English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1805-1820 DOI: 10.7536/PC130329 前一篇   后一篇

• 综述与评论 •

压致变色聚集诱导发光材料

彭邦银, 许适当, 池振国*, 张锡奇, 张艺, 许家瑞*   

  1. 中山大学化学与化学工程学院 光电材料与技术国家重点实验室 聚合物复合材料及功能材料教育部重点实验室 广州 510275
  • 收稿日期:2013-03-01 修回日期:2013-06-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 池振国, 许家瑞 E-mail:chizhg@mail.sysu.edu.cn;xjr@mail.sysu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 51173210, 51073177)资助

Piezochromic Aggregation-Induced Emission Materials

Peng Bangyin, Xu Shidang, Chi Zhenguo*, Zhang Xiqi, Zhang Yi, Xu Jiarui*   

  1. Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2013-03-01 Revised:2013-06-01 Online:2013-11-15 Published:2013-09-12

压致发光变色材料是在外力作用下,发光颜色发生明显改变的一类智能材料,包括压致荧光变色材料和压致磷光变色材料。压致发光变色材料在应力传感、信息存储、商品防伪和发光器件等领域具有重要的潜在应用前景,近年来,受到了人们极大的关注。但是,已经报道的压致发光变色材料非常稀少。可能的原因有两个,一是没有分子结构与压致发光变色性能关系的规律来指导压致发光变色化合物的合成;二是一般的发光化合物由于具有聚集发光猝灭效应导致在固体状态下很难观察到压致发光变色现象。直到近两年我们发现聚集诱导发光化合物与压致发光变色化合物之间具有结构上的关联性并提出压致变色聚集诱导发光材料的概念之后,许多压致变色聚集诱导发光材料被陆续报道。聚集诱导发光材料成为压致发光变色材料一个非常重要的来源。本文总结了近年来关于压致变色聚集诱导发光材料的研究进展情况,对聚集诱导发光材料的压致变色机理、结构与性能关系以及潜在的应用进行了阐述。

Piezochromic (machanochromic) luminescent materials are a class of "smart" materials with luminescent properties that change in response to external force stimuli. These materials are widely used in many fields such as mechanosensors, memory chips, security inks and optoelectronic devices, and have attracted considerable interest in recent years. However, the piezochromic luminescent materials that are dependent on changes in physical molecular packing modes are extremely rare. This rarity may be attributed to two major issues. First, a common method for piezochromic luminescent compound synthesis is not to be realized. Each identified compound is an isolated event, rendering difficulty in the identification of a general characteristic. Second, the fluorescence efficiency of organic luminescent materials often becomes very weak while in solid state because of the aggregation-caused quenching effect. Consequently, the piezochromic luminescent phenomenon becomes difficult to observe. Until the last two years, we recognized the existence of a structural relationship between the aggregation-induced emission compound and the piezochromic luminescent nature, and put forward the concept of "piezochromic aggregation-induced emission materials", many piezochromic aggregation-induced emission materials have been reported one after another. Aggregation-induced emission compounds can be expected to become an important source of piezochromic luminescent materials, and in other words piezochromic luminescent materials would no longer be rare in the future. In this review, recent progress in the area of piezochromic aggregation-induced emission materials is summarized, and majority of the reported piezochromic aggregation-induced emission systems are discussed, including concept, mechanism, structure-property relationship, application, and so on.

Contents
1 Introduction
2 Piezochromic aggregation-induced emission (PAIE) concept and mechanism
3 Relationship between crystallinity and piezo-chromism
4 Relationship between alkyl (alkoxy) length and piezochromism
5 PAIE metal complexes
6 PAIE ionic compound
7 Applications of PAIE materials
7.1 Stress sensors
7.2 Anti-counterfeiting
7.3 Optical data recording and storage
7.4 Ink-free environment-friendly paper
7.5 Luminescent device
7.6 Other sensors
8 Conclusion and outlook

中图分类号: 

()

[1] Sagara Y, Kato T. Nat. Chem., 2009, 1: 605—610
[2] Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J. Chem. Soc. Rev., 2012, 41: 3878—3896
[3] Schönberg A, Elkaschef M, Nosseir M, Sidky M M. J. Am. Chem. Soc., 1958, 80: 6312—6315
[4] Pucci A, Cuia F D, Signori F, Ruggeri G. J. Mater. Chem., 2007, 17: 783—790
[5] Dong Y, Lam J W Y, Qin A, Liu J, Li Z, Tang B, Sun J, Kwok H S. Appl. Phys. Lett., 2007, 91: art. no. 011111
[6] Ning Z, Chen Z, Zhang Q, Yan Y, Qian S, Cao Y, Tian H. Adv. Funct. Mater., 2007, 17: 3799—3807
[7] Crenshaw B R, Burnworth M, Khariwala D, Hiltner A, Mather P T, Simha R, Weder C. Macromolecules, 2007, 40: 2400—2408
[8] Kinami M, Crenshaw B R, Weder C. Chem. Mater., 2006, 18: 946—955
[9] Toal S J, Jones K A, Magde D, Trogler W C. J. Am. Chem. Soc., 2005, 127: 11661—11665
[10] Hirata S, Watanabe T. Adv. Mater., 2006, 18: 2725—2729
[11] Lim S J, An B K, Jung S D, Chung M A, Park S Y. Angew. Chem. Int. Ed., 2004, 43: 6346—6350
[12] Olson C E, Previte M J R, Fourkas J T. Nat. Mater., 2002, 1: 225—228
[13] Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Nature, 2002, 420: 759—760
[14] Kishimura A, Yamashita T, Yamaguchi K, Aida T. Nat. Mater., 2005, 4: 546—549
[15] Davis D A, Hamilton A, Yang J, Cremar L D, van Gough D, Potisek S L, Ong M T, Braun P V, Martínez T J, White S R, Moore J S, Sottos N R. Nature, 2009, 459: 68—72
[16] Lwe C, Weder C. Adv. Mater., 2002, 14: 1625—1629
[17] Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M. J. Am. Chem. Soc., 2008, 130: 10044—10045
[18] Sagara Y, Mutai T, Yoshikawa I, Araki K. J. Am. Chem. Soc., 2007, 129: 1520—1521
[19] Birks J B. Photophysics of Aromatic Molecules. New York: Wiley, 1970
[20] Turro N J, Ramamurthy V, Scaiano J C. Modern Molecular Photochemistry of Organic Molecules. Sausalito, CA: University Science Books, 2010
[21] Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B. Chem. Commun., 2001, 1740—1741
[22] Hong Y, Lam J W Y, Tang B. Chem. Commun., 2009, 4332—4353
[23] Hong Y, Lam J W Y, Tang B. Chem. Soc. Rev., 2011, 40: 5361—5388
[24] Li X, Chi Z, Xu B, Li H, Zhang X, Zhou W, Zhang Y, Liu S, Xu J. J. Fluoresc., 2011, 21: 1969—1977
[25] Zhang X, Yang Z, Chi Z, Chen M, Xu B, Wang C, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2010, 20: 292—298
[26] An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. J. Am. Chem. Soc., 2004, 126: 10232—10233
[27] Li H, Chi Z, Xu B, Zhang X, Yang Z, Li X, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2010, 20: 6103—6010
[28] Zhang X, Chi Z, Li H, Xu B, Li X, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2011, 21: 1788—1796
[29] Yang Z, Chi Z, Xu B, Li H, Zhang X, Li X, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2010, 20: 7352—7359
[30] Xu B, Chi Z, Yang Z, Chen J, Deng S, Li H, Li X, Zhang Y, Xu N, Xu J. J. Mater. Chem., 2010, 20: 4135—4141
[31] Li H, Chi Z, Zhang X, Xu B, Liu S, Zhang Y, Xu J. Chem. Commun., 2011, 47: 11273—11275
[32] Li X, Zhang X, Chi Z, Chao X, Zhou X, Zhang Y, Liu S, Xu J. Anal. Methods, 2012, 4: 3338—3343
[33] Zhang X, Chi Z, Xu B, Li H, Yang Z, Li X, Liu S, Zhang Y, Xu J. Dyes Pigments, 2011, 89: 56—62
[34] Xu B, Chi Z, Li X, Li H, Zhou W, Zhang X, Wang C, Zhang Y, Liu S, Xu J. J. Fluoresc., 2011, 21: 433—441
[35] Yang Z, Chi Z, Yu T, Zhang X, Chen M, Xu B, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2009, 19: 5541—5546
[36] 钱立军(Qian L J), 佟斌(Tong B), 支俊格(Zhi J G), 杨帆(Yang F), 申进波(Shen J B), 石建兵(Shi J B), 董宇平(Dong Y P). 化学学报(Acta Chimica Sinica), 2008, 66: 1134—1138
[37] 薛云娜(Xue Y N), 柴生勇(Chai S Y), 别国军(Bie G J), 刘波(Liu B), 甘宁(Gan N). 化学学报(Acta Chimica Sinica ), 2008, 66: 1577—1582
[38] Dong Y, Lam J W Y, Li Z, Qin A, Tong H, Dong Y, Feng X, Tang B. J. Inorg. Organomet. Polym. Mater., 2005, 15: 287—291
[39] Dong Y, Lam J W Y, Qin A, Li Z, Sun J, Sung H H Y, Williams I D, Tang B. Chem. Commun., 2007, 40—42
[40] Fan X, Sun J, Wang F, Chu Z, Wang P, Dong Y, Hu R, Tang B, Zou D. Chem. Commun., 2008, 2989—2991
[41] Yoon S J, Chung J W, Gierschner J, Kim K S, Choi M G, Kim D, Park S Y. J. Am. Chem. Soc., 2010, 132: 13675—13683
[42] Xu B, Chi Z, Zhang J, Zhang X, Li H, Li X, Liu S, Zhang Y, Xu J. Chem. Asian J., 2011, 6: 1470—1478
[43] Zhang X, Chi Z, Zhang J, Li H, Xu B, Li X, Liu S, Zhang Y, Xu J. J. Phys. Chem. B, 2011, 115: 7606—7611
[44] Zhou X, Li H, Chi Z, Zhang X, Zhang J, Xu B, Zhang Y, Liu S, Xu J. New. J. Chem., 2012, 36: 685—693
[45] Mei J, Wang J, Qin A, Zhao H, Yuan W, Zhao Z, Sung H H Y, Deng C, Zhang S, Williams I D, Sun J, Tang B. J. Mater. Chem., 2012, 22: 4290—4298
[46] Dong Y, Xu B, Zhang J, Tan X, Wang L, Chen J, Lv H, Wen S, Li B, Ye L, Zou B, Tian W. Angew. Chem. In. Ed., 2012, 51: 10782—10785
[47] Zhang Y, Sun J, Bian G, Chen Y, Ouyang M, Hu B, Zhang C. Photochem. Photobiol. Sci., 2012, 11: 1414—1421
[48] Li H, Zhang X, Chi Z, Xu B, Zhou W, Liu S, Zhang Y, Xu J. Org. Lett., 2011, 13: 556—559
[49] Li H, Chi Z, Xu B, Zhang X, Li X, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2011, 21: 3760—3767
[50] Wang J, Mei J, Hu R, Sun J, Qin A, Tang B. J. Am. Chem. Soc., 2012, 134: 9956—9966
[51] Luo X, Li J, Li C, Heng L, Dong Y, Liu Z, Bo Z, Tang B. Adv. Mater., 2011, 23: 3261—3265
[52] Luo X, Zhao W, Shi J, Li C, Liu Z, Bo Z, Dong Y, Tang B. J. Phys. Chem. C, 2012, 116: 21967—21972
[53] Shi J, Chang N, Li C, Mei J, Deng C, Luo X, Liu Z, Bo Z, Dong Y, Tang B. Chem. Commun., 2012, 48: 10675—10677
[54] Zhang X, Chi Z, Zhou X, Liu S, Zhang Y, Xu J. J. Phys. Chem. C, 2012, 116: 23629—23638
[55] Zhang X, Chi Z, Xu B, Chen C, Zhou X, Zhang Y, Liu S, Xu J. J. Mater. Chem., 2012, 22: 18505—18513
[56] Zhang X, Chi Z, Xu B, Jiang L, Zhou X, Zhang Y, Liu S, Xu J. Chem. Commun., 2012, 48: 10895—10897
[57] Wang Y, Liu W, Bu L, Li J, Zheng M, Zhang D, Sun M, Tao Y, Xue S, Yang W. J. Mater. Chem. C, 2013, 1: 856—862
[58] Bu L, Sun M, Zhang D, Liu W, Wang Y, Zheng M, Xue S, Yang W. J. Mater. Chem. C, 2013, 1: 2028—2035
[59] Xu B, Chi Z, Zhang X, Li H, Chen C, Liu S, Zhang Y, Xu J. Chem. Commun., 2011, 47: 11080—11082
[60] Shan G, Li H, Qin J, Zhu D, Liao Y, Su Z. Dalton Trans., 2012, 41: 9590—9593
[61] Shan G, Li H, Sun H, Zhu D, Cao H, Su Z. J. Mater. Chem. C, 2013, 1: 1440—1449
[62] Zhao N, Yang Z, Lam J W Y, Sung H H Y, Xie N, Chen S, Su H, Gao M, Williams I D, Wong K, Tang B. Chem. Commun., 2012, 48: 8637—8639
[63] Ren Y, Kan W H, Henderson M A, Bomben P G, Berlinguette C P, Thangadurai V, Baumgartner T. J. Am. Chem. Soc., 2011, 133: 17014—17026
[64] Ren Y, Baumgartner T. Inorg. Chem., 2012, 51: 2669—2678
[65] Qi Q, Liu Y, Fang X, Zhang Y, Chen P, Wang Y, Yang B, Xu B, Tian W, Zhang S. RSC Adv., 2013, 3: 7996—8002
[66] 滕明俊(Teng M J), 贾欣茹(Jiu X R). CN 103030681A, 2011
[67] 池振国(Chi Z G), 何克强(He K Q), 李海银(Li H Y), 张锡奇(Zhang X Q), 许炳佳(Xu B J), 刘四委(Liu S W), 张艺(Zhang Y), 许家瑞(Xu J R). 高等学校化学学报(Chem. J. Chin. Univ. ), 2012, 33: 725—731
[68] Dou C, Han L, Zhao S, Zhang H, Wang Y. J. Phys. Chem. Lett., 2011, 2: 666—670

[1] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[2] 韩鹏博, 徐赫, 安众福, 蔡哲毅, 蔡政旭, 巢晖, 陈彪, 陈明, 陈禹, 池振国, 代淑婷, 丁丹, 董宇平, 高志远, 管伟江, 何自开, 胡晶晶, 胡蓉, 胡毅雄, 黄秋忆, 康苗苗, 李丹霞, 李济森, 李树珍, 李文朗, 李振, 林新霖, 刘骅莹, 刘佩颖, 娄筱叮, 吕超, 马东阁, 欧翰林, 欧阳娟, 彭谦, 钱骏, 秦安军, 屈佳敏, 石建兵, 帅志刚, 孙立和, 田锐, 田文晶, 佟斌, 汪辉亮, 王东, 王鹤, 王涛, 王晓, 王誉澄, 吴水珠, 夏帆, 谢育俊, 熊凯, 徐斌, 闫东鹏, 杨海波, 杨清正, 杨志涌, 袁丽珍, 袁望章, 臧双全, 曾钫, 曾嘉杰, 曾卓, 张国庆, 张晓燕, 张学鹏, 张艺, 张宇凡, 张志军, 赵娟, 赵征, 赵子豪, 赵祖金, 唐本忠. 聚集诱导发光[J]. 化学进展, 2022, 34(1): 1-130.
[3] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[4] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[5] 徐斌, 张继博, 马愫倩, 陈金龙, 董玉杰, 田文晶*. 二苯乙烯基蒽衍生物:聚集诱导发光性质、机理及应用[J]. 化学进展, 2013, 25(07): 1079-1089.
[6] 赵跃智, 蔡敏敏, 钱妍*, 解令海, 黄维*. 聚集诱导发光体系:化合物种类、发光机制及其应用[J]. 化学进展, 2013, 25(0203): 296-321.
[7] 张双, 秦安军, 孙景志, 唐本忠. 聚集诱导发光机理研究[J]. 化学进展, 2011, 23(4): 623-636.
[8] 钱立军,支俊格,佟斌,杨帆,赵玮,董宇平. 具有聚集诱导发光性质的化合物*[J]. 化学进展, 2008, 20(05): 673-678.
阅读次数
全文


摘要

压致变色聚集诱导发光材料