xiong H, Lam J W Y, Haeussler M, Liu J, Yu Y, Zhong Y, Sung H H Y, Williams I D, Wong K S, Tang B Z. Chem. Eur. J., 2010, 16: 1232-1245
[117] Hong Y, Haeussler M, Lam J W Y, Li Z, Sin K K, Dong Y, Tong H, Liu J, Qin A, Renneberg R, Tang B Z. Chem. Eur. J., 2008, 14: 6428-6437
[118] Wang M, Zhang D, Zhang G, Tang Y, Wang S, Zhu D. Analytical Chemistry, 2008, 80: 6443-6448
[119] Huang J, Wang M, Zhou Y, Weng X, Shuai L, Zhou X, Zhang D. Bioorganic & Medicinal Chemistry, 2009, 17: 7743-7748
[120] Li Z, Dong Y Q, Lam J W Y, Sun J, Qin A, Haeussler M, Dong Y P, Sung H H Y, Williams I D, Kwok H S, Tang B Z. Adv. Funct. Mater., 2009, 19: 905-917
[121] Zhang C, Yuan Y, Zhang S, Wang Y, Liu Z. Angew. Chem. Int. Ed., 2011, 50: 6851-6854
[122] Wang M, Zhang D, Zhang G, Zhu D. Chem. Commun., 2008, 4469-4471
[123] Zhao M, Wang M, Liu H, Liu D, Zhang G, Zhang D, Zhu D. Langmuir, 2009, 25: 676-678
[124] Kato T, Kawaguchi A, Nagata K, Hatanaka K. Biochemical And Biophysical Research Communications, 2010, 394: 200-204
[125] Hong Y, Meng L, Chen S, Leung C W T, Da L T, Faisal M, Silva D A, Liu J, Lam J W Y, Huang X, Tang B Z. J. Am. Chem. Soc., 2012, 134: 1680-1689
[126] Xue W, Zhang G, Zhang D, Zhu D. Org. Lett., 2010, 12: 2274-2277
[127] Shen X, Zhang G, Zhang D. Org. Lett., 2012, 14: 1744-1747
[128] Lim C K, Kim S, Kwon I C, Ahn C H, Park S Y. Chem. Mat., 2009, 21: 5819-5825
[129] Faisal M, Hong Y, Liu J, Yu Y, Lam J W Y, Qin A, Lu P, Tang B Z. Chem. Eur. J., 2010, 16: 4266-4272
[130] Song P, Chen X, Xiang Y, Huang L, Zhou Z, Wei R, Tong A. J. Mater. Chem., 2011, 21: 13470-13475
[131] Lin H H, Chan Y C, Chen J W, Chang C C. J. Mater. Chem., 2011, 21: 3170-3177
[132] Chen X, Wei R, Xiang Y, Zhou Z, Li K, Song P, Tong A. J. Phys. Chem. C, 2011, 115: 14353-14359
[133] Dou C, Han L, Zhao S, Zhang H, Wang Y. Journal of Physical Chemistry Letters, 2011, 2: 666-670
[134] Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J. Chem. Soc. Rev., 2012, 41: 3878-3896
[135] Sase M, Yamaguchi S, Sagara Y, Yoshikawa I, Mutai T, Araki K. J. Mater. Chem., 2011, 21: 8347-8354
[136] Yoon S J, Park S. J. Mater. Chem., 2011, 21: 8338-8346
[137] Wang J, Mei J, Hu R, Sun J Z, Qin A, Tang B Z. J. Am. Chem. Soc., 2012, 134: 9956-9966
[138] Zhang X, Chi Z, Zhang J, Li H, Xu B, Li X, Liu S, Zhang Y, Xu J. J. Phys. Chem. B, 2011, 115: 7606-7611
[139] Li H, Zhang X, Chi Z, Xu B, Zhou W, Liu S, Zhang Y, Xu J. Org. Lett., 2011, 13: 556-559
[140] Yin C R, Ye S H, Zhao J, Yi M D, Xie L H, Lin Z Q, Chang Y Z, Liu F, Xu H, Shi N E, Qian Y, Huang W. Macromolecules, 2011, 44: 4589-4595
[141] Shimizu M, Hiyama T. Chem. Asian J., 2010, 5: 1516-1531
[142] Chen S, Zhao Z, Tang B Z, Kwok H S. J. Phys D Appl. Phys., 2010, 43: art. no. 095101
[143] Low P J, Paterson M A J, Yufit D S, Howard J A K, Cherryman J C, Tackley D R, Brook R, Brown B. J. Mater. Chem., 2005, 15: 2304-2315
[144] Liu J, Zhao Z, Xu J, Xu C, Duan A, Jiang G, He H. Chem. Commun., 2011, 47: 11119-11121
[145] Lim S J, An B K, Park S Y. Macromolecules, 2005, 38: 6236-6239
[146] Chung J W, Yoon S J, Lim S J, An B K, Park S Y. Angew. Chem. Int. Ed., 2009, 48: 7030-7034

[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[3] 韩鹏博, 徐赫, 安众福, 蔡哲毅, 蔡政旭, 巢晖, 陈彪, 陈明, 陈禹, 池振国, 代淑婷, 丁丹, 董宇平, 高志远, 管伟江, 何自开, 胡晶晶, 胡蓉, 胡毅雄, 黄秋忆, 康苗苗, 李丹霞, 李济森, 李树珍, 李文朗, 李振, 林新霖, 刘骅莹, 刘佩颖, 娄筱叮, 吕超, 马东阁, 欧翰林, 欧阳娟, 彭谦, 钱骏, 秦安军, 屈佳敏, 石建兵, 帅志刚, 孙立和, 田锐, 田文晶, 佟斌, 汪辉亮, 王东, 王鹤, 王涛, 王晓, 王誉澄, 吴水珠, 夏帆, 谢育俊, 熊凯, 徐斌, 闫东鹏, 杨海波, 杨清正, 杨志涌, 袁丽珍, 袁望章, 臧双全, 曾钫, 曾嘉杰, 曾卓, 张国庆, 张晓燕, 张学鹏, 张艺, 张宇凡, 张志军, 赵娟, 赵征, 赵子豪, 赵祖金, 唐本忠. 聚集诱导发光[J]. 化学进展, 2022, 34(1): 1-130.
[4] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[5] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[6] 彭邦银, 许适当, 池振国, 张锡奇, 张艺, 许家瑞. 压致变色聚集诱导发光材料[J]. 化学进展, 2013, 25(11): 1805-1820.
[7] 徐斌, 张继博, 马愫倩, 陈金龙, 董玉杰, 田文晶*. 二苯乙烯基蒽衍生物:聚集诱导发光性质、机理及应用[J]. 化学进展, 2013, 25(07): 1079-1089.
[8] 张双, 秦安军, 孙景志, 唐本忠. 聚集诱导发光机理研究[J]. 化学进展, 2011, 23(4): 623-636.
[9] 郭彦,赵健伟. 有序分子组装膜电极非理想伏安图的理论研究*[J]. 化学进展, 2008, 20(06): 821-827.
[10] 钱立军,支俊格,佟斌,杨帆,赵玮,董宇平. 具有聚集诱导发光性质的化合物*[J]. 化学进展, 2008, 20(05): 673-678.