English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 958-974 DOI: 10.7536/PC200685 前一篇   后一篇

• 综述 •

金属基仿生超滑表面制造及其应用

许金凯*(), 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东   

  1. 长春理工大学跨尺度微纳制造教育部重点实验室 长春 130022
  • 收稿日期:2020-06-28 修回日期:2020-08-10 出版日期:2021-06-20 发布日期:2020-12-22
  • 通讯作者: 许金凯
  • 基金资助:
    国家自然科学(U19A20103); 中国博士后科学(2019M661184); 吉林省科技发展计划项目(Z20190101005JH)

Fabrication and Application of Metal-Based Slippery Liquid-Infused Porous Surface

Jinkai Xu*(), Qianqian Cai, Zhanjiang Yu, Zhongxu Lian, Jiwen Tian, Huadong Yu   

  1. Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2020-06-28 Revised:2020-08-10 Online:2021-06-20 Published:2020-12-22
  • Contact: Jinkai Xu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(U19A20103); China Postdoctoral Science Foundation(2019M661184); Jilin Province Scientific and Technological Development Program(Z20190101005JH)

金属是人类社会赖以生存和发展的重要物质基础,是构成现代文明社会的支撑材料,增加金属材料的特殊性能,拓宽金属材料的应用范围,已经成为自然科学交叉研究的热点。受自然界启发,研究人员通过探究猪笼草口缘区的超滑行为,在微/纳米结构基底中注入低表面能润滑液,形成固液复合涂层,设计并制备出具有特殊润湿性的仿生超滑表面,显现出优异的自愈、防冰、防污、耐腐蚀、抗生物黏附、自清洁等性能。该方法为金属基体上设计构建仿生超滑表面,并实现其表面多功能性,进而为其在海洋防污、生物医疗、航空航天、制冷、工业生产等领域实现更广泛的应用提供了可能。本文从仿生超滑表面的设计原理、制备工艺、金属基体仿生超滑表面的应用以及未来发展趋势和挑战四个方面对金属基体仿生超滑表面的研究进展进行了综述。

Metal is an essential material foundation on which human society depends on survival and development. It is a supporting material that constitutes a modern civilized society. Increasing the unique properties of metal materials and expanding the scope of application of metal materials has become a hotspot in the cross-study of natural sciences. Inspired by nature, the researchers have investigated the ultra-slip behaviour of the pitcher plant of nepenthes, injecting low surface energy lubricating liquid into the micro/nano structure substrate, forming a solid-liquid composite structure, and prepared a slippery liquid-infused porous surface(SLIPS) with special wettability. SLIPS has excellent self-healing, anti-icing, anti-fouling, anti-corrosion, anti-bioadhesion and self-cleaning properties. The method designs and constructs a SLIPS on a metal substrate and realizes its surface versatility, thereby providing the possibility for it to achieve a wider range of applications in the fields of marine anti-fouling, biomedical, aerospace, refrigeration, and industrial production. This article is divided into four parts to review the research progress of metal-based SLIPS manufacturing and its application, and summarize the design principle, preparation process, application of metal-based SLIPS, and future development trends and challenges.

Contents

1 Introduction

2 Design principle of SLIPS

3 Preparation process of metal-based SLIPS

3.1 Hydrothermal method

3.2 Chemical vapor deposition

3.3 Electrochemical

3.4 Electrodeposition

3.5 Spraying

3.6 Chemical etching

4 Application of metal-based SLIPS

4.1 Self-healing

4.2 Anti-icing

4.3 Anti-corrosion

4.4 Anti-fouling

4.5 Anti-bioadhesion

4.6 Self-cleaning

5 Conclusion and outlook

()
图1 猪笼草及其内表面形貌图[95]
Fig.1 Morphology of pitcher and its inner surface[95].(Copyright 2004 The National Academy of Sciences of the USA)
图2 仿生超滑表面制备示意图[71]
Fig.2 Schematic diagram of SLIPS production[71].(Copyright 2011 Macmillan Publishers Limited)
图3 仿生超滑表面:(a)四相系统的不同润湿状态(空气,液体1,液体2,固体)。红色插图表示液滴与润滑剂界面可能存在的润湿状态(液滴完全润湿基体表面(上),部分润湿基体表面(中),与基体没有接触(下)),同样,黑色插图表示存在空气层时润滑剂在表面上的润湿状态(无润滑剂(上)、部分润湿(中)或完全润湿(下));(b)仿生超滑表面表达式推导草图; (c)不同润滑剂的仿生超滑表面的润湿状态(氟碳润滑剂(上)、碳氢化合物(中)、离子润滑剂(下));(d)FC70润湿的微柱结构的后退角(上)和前进角(下)的观察过程[100~102]
Fig.3 Liquid-infused surfaces.(a) Different wettable configurations for a four-phase system(air, liquid-1, liquid-2, solid). Red inset represents possible wetting states near the droplet-lubricant interface. Here, the droplet can completely wet the surface(top), partially wets the surface(middle), or has no interactions with the surface due to a completely lubricated structure(bottom). Similarly, the black inset represents the wetting of the lubricant on a surface in the presence of a gas layer. Here, the surface can lack any lubricant(top), be partially wetted(middle), or be fully impregnated(bottom) by the lubricant[100].(Copyright 2013 The Royal Society of Chemistry)(b) Sketch illustrating the derivation of the closed form expression for LIS[101].(Copyright 2016 The Royal Society of Chemistry)(c) Direct observations of liquid-infused surfaces with different droplet-lubricant configurations. Cloaking of the droplet with fluorocarbon lubricant(top) and uncloaked droplet with hydrocarbon(middle) or ionic(bottom) lubricants[102].(d) Observations of receding angles(top) and advancing angles(bottom) on FC70-impregnated micropillars[102].(Copyright 2015 The Royal Society of Chemistry)
图4 仿生超滑表面各种制备方法示意图[71]
Fig.4 Schematic diagram of various preparation methods of SLIPS[71]. (Copyright 2011 Macmillan Publishers Limited)
表1 应用于金属材料表面加工的创新技术
Table 1 Innovative techniques applied to surface processing of metal materials
图5 AZ31镁基仿生超滑表面制备过程示意图[142](Copyright 2019 Elsevier B.V)
Fig.5 Schematic showing the fabrication of anticorrosion system with self-repairable slippery surface and active corrosion inhibition on PEO modified Mg alloy[142].(Copyright 2019 Elsevier B.V)
图6 (a)CuZn合金仿生超滑表面制备过程示意图;(b)CuZn合金基体的SEM图;电沉积时间不同CuZn合金表面SEM图:(c)0.5 h、(d)2 h、(e)4 h、(f)8 h 和(g)8 h的局部放大图[147]
Fig.6 (a) Schematic illustration of the process combining galvanic corrosion, chemical vapor deposition and oil infusion to realize SLIPS. The SEM images of bare CuZn(b) and the surface deposit morphology evolution with the elongation of reaction time(c~f), in which the reaction time is (c) 0.5 h, (d) 2 h, (e) 4 h and (f) 8 h, respectively.(g) is the partial magnification of the deposit obtained with 8 h[147].(Copyright 2017 Elsevier Science SA)
图7 (a~c)电化学腐蚀后样品表面不同分辨率下的SEM形貌图;(d)基体、电化学腐蚀、超疏水表面和仿生超滑表面(从左到右排序)的静态接触角(CA)[152]
Fig.7 (a~c) SEM morphologies of the electrochemical etched surface under different resolutions. (d)The static contact angle(CA) of pristine, chemically etched, FAS modified and lubricant infused surface(sorted from left to right)[152].(Copyright 2018 Applied Surface Science)
图8 (a)CuZn仿生超滑表面制备过程示意图;(b)CuZn基体SEM图;(c)和(d)不同分辨率下电沉积Cu涂层SEM图;(e)和(f)不同分辨率下Cu(OH)2涂层SEM图;(g)十二硫醇改性后Cu(OH)2涂层SEM图[158]
Fig.8 (a) Schematic illustration of the process combining electrodeposition, oxidation, chemical vapor deposition and oil infusion to realize SLIPS.(b~d) The SEM images of the material in different preparation stages, including(b) bare CuZn,(c, d) as-deposited Cu,(e, f) Cu(OH)2 obtained by oxidizing Cu in a mixed solution containing 0.1 M(NH4)2S2O4 and 2.5 M NaOH, and(g) further modification of Cu(OH)2 in dodecane thiol vapor[158].(Copyright 2018 Applied Surface Science)
图9 (a)铝基体仿生超滑表面制备过程示意图;(b)和(c)不同分辨率下,皱褶多孔空心二氧化硅管的SEM图;(d)样品的TEM图;(e)化学刻蚀后铝合金表面;(f)喷胶后的涂层形貌;(g)涂层的横截面形貌;(h)和(i)多孔空心二氧化硅纳米管喷涂后表面的SEM图;(j)喷涂后涂层的横截面形貌[163]
Fig.9 (a) Schematic illustration of the synthesis of SLIPS. SEM images of the wrinkled and porous hollow tubular SiO2 with(b) low magnification and(c) high magnification,(d) TEM image of wrinkled and porous hollow SiO2 tubes(Inset: HRTEM image of micro porous structure). SEM images of the samples(e) etched Al alloy substrate,(f) the surface after spraying glue,(g) the cross section of the glue.(h) low magnification,(i) high magnification of the porous hollow SiO2 nanotubes after spraying on the substrate.(j) the cross section of the coating[163].(Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA)
图10 (a)Al@ZnO仿生超滑表面制备过程示意图;(b)化学刻蚀后铝基体表面的SEM图;(c)第一层氧化锌的SEM图;(d)和(e)不同倍率下第二层氧化锌的SEM图;(f)涂层的横截面;(g)不同液体在仿生超滑表面上光学图片[171]
Fig.10 (a) Schematic illustration of the process of preparation of Al@ZnO super-slippery surface.(b) SEM image of etched Al substrate.(c) SEM image of the first layer of ZnO grown on the Al sheet. SEM images of the second layer of ZnO with(d) high magnification and(e) low magnification.(f) The cross section of the coating.(g) Digital image of different liquids on the Al@ZnO SLIPs[171].(Copyright 2018 Elsevier B.V.)
图11 仿生超滑表面的功能原理示意图
Fig.11 Schematic diagram of special performances of SLIPS
图12 (a)样品划伤2 h后仿生超滑表面的自愈对比图;(b)和(c)SLIPS、SHC、SSL和Fe基体的Bode模图和Bode相图;(d)SLIPS和划伤的SLIPS(SSL)、自修复涂层(SHC)以及铁基体的Tafel图;(e)根据Tafel图计算出SLIPS、SSL、SHS和Fe基体的腐蚀电流密度;(f)被刀划伤的SLIPS浸泡在3.5 wt%氯化钠溶液中2 h的前后对比图[185]。
Fig.12 (a) The camera photos of SLIPS damaged by knife and then self-healed after 2 h.(b) Bode-module plots and(c) Bode-phase plots of SLIPS, SHC, SSL and bare Fe.(d) Tafel plots of SLIPS and scratched SLIPS(SSL), self-healed coating(SHC) as well as bare Fe.(e) Corrosion current density of SLIPS, SSL, SHS and bare Fe calculated from Tafel plots.(f) The camera photos of SLIPS damaged by knife and immersed in 3.5 wt.% NaCl solution for 2 h recovery[185].(Copyright 2018 Chemical Engineering Journal)
图13 图像模拟了高湿度(60%RH)条件下冷冻(-10 ℃)并随后通过加热除冰的过程。SLIPS-Al上的积冰形态与未处理的Al基体明显不同。冷凝/冷冻周期:以5 ℃/min的速度从室温下降至-10 ℃。融化/除霜周期:以10 ℃/min的速度从-10 ℃上升至25 ℃。SLIPS-Al的边缘附近形成部分冰晶,而在未处理的铝基板上均匀地形成了大量的冰。样品的倾斜角为75°,基板厚度为3cm[189]
Fig.13 Still images extracted from the movies simulating ice formation by deep freezing(-10 ℃) in high-humidity condition(60% RH) and subsequent deicing by heating. The morphology of accumulated ice on SLIPS-Al is significantly different from that on bare Al. Condensation/freezing cycle: from room temperature to -10 ℃ at 5 ℃/min. Melting(defrost) cycle: from -10 to 25 ℃ at ~10 ℃/min. Ice still forms mostly around the edges of SLIPS-Al by bridging from the surrounding aluminum substrate, while it forms uniformly all over the aluminum substrate. The samples are mounted with 75° tilt angle, and the widths of the substrates are approximately 3 cm[189].(Copyright 2012 American Chemical Society)
图14 样品的Bode图:(a)不锈钢基体和Co(OH)2涂层;(b)超疏水表面;(c)仿生超滑表面;(d)不同条件下不锈钢样品的Tafel极化曲线[194]
Fig.14 The corrosion inhibition evaluation of SS(stainless steel) with the different coverage.(a~c) Bode diagrams of bare SS, Co(OH)2/SS, SHP SS(superhydrophobic stainless steel) and LIS SS(lubricant-infused surface stainless steel).(d) The Tafel polarization curves of SS with different coverage[194].(Copyright 2019 Published by Elsevier)
图15 表面防污机理示意图[81]
Fig.15 Schematic diagram of anti-fouling material mechanism[81].(Copyright 2020 the authors)
图16 样品浸泡在碳酸钙(CaCO3)盐水中2 h后单位面积质量的增加[198]
Fig.16 Mass gain per unit area of scale after 2 h immersion in calcium carbonate(CaCO3) scaling brine[198].(Copyright 2014 Elsevier Inc.)
图17 利用CLSM(-1)和COMSTAT(-2)程序构建的生物膜厚度图观察三角褐指藻的黏附状况:(a)活性不锈钢;(b)SiO2表面;(c)氟化SiO2表面;(d)仿生超滑表面;(e)三角褐指藻在不同样品表面黏附量的统计分析;(f)三角褐指藻的黏附Dupré(活性不锈钢-SSeOH,SiO2表面-SSeSiO2,氟化处理的SiO2表面-SSeSiO2Fe,SiO2仿生超滑表面-SS-SiO2-S)[202]
Fig.17 Adhesion of P. tricornutum observed by CLSM(-1) and biofilm thickness maps reconstructed by the COMSTAT program(-2) on activated stainless steel(a), SiO2 surfaces(b), fluorinated SiO2 surfaces(c) and liquid infused SiO2 surfaces(d).(e): Statistical analysis of P. tricornutum adhesion on the different surfaces compared to active stainless steel.(f) The Dupré work of adhesion ofP. tricornutum(Activated stainless steel as SSeOH, SiO2 surfaces as SSeSiO2, fluorinated SiO2 surfaces as SSeSiO2Fe, and liquid infused SiO2 surfaces as SS-SiO2-S)[202].(Copyright 2019 Elsevier B.V. )
图18 大肠杆菌(K-12)的黏附特性,细菌黏附的SEM和图解示意图:(a)电抛光后的铝基体表面;(b)亲水表面;(c)疏水表面;(d)仿生超滑表面;(a~d)中的白色标尺为5 μm。(e)四种不同表面测量的细菌黏附数量(菌落形成单位,CFU),(e)中星号表示各组间的统计显著性( p<0.05)[204]
Fig.18 Characterizations of bacteria(E. coli K-12) adhesion.(a~d) SEM and schematic(inset) images of the bacteria adhesion on electropolished Al(Flat), hydrophilic large pored(L-Po) AAO(anodic aluminum oxide), hydrophobic(i.e., with Teflon-coating) L-Po, and oil-impregnated L-Po, respectively. White scale bars in(a~d) indicate 5 μm.(e) Bacteria population(colony forming unit, CFU) measured with the four different surfaces. Asterisks in(e) indicate statistical significance( p<0.05) between indicated groups[204].(Copyright 2019 Elsevier Inc.)
图19 以Fe3O4固体颗粒为污染物,将样品倾斜15°进行自清洁测试:(a)钢基体;(b)仿生超滑表面[208]
Fig.19 Self-cleaning test of base steel(a) and slippery surface(b) at a tilt angle of 15° with Fe3O4 solid particles as contaminant[208].(Copyright 2019 Elsevier B.V. )
[1]
Su Y, Guo J B. News Forum, 2012, 6:63.
(苏娅, 郭建波. 新闻论坛, 2012, 6:63.).
[2]
Dong H. Acta Metall Sin., 2020, 56:381.
(董瀚. 金属学报, 2020, 56:381.).
[3]
Chen X. Shanxi Sci. Tech., 2015, 1:75.
(陈鑫. 山西科技, 2015, 1:75.).
[4]
Merati A. Int. J Fatigue, 2005, 27(1):33.

doi: 10.1016/j.ijfatigue.2004.06.010     URL    
[5]
Longtin R, Hack E, Neuenschwander J, Janczak-Rusch J. Adv. Mater., 2011, 23(48):5812.
[6]
Sun S L. Master Dissertation of Dalian University of Technology, 2015.
(孙诗淋. 大连理工大学硕士论文, 2015.).
[7]
Xie T F. Master Dissertation of Southwest Jiaotong University, 2019.
(谢腾飞. 西南交通大学硕士论文, 2019.).
[8]
Jin X J, Gong Y, Han X H, Du H, Ding W, Zhu B, Zhang Y S, Feng Y, Ma M T. Acta Metall Sin, 2020, 56:411.
(金学军, 龚煜, 韩先洪, 杜浩, 丁伟, 朱彬, 张宜生, 冯毅, 马鸣图, 梁宾. 金属学报, 2020, 56(4): 33.)
[9]
Li J X, Wang W, Zhou Y, Liu S G, Fu H, Wang Z, Kan B. Acta Metall. Sin., 2020, 56 (4):444.
(李金许, 王伟, 周耀, 刘神光, 付豪, 王正, 阚博. 金属学报, 2020, 56 (4): 66.)
[10]
Li J. Master Dissertation of Inner Mongolia University of Science & Technology, 2019.
(李剑. 内蒙古科技大学硕士论文, 2019.).
[11]
Zhang Z, Wu X, Tan J. Corros. Sci., 2019, 146:90.

doi: 10.1016/j.corsci.2018.10.022    
[12]
Zhang Z, Zhang Z, Tan J, Wu X. Corros. Sci., 2019, 157:79.

doi: 10.1016/j.corsci.2019.05.030    
[13]
Song X X, Huang S P, Wang C. Acta. Metall. Sini., 2020, 56 (10):1355.
(宋学鑫, 黄松鹏, 汪川. 金属学报, 2020, 56 (10): 1355.)
[14]
Liu Y W, Zhao H T, Wang Z Y. Acta. Metall. Sini., 2020, 56 (9):1247.
(刘雨薇, 赵洪涛, 王振尧. 金属学报, 2020, 56 (9): 1247.)
[15]
Sun S M. Master Dissertation Institute of Oceanology, Chinese Academy of Science, 2015.
(孙士美. 中国科学院研究生院硕士论文, 2015.).
[16]
Sharma A, Oh M C, Kim J T, Srivastava A K, Ahn B. J. Alloy. Compd., 2020, 830:154620.

doi: 10.1016/j.jallcom.2020.154620     URL    
[17]
Cheng Y. Master Dissertation of Donghua University, 2016.
(成瑜. 东华大学硕士论文, 2016.).
[18]
Zhang J. Master Dissertation of Southwest Jiaotong University, 2013.
(张娟. 西南交通大学硕士论文, 2013.).
[19]
Miao Z M. Master Dissertation of Wuhan University of Technology, 2018.
(苗志民. 武汉理工大学硕士论文, 2018.).
[20]
Shi C L. Master Dissertation of Anhui University of Science and Technology, 2016.
(石春璐. 安徽理工大学硕士论文, 2016.).
[21]
Liu Y T. Master Dissertation of Chongqing University, 2015.
(刘洋彤. 重庆大学硕士论文, 2015.).
[22]
Gopal V, Manivasagam G. J. Alloy. Compd., 2020, 830:154539.

doi: 10.1016/j.jallcom.2020.154539     URL    
[23]
Yang K, Shi X B, Yan W, Zeng Y P, Shan Y Y, Ren Y. Acta Metall. Sin., 2020, 56 (4):385.
(杨柯, 史显波, 严伟, 曾云鹏, 单以银, 任毅. 金属学报, 2020, 56 (4): 385.)
[24]
Zhang Z, Wu X Q, Tan J B. J. Electrochem. Soc., 2019, 166(12):C284.

doi: 10.1149/2.0761912jes    
[25]
Cao L, Wan Y, Yang S Y, Pu J B. Coatings, 2018, 8(8):285.

doi: 10.3390/coatings8080285     URL    
[26]
Tang L L, Wang N, Han Z Y, Sun H H, Xiong D S. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 594:124655.

doi: 10.1016/j.colsurfa.2020.124655     URL    
[27]
Guo J, Qian H, Liu P F, Ma J Y. Appl. Clay Sci., 2019, 180:105182.

doi: 10.1016/j.clay.2019.105182     URL    
[28]
Peng H Q, Luo Z J, Li L, Xia Z X, Du J, Zheng B Z. Mater. Res. Express, 2019, 6(9):096586.

doi: 10.1088/2053-1591/ab3173     URL    
[29]
Barthwal S, Lim S H. Soft Matter, 2019, 15(39):7945.

doi: 10.1039/c9sm01256g     pmid: 31544192
[30]
Ebrahimi A, Esfahani H, Imantalab O, Fattah-Alhosseini A. Trans. Nonferrous Met. Soc. China, 2020, 30(4):944.

doi: 10.1016/S1003-6326(20)65267-0     URL    
[31]
Lin X, Ge J, Wu S L, Liu B H, Yang H L, Yang L. Acta Metall. Sin., 2017, 53(10):1284.
(林潇, 葛隽, 吴水林, 刘宝华, 杨惠林, 杨磊. 金属学报, 2017, 53(10): 1284.)
[32]
Kang J, Li J C, Feng Z C, Zou G S, Wang G Q. Acta Metall. Sin., 2016, 52:60.
(康举, 李吉超, 冯志操, 邹贵生, 王国庆. 金属学报, 2016, 52:60.).
[33]
Chen R J. Master Dissertation of Zhejiang University, 2017.
(陈瑞姣. 浙江大学硕士论文, 2017.).
[34]
Sujkowska-Rybkowska M, Banasiewicz J, Rekosz-Burlaga H, Stępkowski T. Appl. Soil Ecol., 2020, 151:103539.

doi: 10.1016/j.apsoil.2020.103539     URL    
[35]
Zhang Y N, Sun Y, Cai L, Gao Y P, Cai Y. Measurement, 2020, 158:107742.

doi: 10.1016/j.measurement.2020.107742     URL    
[36]
Chen H Y. Doctoral Dissertation of Institute of Oceanography, Chinese Academy of Sciences, 2019.
(陈怀银. 中国科学院海洋研究所博士论文, 2019. ).
[37]
Shuai T. Master Dissertation of Nanchang Hangkong University, 2018.
(帅韬. 南昌航空大学硕士论文, 2018.).
[38]
Zhang L, Wang W, Shahzad M, Shan Y Y, Yang K. Acta. Metall. Sin., 2020, 56(3):351.
(张乐, 王威, Shahzad M, 单以银, 杨柯. 金属学报, 2020, 56(3): 351.)
[39]
Liu X J, Chen Y C, Lu Y, Han J J, Xu W W, Guo Y H, Yu J X, Wei Z B, Wang C P. Acta Metall. Sin., 2020, 56(1):1.
(刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 金属学报, 2020, 56(1): 1.)
[40]
Zhai D J, Feng K Q. Trans. Nonferrous Met. Soc. China, 2019, 29(12):2546.

doi: 10.1016/S1003-6326(19)65162-9     URL    
[41]
Zhang C, Wu L, Huang G S, Liu K, Jiang B, Wang G G, Xia D B, Atrens A, Pan F S. J. Electrochem. Soc., 2019, 166(13):C445.

doi: 10.1149/2.1191913jes     URL    
[42]
Park T M, Kim H J, Um H Y, Goo N H, Han J. Mater. Charact., 2020, 165:110386.

doi: 10.1016/j.matchar.2020.110386     URL    
[43]
Zheng Q J, Zhang L L, Jiang H X, Zhao J Z, He J. J Mater. Sci. Technol., 2020, 47:142.

doi: 10.1016/j.jmst.2019.12.021     URL    
[44]
Luo S C, Su Y, Wang Z M. Sci. China Mater., 2020, 63(7):1279.

doi: 10.1007/s40843-020-1291-9     URL    
[45]
Wang C Y, Chang Y, Zhou F L, Cao W Q, Dong H, Weng Y Q. Acta Metall. Sin., 2020, 56(4):400.
(王存宇, 常颖, 周峰峦, 曹文全, 董瀚, 翁宇庆. 金属学报, 2020, 56(4): 400.)
[46]
Zhou Y W, Zheng X B, Xing F, Sui L L, Zheng Y W, Huang X X. Constr. Build. Mater., 2020, 255:119377.

doi: 10.1016/j.conbuildmat.2020.119377     URL    
[47]
Yang M K, Liu Y, Shi Z Y, Lv X, Liu B, Sun L Y. Corrosion, 2020, 76(4):366.

doi: 10.5006/3404     URL    
[48]
José S C, Luís C, Filipe R, Diogo F, Pier G B, Joaquim B, Eduardo P, Isabel V. Constr. Build. Mater., 2020,258.
[49]
Zheng X, Xie C C, Li W M, Aberle A G, Venkataraj S. Appl. Surf. Sci., 2020, 525:146368.

doi: 10.1016/j.apsusc.2020.146368     URL    
[50]
Zhang Y F, Blawert C, Tang S W, Hu J, Mohedano M, Zheludkevich M L, Kainer K U. Corros. Sci., 2016, 112:483.

doi: 10.1016/j.corsci.2016.08.013     URL    
[51]
Song Z W, Yu G, Xie Z H, Hu B N, He X M, Zhang X Y. Surf. Coat. Technol., 2014, 242:83.

doi: 10.1016/j.surfcoat.2014.01.022     URL    
[52]
Xu W J, Song J L, Sun J, Lu Y, Yu Z Y. ACS Appl. Mater. Interfaces, 2011, 3(11):4404.

doi: 10.1021/am2010527     URL    
[53]
She Z X, Li Q, Wang Z W, Tan C, Zhou J C, Li L Q. Surf. Coat. Technol., 2014, 251:7.

doi: 10.1016/j.surfcoat.2014.03.060     URL    
[54]
Peng C Y, Chen Z Y, Tiwari M K. Nat. Mater., 2018, 17(4):355.

doi: 10.1038/s41563-018-0044-2     URL    
[55]
Wu L, Wu J H, Zhang Z Y, Zhang C, Zhang Y X, Tang A T, Li L J, Zhang G, Zheng Z C, Atrens A, Pan F S. Appl. Surf. Sci., 2019, 487:569.

doi: 10.1016/j.apsusc.2019.05.121     URL    
[56]
Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W. Beilstein J. Nanotechnol., 2011, 2:152.

doi: 10.3762/bjnano.2.19     URL    
[57]
Yin K, Yang S, Dong X R, Chu D K, Duan J A, He J. Appl. Phys. Lett., 2018, 112(24):243701.

doi: 10.1063/1.5039789     URL    
[58]
Yin K, Du H F, Luo Z, Dong X R, Duan J A. Surf. Coat. Technol., 2018, 345:53.

doi: 10.1016/j.surfcoat.2018.04.010     URL    
[59]
Li C C, Liang T T, Ma R N, Du A, Fan Y Z, Zhao X, Cao X M. J. Alloy. Compd., 2020, 825:153921.

doi: 10.1016/j.jallcom.2020.153921     URL    
[60]
Manoj T P, Rasitha T P, Vanithakumari S C, Anandkumar B, George R P, Philip J. Appl. Surf. Sci., 2020, 512:145636.

doi: 10.1016/j.apsusc.2020.145636     URL    
[61]
Wang F J, Xie T, Ou J F, Xue M S, Li W. J. Alloy. Compd., 2020, 823:153702.

doi: 10.1016/j.jallcom.2020.153702     URL    
[62]
Atthi N, Sripumkhai W, Pattamang P, Thongsook O, Meananeatra R, Saengdee P, Ranron N, Srihapat A, Supadech J, Klunngien N, Jeamsaksiri W. Jpn. J. Appl. Phys., 2020,59(SI): SIIJ05.
[63]
Gong X, He S. ACS Omega, 2020, 5(8):4100.

doi: 10.1021/acsomega.9b03775     URL    
[64]
Selim M S, El-Safty S A, Shenashen M A, Higazy S A, Elmarakbi A. J. Mater. Chem. B, 2020, 8(17):3701.

doi: 10.1039/C9TB02119A     URL    
[65]
Zhu R F, Liu M M, Hou Y Y, Zhang L P, Li M, Wang D, Fu S H. ACS Appl. Mater. Interfaces, 2020, 12(14):17004.

doi: 10.1021/acsami.9b22268     URL    
[66]
Fan K N, Jin Z J, Bao Y, Wang Q L, Niu L, Sun J, Song J L. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 590:124495.

doi: 10.1016/j.colsurfa.2020.124495     URL    
[67]
Chen L, Ping H, Yang T, Hu T, Bennett P, Zheng Z, Yang Q B, Perrie W, Edwardson S P, Dearden G, Liu D. Mater. Res. Express, 2020, 6(12):1250e2.

doi: 10.1088/2053-1591/ab6542     URL    
[68]
Wang S H, Guo X W, Xie Y J, Liu L H, Yang H Y, Zhu R Y, Gong J, Peng L M, Ding W J. Surf. Coat. Technol., 2012, 213:192.

doi: 10.1016/j.surfcoat.2012.10.046     URL    
[69]
Jiang D, Zhou H, Wan S, Cai G Y, Dong Z H. Surf. Coat. Technol., 2018, 339:155.

doi: 10.1016/j.surfcoat.2018.02.001     URL    
[70]
Nhung Nguyen T P, Brunet P, Coffinier Y, Boukherroub R. Langmuir, 2010, 26(23):18369.

doi: 10.1021/la103097y     URL    
[71]
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477(7365):443.

doi: 10.1038/nature10447     URL    
[72]
Wang Y J, Song X C, Chen Y F. J. Southeast Univ. Nat. Sci. Ed., 2017, 47:259.
[73]
Lou X D, Huang Y, Yang X, Zhu H, Heng L P, Xia F. Adv. Funct. Mater., 2020, 30(10):1901130.

doi: 10.1002/adfm.v30.10     URL    
[74]
Gulfam R, Zhang P. Renew. Energy, 2019, 143:922.

doi: 10.1016/j.renene.2019.05.055     URL    
[75]
Wang F, Luo S H, Xiao S B, Zhang W J, Zhuo Y Z, He J Y, Zhang Z L. J. Hazard. Mater., 2020, 390:122176.

doi: 10.1016/j.jhazmat.2020.122176     URL    
[76]
Bandyopadhyay S, Sriram S M, Parihar V, Das Gupta S, Mukherjee R, Chakraborty S. Soft Matter, 2019, 15(44):9031.

doi: 10.1039/c9sm01680e     pmid: 31637378
[77]
Ban G H, Rungraeng N, Li Y, Jun S. Trans. ASABE, 2018, 61(3):1175.

doi: 10.13031/trans.12677     URL    
[78]
Wylie M P, Bell S E J, Nockemann P, Bell R, McCoy C P. ACS Omega, 2020, 5(14):7771.

doi: 10.1021/acsomega.9b03528     URL    
[79]
Yuan S C, Zhang X G, Lin D, Xu F, Li Y, Wang H Y. Prog. Org. Coat., 2020, 142:105563.
[80]
Wu D Q, Ma L W, Zhang F, Qian H C, Minhas B, Yang Y M, Han X, Zhang D W. Mater. Des., 2020, 185:108236.

doi: 10.1016/j.matdes.2019.108236     URL    
[81]
Wang Z H, Scheres L, Xia H S, Zuilhof H. Adv. Funct. Mater., 2020, 30(26):1908098.

doi: 10.1002/adfm.v30.26     URL    
[82]
Singh V, Sheng Y J, Tsao H K. J. Taiwan Inst. Chem. Eng., 2019, 97:96.

doi: 10.1016/j.jtice.2019.02.023     URL    
[83]
Hou X, Hu Y H, Grinthal A, Khan M, Aizenberg J. Nature, 2015, 519(7541):70.

doi: 10.1038/nature14253     URL    
[84]
Tesler A B, Kim P, Kolle S, Howell C, Ahanotu O, Aizenberg J. Nat. Commun., 2015, 6:8649.

doi: 10.1038/ncomms9649     URL    
[85]
Xiao L L, Li J S, Mieszkin Sdi Fino A, Clare A S, Callow M E, Callow J A, Grunze M, Rosenhahn A, Levkin P A. ACS Appl. Mater. Interfaces, 2013, 5(20):10074.

doi: 10.1021/am402635p     URL    
[86]
Wang P, Zhang D, Lu Z, Sun S M. ACS Appl. Mater. Interfaces, 2016, 8(2):1120.

doi: 10.1021/acsami.5b08452     URL    
[87]
Wang P, Lu Z, Zhang D. Corros. Sci., 2015, 93:159.

doi: 10.1016/j.corsci.2015.01.015     URL    
[88]
Liu G, Zhang P F, Liu Y, Zhang D Y, Chen H W. Micromachines, 2018, 9(11):591.

doi: 10.3390/mi9110591     URL    
[89]
Zhang M L, Sun G H, Guo H, Liu Q, Liu J Y, Yu J, Chen R R, Gao L T, Wang J. ACS Sustainable Chem. Eng., 2020, 8(8):3170.

doi: 10.1021/acssuschemeng.9b06459     URL    
[90]
Zhang J L, Gu C D, Tu J P. ACS Appl. Mater. Interfaces, 2017, 9(12):11247.

doi: 10.1021/acsami.7b00972     URL    
[91]
Sett S, Yan X, Barac G, Bolton L W, Miljkovic N. ACS Appl. Mater. Interfaces, 2017, 9(41):36400.

doi: 10.1021/acsami.7b10756     URL    
[92]
Huang Y, Stogin B B, Sun N, Wang J, Yang S K, Wong T S. Adv. Mater., 2017, 29(8):1604641.

doi: 10.1002/adma.v29.8     URL    
[93]
Bauer U, Federle W. Plant Signal. Behav., 2009, 4(11):1019.

doi: 10.4161/psb.4.11.9664     URL    
[94]
Federle W. Integr. Comp. Biol., 2002, 42(6):1100.

doi: 10.1093/icb/42.6.1100     pmid: 21680393
[95]
Bohn H F, Federle W. PNAS, 2004, 101(39):14138.

doi: 10.1073/pnas.0405885101     URL    
[96]
Gaume L, Gorb S, Rowe N. New Phytol., 2002, 156(3):479.

doi: 10.1046/j.1469-8137.2002.00530.x     URL    
[97]
Li J S, Ueda E, Paulssen D, Levkin P A. Adv. Funct. Mater., 2019, 29(4):1802317.

doi: 10.1002/adfm.v29.4     URL    
[98]
Wu D Q, Zhang D W, Liu B, Li X G. Surf. Technol., 2019, 48(1):90.
(吴德权, 张达威, 刘贝, 李晓刚. 表面技术, 2019, 48(1): 90.)
[99]
Song T T, Liu Q, Zhang M L, Chen R R, Takahashi K, Jing X Y, Liu L H, Wang J. RSC Adv., 2015, 5(86):70080.

doi: 10.1039/C5RA11263J     URL    
[100]
Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R E, McKinley G H, Varanasi K K. Soft Matter, 2013, 9(6):1772.

doi: 10.1039/C2SM27032C     URL    
[101]
Semprebon C, McHale G, Kusumaatmaja H. Soft Matter, 2017, 13(1):101.

doi: 10.1039/C6SM00920D     URL    
[102]
Schellenberger F, Xie J, Encinas N, Hardy A, Klapper M, Papadopoulos P, Butt H J, Vollmer D. Soft Matter, 2015, 11(38):7617.

doi: 10.1039/c5sm01809a     pmid: 26291621
[103]
Badv M, Weitz J I, Didar T F. Small, 2019, 15(51):1905562.

doi: 10.1002/smll.v15.51     URL    
[104]
Niemelä-Anttonen H, Koivuluoto H, Tuominen M, Teisala H, Juuti P, Haapanen J, Harra J, Stenroos C, Lahti J, Kuusipalo J, Mäkelä J M, Vuoristo P. Adv. Mater. Interfaces, 2018, 5(20):1800828.

doi: 10.1002/admi.201800828     URL    
[105]
Liu Y B, Tian Y, Chen J, Gu H M, Liu J, Wang R M, Zhang B L, Zhang H P, Zhang Q Y. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 588:124384.

doi: 10.1016/j.colsurfa.2019.124384     URL    
[106]
An G M, Ling S Q, Wang Z W, Luan L, Wu T Z. Prog. Chem., 2015, 27:1705.
(安光明, 凌世全, 王智伟, 栾琳, 吴天准. 化学进展, 2015, 27 :1705.).

doi: 10.7536/PC150630    
[107]
Hou N W. Master Dissertation of Harbin Institute of Technology, 2018.
(侯娜娃. 哈尔滨工业大学硕士论文, 2018.).
[108]
Wang C. Master Dissertation of Dalian University of Technology, 2019.
(王聪. 大连理工大学硕士论文论文, 2019.).
[109]
Zhang F, Yao Z J, Moliar O, Tao X W, Yang C. J. Alloy. Compd., 2020, 830:153785.

doi: 10.1016/j.jallcom.2020.153785     URL    
[110]
Guo F, Yu X T, Wang M Y. J. Electrochem. Soc., 2020, 167(6):063506.

doi: 10.1149/1945-7111/ab8648     URL    
[111]
Prado L H, Virtanen S. Coatings, 2020, 10(3):238.

doi: 10.3390/coatings10030238     URL    
[112]
Wang F, Zhou Y L, Yang W B, Ni M Q, Zhang X S, Liang C H. Appl. Therm. Eng., 2020, 169:114967.

doi: 10.1016/j.applthermaleng.2020.114967     URL    
[113]
Upadhyay R K, Waghmare P R. Environ. Chem. Lett., 2020, 18(2):505.

doi: 10.1007/s10311-019-00952-3     URL    
[114]
Yu Z Q, Zhou C, Liu R, Zhang Q X, Gong J W, Tao D H, Ji Z Y. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 589:124475.

doi: 10.1016/j.colsurfa.2020.124475     URL    
[115]
Pan L, Wang F, Pang X F, Zhang L, Hao J X. J. Mater. Sci., 2019, 54(24):14728.

doi: 10.1007/s10853-019-03956-0     URL    
[116]
Jeong C, Ji H. Materials, 2019, 12(19):3231.

doi: 10.3390/ma12193231     URL    
[117]
Kikuchi T, Kunimoto K, Ikeda H, Nakajima D, Suzuki R O, Natsui S. J. Electroanal. Chem., 2019, 846:113152.

doi: 10.1016/j.jelechem.2019.05.034     URL    
[118]
Alamán J, María López-Villuendas A, López-Valdeolivas M, Arroyo M P, Andrés N, Sánchez-Somolinos C. Appl. Surf. Sci., 2020, 510:145422.

doi: 10.1016/j.apsusc.2020.145422     URL    
[119]
ŞCakalak H, Yılmaz K, Gürsoy M, Karaman M. Chem. Eng. Sci., 2020, 215:115466.

doi: 10.1016/j.ces.2019.115466     URL    
[120]
ŞCimşek B, Karaman M. J. Coat. Technol. Res., 2020, 17(2):381.

doi: 10.1007/s11998-019-00282-7     URL    
[121]
Miao X, Zhu C Q, Ren G N, Sun X H, Li Y C. Appl. Surf. Sci., 2020, 515:146099.

doi: 10.1016/j.apsusc.2020.146099     URL    
[122]
Qian H J, Zhu M L, Song H, Wang H Y, Liu Z J, Wang C J. Prog. Org. Coat., 2020, 142:105566.
[123]
Li M, Xu X, Zhang L. J Ind. Eng. Chem., 2020, 84:4936.
[124]
Li Y, Xie J Y, Guo C J, Wang J, Liu H, Hu W B. RSC Adv., 10.
[125]
Zhang A Y, Li Z H. MATEC Web Conf., 2017, 128:03005.

doi: 10.1051/matecconf/201712803005     URL    
[126]
Tuo Y J, Zhang H F, Chen W P, Liu X W. Appl. Surf. Sci., 2017, 423:365.

doi: 10.1016/j.apsusc.2017.06.170     URL    
[127]
Joo J, Kim D, Moon H S, Kim K, Lee J. Appl. Surf. Sci., 2020, 509:145361.

doi: 10.1016/j.apsusc.2020.145361     URL    
[128]
Li M X, Xu X, Zhang L. Appl. Surf. Sci., 2015, 328:491.

doi: 10.1016/j.apsusc.2014.12.067     URL    
[129]
Sousa M F B, Loureiro H C, Bertran C A. Surf. Coat. Technol., 2020, 382:125160.

doi: 10.1016/j.surfcoat.2019.125160     URL    
[130]
Xiang T F, Zheng S L, Zhang M, Sadig H R, Li C. ACS Sustainable Chem. Eng., 2018, 6(8):10960.

doi: 10.1021/acssuschemeng.8b02345     URL    
[131]
Wang N, Xiong D S, Pan S, Deng Y L, Shi Y. Appl. Surf. Sci., 2016, 387:1219.

doi: 10.1016/j.apsusc.2016.07.012     URL    
[132]
Gao X Y, Guo Z G. J. Colloid Interface Sci., 2018, 512:239.

doi: 10.1016/j.jcis.2017.10.061     URL    
[133]
Zhang P F, Chen H W, Liu G, Zhang L W, Zhang D Y. J. Vis. Exp., 2018(133):e55888.
[134]
Luo H, Lu Y, Yin S H, Huang S, Song J L, Chen F Z, Chen F J, Carmalt C J, Parkin I P. J. Mater. Chem. A, 2018, 6(14):5635.

doi: 10.1039/C8TA01096J     URL    
[135]
Sun S M, Wang P, Zhang D. Corros. Sci. Prot. Technol., 2016, 28(1):1.
(孙士美, 王鹏, 张盾. 腐蚀科学与防护技术, 2016, 28(1): 1.)
[136]
Xiao Y M, Sun C X, Liu J K, Xue G L, Dai J J. Plating and Finishing, 2020, 42:7.
(肖亚梅, 孙彩霞, 刘井坤, 薛桂连, 戴景杰. 电镀与精饰, 2020, 42:7.).
[137]
Song T T, Liu Q, Liu J Y, Yang W L, Chen R R, Jing X Y, Takahashi K, Wang J. Appl. Surf. Sci., 2015, 355:495.

doi: 10.1016/j.apsusc.2015.07.140     URL    
[138]
Zhou H, Zhang M X, Li C, Gao C L, Zheng Y M. Small, 2018, 14(27):1801335.

doi: 10.1002/smll.201801335     pmid: 29845753
[139]
Gao X Y, Wen G, Guo Z G. New J. Chem., 2019, 43(42):16656.

doi: 10.1039/C9NJ04429A     URL    
[140]
Xu C L, Song F, Wang X L, Wang Y Z. Chem. Eng. J., 2017, 313:1328.

doi: 10.1016/j.cej.2016.11.024     URL    
[141]
Song F, Wu C Q, Chen H L, Liu Q, Liu J Y, Chen R R, Li R M, Wang J. RSC Adv., 2017, 7(70):44239.

doi: 10.1039/C7RA04816E     URL    
[142]
Jiang D, Xia X C, Hou J, Cai G Y, Zhang X X, Dong Z H. Chem. Eng. J., 2019, 373:285.

doi: 10.1016/j.cej.2019.05.046    
[143]
Su J Y. Master Dissertation of Northwest University, 2019.
(苏瑾瑜. 西北大学硕士论文, 2019.).
[144]
Zhang N. Master Dissertation of Chinese Academy of Sciences University, 2019.
中国科学院大学硕士论文 2019.)
[145]
Zhang J P, Yu B, Wei Q Y, Li B C, Li L X, Yang Y F. J. Colloid Interface Sci., 2019, 554:250.

doi: 10.1016/j.jcis.2019.06.106     URL    
[146]
Hosseini A, Villegas M, Yang J, Badv M, Weitz J I, Soleymani L, Didar T F. Adv. Mater. Interfaces, 2018, 5(18):1800617.

doi: 10.1002/admi.201800617     URL    
[147]
Shi Z Q, Xiao Y M, Qiu R, Niu S Y, Wang P. Surf. Coat. Technol., 2017, 330:102.

doi: 10.1016/j.surfcoat.2017.09.053     URL    
[148]
Qiu R, Zhang Q, Wang P, Jiang L N, Hou J, Guo W M, Zhang H X. Colloids Surfaces A: Physicochem. Eng. Aspects, 2014, 453:132.

doi: 10.1016/j.colsurfa.2014.04.035     URL    
[149]
Zhang S H. Master Dissertation of Nanchang University, 2019.
(张思鸿. 南昌大学硕士论文, 2019.).
[150]
Chen J H. Master Dissertation of Shandong University, 2019.
(陈靖桦. 山东大学硕士论文, 2019.).
[151]
Lee C, Kim A, Kim J. Surf. Coat. Tech., 2015, 264:127.

doi: 10.1016/j.surfcoat.2015.01.004     URL    
[152]
Luo H, Yin S H, Huang S, Chen F J, Tang Q C, Li X J. Appl. Surf. Sci., 2019, 470:1139.

doi: 10.1016/j.apsusc.2018.10.174    
[153]
Sun J, Wang C, Song J L, Huang L, Sun Y K, Liu Z A, Zhao C L, Li Y X. J. Mater. Sci., 2018, 53(23):16099.

doi: 10.1007/s10853-018-2760-z     URL    
[154]
Zhang J L. Master Dissertation of Shandong Jianzhu University, 2019.
(张金龙. 山东建筑大学硕士论文, 2019.).
[155]
Zhang F D. Master Dissertation of Dalian University of Technology, 2014.
(张方东. 大连理工大学学位论文, 2014.).
[156]
Wang N, Yuan Y H, Wu Y W, Hang T, Li M. Langmuir, 2015, 31(39):10807.

doi: 10.1021/acs.langmuir.5b02535     URL    
[157]
Ouyang Y B, Zhao J, Qiu R, Hu S G, Chen M, Wang P. Surf. Coat. Technol., 2019, 367:148.

doi: 10.1016/j.surfcoat.2019.03.067     URL    
[158]
Qiu Z H, Qiu R, Xiao Y M, Zheng J Y, Lin C G. Appl. Surf. Sci., 2018, 457:468.

doi: 10.1016/j.apsusc.2018.06.139     URL    
[159]
Zhang J Q. Master Dissertation of Harbin Institute of Technology, 2019.
(张建清. 哈尔滨工业大学硕士论文, 2019.).
[160]
Ai S H. Master Dissertation of Dalian University of Technology, 2019.
(艾少华. 大连理工大学硕士论文, 2019.).
[161]
Sun Y H, Guo Z G. Chem. Eng. J, 2020,381.
[162]
Geraldi N R, Guan J H, Dodd L E, Maiello P, Xu B B, Wood D, Newton M I, Wells G G, McHale G. Sci. Rep., 2019, 9:13280.

doi: 10.1038/s41598-019-49887-3     URL    
[163]
Zhang M L, Chen R R, Liu Q, Liu J Y, Yu J, Song D L, Liu P L, Gao L T, Wang J. ChemElectroChem, 2019, 6(15):3911.

doi: 10.1002/celc.v6.15     URL    
[164]
Huang J. Master Dissertation of Beijing University of Technology, 2018.
(黄杰. 北京工业大学硕士论文, 2018.).
[165]
Li D W. Doctoral Dissertation of Jilin University, 2019.
(李大伟. 吉林大学博士论文, 2019.).
[166]
Phan N, Moronuki N. J. Adv. Mech. Des. Syst. Manuf., 2017, 11(2):JAMDSM0013.

doi: 10.1299/jamdsm.2017jamdsm0013     URL    
[167]
Wang G Y, Shen Y Z, Tao J, Luo X Y, Zhang L Q, Xia Y P. RSC Adv., 2017, 7(16):9981.

doi: 10.1039/C6RA28298A     URL    
[168]
Barthwal S, Lee B, Lim S H. Appl. Surf. Sci., 2019, 496:143677.

doi: 10.1016/j.apsusc.2019.143677     URL    
[169]
Li J, Guo Z G. Research, 2019,2019: 1.
[170]
Nguyen T B, Park S, Jung Y, Lim H. J. Ind. Eng. Chem., 2019, 69:99.

doi: 10.1016/j.jiec.2018.09.003     URL    
[171]
Zhang M L, Liu Q, Chen R R, Chen H L, Song D L, Liu J Y, Zhang H S, Li R M, Wang Y L, Wang J. J Alloy Compd., 2018, 764:730.

doi: 10.1016/j.jallcom.2018.06.029     URL    
[172]
Li X. Master Dissertation of Changchun University of Science and Technology, 2019.
(李旭. 长春理工大学硕士论文, 2019.).
[173]
Zhang S L. Master Dissertation of Shanghai Jiao Tong University, 2014.
(张沈莉. 上海交通大学硕士论文, 2014.).
[174]
Amadei C A, Lai C Y, Heskes D, Chiesa M. J. Chem. Phys., 2014, 141(8):084709.

doi: 10.1063/1.4893711     URL    
[175]
Dou R M, Chen J, Zhang Y F, Wang X P, Cui D P, Song Y L, Jiang L, Wang J J. ACS Appl. Mater. Interfaces, 2014, 6(10):6998.

doi: 10.1021/am501252u     URL    
[176]
Howell C, Vu T L, Lin J J, Kolle S, Juthani N, Watson E, Weaver J C, Alvarenga J, Aizenberg J. ACS Appl. Mater. Interfaces, 2014, 6(15):13299.

doi: 10.1021/am503150y     URL    
[177]
Bixler G D, Theiss A, Bhushan B, Lee S C. J. Colloid Interface Sci., 2014, 419:114.

doi: 10.1016/j.jcis.2013.12.019     URL    
[178]
Wei Q, Schlaich C, Prévost S, Schulz A, Böttcher C, Gradzielski M, Qi Z H, Haag R, Schalley C A. Adv. Mater., 2014, 26(43):7358.

doi: 10.1002/adma.v26.43     URL    
[179]
Lu Z. Master Dissertation of Chinese Academy of Sciences University, 2015.
(陆洲. 中国科学院大学硕士论文, 2015.).
[180]
He W Q, Liu P, Zhang J Q, Yao X. Chem. Eur. J., 2018, 24(56):14864.

doi: 10.1002/chem.v24.56     URL    
[181]
Villegas M, Zhang Y X, Abu Jarad N, Soleymani L, Didar T F. ACS Nano, 2019, 13(8):8517.

doi: 10.1021/acsnano.9b04129     pmid: 31373794
[182]
Wang X Q, Gu C D, Wang L Y, Zhang J L, Tu J P. Chem. Eng. J., 2018, 343:561.

doi: 10.1016/j.cej.2018.03.045     URL    
[183]
Goodband S J, Armstrong S, Kusumaatmaja H, Voı¨tchovsky K. Langmuir, 2020, 36(13):3461.

doi: 10.1021/acs.langmuir.0c00059     pmid: 32164408
[184]
Zhang M L, Chen R R, Liu Q, Liu J Y, Yu J, Song D L, Liu P L, Gao L T, Wang J. ChemElectroChem, 2019, 6(15):3840.

doi: 10.1002/celc.v6.15     URL    
[185]
Xiang T F, Zhang M, Sadig H R, Li Z C, Zhang M X, Dong C D, Yang L, Chan W M, Li C. Chem. Eng. J., 2018, 345:147.

doi: 10.1016/j.cej.2018.03.137     URL    
[186]
Wang N, Xiong D S, Pan S, Wang K, Shi Y, Deng Y L. New J. Chem., 2017, 41(4):1846.

doi: 10.1039/C6NJ02824A     URL    
[187]
Latthe S S, Sutar R S, Bhosale A K, Nagappan S, Ha C, Sadasivuni K K, Liu S H, Xing R M. Prog. Org. Coat., 2019..
[188]
Heale F L, Parkin I P, Carmalt C J. ACS Appl. Mater. Interfaces, 2019, 11(44):41804.

doi: 10.1021/acsami.9b14160     URL    
[189]
Kim P, Wong T S, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano, 2012, 6(8):6569.

doi: 10.1021/nn302310q     URL    
[190]
Juuti P, Haapanen J, Stenroos C, Niemelä-Anttonen H, Harra J, Koivuluoto H, Teisala H, Lahti J, Tuominen M, Kuusipalo J, Vuoristo P, Mäkelä J M. Appl. Phys. Lett., 2017, 110(16):161603.

doi: 10.1063/1.4981905     URL    
[191]
Zhang J L, Gu C D, Yan W, Tu J P, Ding X D. Surf. Coat. Technol., 2018, 344:702.

doi: 10.1016/j.surfcoat.2018.04.004     URL    
[192]
Lian Z X, Xu J K, Wang Z B, Yu H D. J. Bionic Eng., 2020, 17(1):1.

doi: 10.1007/s42235-020-0002-y     URL    
[193]
Inoue T, Koyama A, Kowalski D, Zhu C Y, Aoki Y, Habazaki H. Phys. Status Solidi A, 2020, 217(13):2070042.

doi: 10.1002/pssa.v217.13     URL    
[194]
Ouyang Y B, Zhao J, Qiu R, Hu S G, Niu H L, Zhang Y, Chen M. Surf. Coat. Technol., 2020, 381:125143.

doi: 10.1016/j.surfcoat.2019.125143     URL    
[195]
Basu S, Hanh B M, Isaiah Chua J Q, Daniel D, Ismail M H, Marchioro M, Amini S, Rice S A, Miserez A. J. Colloid Interface Sci., 2020, 568:185.

doi: 10.1016/j.jcis.2020.02.049     URL    
[196]
Bus T, Dale M L, Reynolds K J, Bastiaansen C W M. Biofouling, 2020, 36(2):138.

doi: 10.1080/08927014.2020.1734576     URL    
[197]
Yin J L, Mei M L, Li Q L, Xia R, Zhang Z H, Chu C H. Sci. Rep., 2016, 6:25924.

doi: 10.1038/srep25924     URL    
[198]
Charpentier T V J, Neville A, Baudin S, Smith M J, Euvrard M, Bell A, Wang C, Barker R. J. Colloid Interface Sci., 2015, 444:81.

doi: 10.1016/j.jcis.2014.12.043     URL    
[199]
Xue Z X, Lei J. Acta Polym. Sin., 2012, 12(10):1091.

doi: 10.3724/SP.J.1105.2012.12101     URL    
[200]
Ouyang Y B, Zhao J, Qiu R, Shi Z Q, Hu S G, Zhang Y, Chen M, Wang P. Prog. Org. Coat., 2019, 136:105216.
[201]
Ouyang Y B, Zhao J, Qiu R, Hu S G, Niu H L, Chen M, Wang P. Colloids Surfaces A: Physicochem. Eng. Aspects, 2019, 583:124006.

doi: 10.1016/j.colsurfa.2019.124006     URL    
[202]
He X Y, Tian F, Bai X Q, Yuan C Q. Colloids Surfaces B: Biointerfaces, 2019, 184:110502.

doi: 10.1016/j.colsurfb.2019.110502     URL    
[203]
Doll K, Yang I, Fadeeva E, Kommerein N, Szafrański S P, Bei der Wieden G B, Greuling A, Winkel A, Chichkov B N, Stumpp N S, Stiesch M. ACS Appl. Mater. Interfaces, 2019, 11(26):23026.

doi: 10.1021/acsami.9b06817     URL    
[204]
Lee J, Jiang Y H, Hizal F, Ban G H, Jun S, Choi C H. J. Colloid Interface Sci., 2019, 553:734.

doi: 10.1016/j.jcis.2019.06.068     URL    
[205]
Kharraz J A, Farid M U, Khanzada N K, Deka B J, Arafat H A, An A K. Water Res., 2020, 174:115600.

doi: S0043-1354(20)30136-6     pmid: 32088385
[206]
Yu C M, Sasic S, Liu K, Salameh S, van Ommen J R. Chem. Eng. Res. Des., 2020, 155:48.

doi: 10.1016/j.cherd.2019.11.038     URL    
[207]
Ma Q, Wang W, Dong G N. Colloids Surfaces A: Physicochem. Eng. Aspects, 2019, 577:17.

doi: 10.1016/j.colsurfa.2019.05.008     URL    
[208]
Liu M M, Hou Y Y, Li J, Tie L, Guo Z G. Chem. Eng. J., 2018, 337:462.

doi: 10.1016/j.cej.2017.12.118     URL    
[209]
Gulfam R, Orejon D, Choi C H, Zhang P. ACS Appl. Mater. Interfaces, 2020, 12(30):34306.

doi: 10.1021/acsami.0c06441     URL    
[210]
Chen X S, Wen G, Guo Z G. Mater. Horiz., 2020, 7(7):1697.

doi: 10.1039/D0MH00088D     URL    
[1] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[2] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[3] 韦存茜, 严杰, 唐浩, 张庆华, 詹晓力, 陈丰秋. 灌注液体型光滑多孔表面制备及应用[J]. 化学进展, 2016, 28(1): 9-17.
[4] 樊希安,官建国,王维,王一龙,童国秀,牟方志. 一维铁磁金属纳米材料的制备、结构调控及其磁性能*[J]. 化学进展, 2009, 21(01): 143-151.
[5] 王文寿,甄良,徐成彦,邵文柱. 液相法合成空心无机微纳米结构的研究[J]. 化学进展, 2008, 20(05): 679-689.
[6] 谢允斌 黄美荣 李新贵 . 多功能性聚吡咯复合膜[J]. 化学进展, 2006, 18(12): 1677-1683.
[7] 徐建海,李梅,赵燕,路庆华. 具有微纳米结构超疏水表面润湿性的研究*[J]. 化学进展, 2006, 18(11): 1425-1433.