English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 975-987 DOI: 10.7536/PC201114 前一篇   后一篇

• 综述 •

微结构化弹性体介电层的制备方法与应用

廖金花1,2, 高佳俊1,2, 王宇超1,2, 孙巍1,2,*()   

  1. 1 宁波大学 材料化学与工程学院 材料科学与工程系
    2 宁波大学 宁波市特种高分子材料制备与应用技术重点实验室 宁波 315211
  • 收稿日期:2020-11-09 修回日期:2021-01-19 出版日期:2021-06-20 发布日期:2021-03-04
  • 通讯作者: 孙巍
  • 基金资助:
    浙江省教育厅一般科研项目(Y202043655); 宁波市自然科学(2018A610113); 宁波市自然科学(2019A610187); 宁波大学王宽诚幸福基金

Preparation and Application of Micro-Structured Elastomer Dielectric Layer

Jinhua Liao1,2, Jiajun Gao1,2, Yuchao Wang1,2, Wei Sun1,2,*()   

  1. 1 Department of Materials Science and Engineering, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
    2 Key Laboratory of Specialty Polymer Ningbo University,Ningbo 315211, China
  • Received:2020-11-09 Revised:2021-01-19 Online:2021-06-20 Published:2021-03-04
  • Contact: Wei Sun
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    General Research Foundation of Department of Education of Zhejiang Province(Y202043655); Natural Science Foundation of Ningbo(2018A610113); Natural Science Foundation of Ningbo(2019A610187); K.C. Wong Magna Fund in Ningbo University

微结构化弹性体薄膜是指在表面或内部具有多孔或者特殊造型阵列的微纳米尺寸结构的弹性体薄膜,这类薄膜作为功能化介电层在柔性电子器件的制备领域获得了广泛的应用。本文从微结构弹性体介电层的制备和应用两个方面来介绍微结构弹性体介电层的研究进展,首先介绍了可用以制备介电层的弹性体的种类,然后综述了多孔和非多孔阵列两大类微结构弹性体介电层的制备方法(氯化钠模板法、糖模板法、碳酸氢盐类模板法、微球模板法和硅模板法等);并介绍了微结构弹性体介电层在应力应变传感器和纳米发电机上的应用。

Micro-structured elastomer films are elastomer films endowed with pores or patterned arrays of specific structures on the top layer or in the bulk. Such films have been extensively used as dielectric layers for flexible electronics. In this review, both the fabrication techniques and the applications of the micro-structured elastomer dielectric layers are introduced. Different types of elastomers used as dielectric layers are firstly introduced. Fabrication methods of micro-structured elastomer dielectric layers with porous and non-porous arrays are summarized, including sodium chloride template method, sugar template method, bicarbonate template method, microsphere template method and silicon template method. The applications of the micro-structured elastomer dielectric layers in stress-strain sensors and nano-generators are also illustrated.

Contents

1 Introduction

2 Types of elastomer dielectric layers

3 Preparation of micro-structured elastomer dielectric layers

3.1 Porous elastomer dielectric layers

3.2 Elastomer dielectric layers with non-porous arrays

4 Application of micro-structured elastomer dielectric layers

4.1 Sensing applications of micro-structured elastomer dielectric layers

4.2 Applications of micro-structured elastomer dielectric layers in nano-generators

5 Conclusion and outlook

()
图1 盐立方模板法制备多孔弹性体介电层的制作工艺示意图[48]
Fig.1 Schematic illustration of fabrication process of the porous elastomer dielectric layer by using salt cube template method[48].(Copyright 2019, Materials Research Express)
图2 (a) 使用糖模板制作摩擦电海绵(Triboelectric Sponge, TES)的示意图。(b) 由TES制作的纳米发电机的模型图。(c) 使用不同类型的糖颗粒作为PDMS海绵的模板。标尺为200 μm。(d) 三种TES的扫描电子显微镜(SEM)图,标尺为500 μm [53]
Fig.2 (a) Schematic illustration of the fabrication procedure of the porous PDMS sponge using sugar particles. (b) Conceptual model of the triboelectric sponge(TES) with an embedded generator. (c) Various types of sugar particles were used as templates for the PDMS sponge films. All of the scale bars(black) shown in the figures are 200 μm. (d) Morphologies of three types of TESs using scanning electron microscope. All of the scale bars(white) shown in the figures are 500 μm [53].(Copyright 2016, Wiley Online Library)
图3 微结构PDMS薄膜的制备及电容式压力传感器的制作过程。(a)一步法制备微结构PDMS薄膜的示意图。(b)大面积微结构PDMS薄膜的照片(内插图为微结构PDMS胶片的横截面照片)。(c) 使用镊子夹持微结构PDMS薄膜,不施加(上图)和施加(下图)压力作用下薄膜的横截面照片[56]
Fig.3 Fabrication of the micro-structured PDMS film and the capacitive pressure sensors.(a) Schematic illustration of one-step processing of the micro-structured PDMS film based on a mixture of PDMS prepolymer and its curing agent with ammonium bicarbonate(NH4HCO3) and its seamless integration into the process flow for fabricating a flexible capacitive sensor.(b) The photo image of the fabricated large area micro-structured PDMS film(the inset shows the cross-sectional photo image of the micro-structured PDMS film).(c) The cross-sectional photo images of the micro-structured PDMS film clipped by a tweezer without pressure(upper) and with pressure(bottom)[56].(Copyright 2016, American Chemical Society)
图4 (a) STNG的结构和制备过程。(b) 海绵结构薄膜的FE-SEM图[59]
Fig.4 Schematic illustration of the STNG.(a) Structure and fabrication process of the STNG.(b) FE-SEM images of the sponge-structured film[59].(Copyright 2016, Wiley Online Library)
图5 VEC法制备PDMS双介电层的示意图。(i) PDMS预聚体和固化剂的旋涂,(ii) 在高压釜中用去离子水密封样品,(iii) 通过加热高压釜产生水蒸气。放大图显示:水蒸气渗透到未固化的PDMS薄膜中,(iv) 双介电层的固化过程图[63]
Fig.5 Fabrication process of the double dielectric layer composed of the porous and dense PDMS films via vapor encapsulation casting. (i) Spin-coating of uncured PDMS solution.(ii) Sealing the sample with D.I. water in the autoclave.(iii) Heating the autoclave to produce water vapor. Magnified image shows that water vapor penetrates into the uncured PDMS film.(iv) Curing of the double dielectric layer[63].(Copyright 2019, Elsevier)
图6 触觉传感器的制作原理图。(a) 采用传统的光刻方法在硅片上制备了凹槽金字塔阵列结构。(b) PDMS预聚体浇注在硅模板上。(c) PDMS膜固化后从硅模板上剥离。(d) 具有金字塔图案阵列的PDMS薄膜的SEM图[66]
Fig.6 Schematic illustration of the tactile sensor device fabrication. (a) Si masters with recessed pyramid microstructures are fabricated by conventional lithography methods. (b) PDMS precursor is cast on the Si masters. (c) Freestanding PDMS films with microstructures are cured and peeled off from Si masters. (d) SEM image of PDMS with uniform pyramid pattern arrays[66]. (Copyright 2014, Wiley Online Library)
图7 (a) 纸基电容式压力传感器的制作流程图。(b) 压力传感器的制作照片。(c) 施加压力时压力传感器的示意图[72]
Fig.7 (a) Schematic process for the fabrication of the paper-based capacitive pressure sensor. (b) Photograph of the fabricated pressure sensor. (c) Schematic depiction of the pressure sensor under applied pressure[72]. (Copyright 2010, Wiley Online Library)
表1 各类模板法的优缺点及代表性微结构化弹性体形貌
Table 1 Advantages and disadvantages of different template methods and representative morphologies of the micro-structured elastomers
图8 PDMS/CNT复合压力传感器对于多种机械刺激的检测。(a) 在2 kPa压力的周期性作用下,电容和电阻随时间的变化曲线。(b) 电容和电阻随不同弯曲角度(0 ~ 65°)的变化曲线。(c) 弯曲角度在0 ~ 65°时,电容和电阻随时间的变化。(d) 电容和电阻随横向应变的变化曲线。(e) 在重复应变为15% 时,电容和电阻随时间的变化曲线。(f) 在敲击吉他弦的声音振动下,电容和电阻随时间的变化曲线。(a~e) 电容变化、上电极电阻变化和下电极电阻变化分别用蓝色圆圈、黑色方块和红色三角形表示[13]
Fig.8 Detection of various mechanical stimuli. (a) Capacitance and film resistances as a function of time under repeated normal pressure of 2 kPa. (b) Capacitance and film resistances as a function of bending angle from 0 to 65°. (c) Capacitance and film resistances as a function of time at incrementally increasing and decreasing bending angle from 0 to 65°. (d) Capacitance and film resistances as a function of percent strained laterally and (e) as a function of time at repeated strain of 15%. (f) Capacitance as a function of time under sound vibration due to hitting a guitar string. (a~e) Change in capacitance, change in top electrode resistance, and change in bottom electrode resistance are represented as blue circles, black diamonds, and red triangles, respectively[13].(Copyright 2014, Wiley Online Library)
图9 LI-TENGs的电输出特性:(a)开路电压。(b)LI-TENGs在0 ~ 132 mW激光功率范围内的短路电流。(c)负载电阻(RL)与LI-TENG(29 mW)输出电压和电流的相关性。(d)TENG和LI-TENG(29 mW)的开路电压随外界压力的变化[83]
Fig.9 Electrical output characteristics of the fabricated LI-TENGs:(a) open-circuit voltage,(b) short-circuit current of the fabricated LI-TENGs with laser power levels ranging from 0 to 132 mW.(c) RL dependency of the output voltage and current of the LI-TENG(29 mW).(d) Open-circuit voltage of the bare TENG and the LI-TENG(29 mW) according to the external force[83].(Copyright 2017, Elsevier)
[1]
Pang Y, Zhang K, Yang Z, Jiang S, Ju Z, Li Y, Wang X, Wang D, Jian M, Zhang Y, Liang R, Tian H, Yang Y, Ren T L. ACS Nano., 2018, 12:2346.

doi: 10.1021/acsnano.7b07613     pmid: 29378401
[2]
Wang J, Jiu J, Nogi M, Sugahara T, Nagao S, Koga H, He P, Suganuma K. Nanoscale., 2015, 7:2926.

doi: 10.1039/c4nr06494a     pmid: 25588044
[3]
Qian X, Cai Z, Su M, Li F, Fang W, Li Y, Zhou X, Li Q, Feng X, Li W, Hu X, Wang X, Pan C, Song Y. Adv. Mater., 2018, 30:1800291.

doi: 10.1002/adma.v30.25     URL    
[4]
Nie B, Li X, Shao J, Li X, Tian H, Wang D, Zhang Q, Lu B. ACS Appl. Mater. Interfaces., 2017, 9:40681.

doi: 10.1021/acsami.7b12987     URL    
[5]
Li L, Bai Y, Li L, Wang S, Zhang T. Adv. Mater., 2017, 29:1702517.

doi: 10.1002/adma.201702517     URL    
[6]
Wang Z, Huang Y, Sun J, Huang Y, Hu H, Jiang R, Gai W, Li G, Zhi C. ACS Appl. Mater. Interfaces., 2016, 8:24837.

doi: 10.1021/acsami.6b08207     URL    
[7]
Song X, Sun T, Yang J, Yu L, Wei D, Fang L, Lu B, Du C, Wei D. ACS Appl. Mater. Interfaces., 2016, 8:16869.

doi: 10.1021/acsami.6b04526     URL    
[8]
Tee B C K, Chortos A, Berndt A, Nguyen A K, Tom A, McGuire A, Lin Z C, Tien K, Bae W G, Wang H, Mei P, Chou H H, Cui B, Deisseroth K, Ng T N, Bao Z. Science., 2015, 350:313.

doi: 10.1126/science.aaa9306     URL    
[9]
C Wang, D Hwang, Z Yu, K Takei, J Park, T Chen, B Ma, A Javey. Nat. Mater., 2013, 12:899.

doi: 10.1038/nmat3711     URL    
[10]
Khan Y, Ostfeld A E, Lochner C M, Pierre A, Arias A C. Adv. Mater., 2016, 28:4373.

doi: 10.1002/adma.v28.22     URL    
[11]
Nyein H Y Y, Gao W, Shahpar Z, Emaminejad S, Challa S, Chen K, Fahad H M, Tai L C, Ota H, Davis R W, Javey A. ACS Nano., 2016, 10:7216.

doi: 10.1021/acsnano.6b04005     pmid: 27380446
[12]
Tran Quang T, Lee N E. Adv. Mater., 2016, 28:4338.

doi: 10.1002/adma.v28.22     URL    
[13]
Park S, Kim H J, Vosgueritchian M, Cheon S, Kim H, Koo J H, Kim T R, Lee S, Schwartz G, Chang H, Bao Z. Adv. Mater., 2014, 26:7324.

doi: 10.1002/adma.v26.43     URL    
[14]
Fan F R, Lin L, Zhu G, Wu W, Zhang R, Wang Z L. Nano. Lett., 2012, 12:3109.

doi: 10.1021/nl300988z     URL    
[15]
Chen C, Wu X, Liu D X, Feng W, Wang C. Mob. Inf. Syst., 2017,2017:11.
[16]
Li W, Jin X, Zheng Y, Chang X, Wang W, Lin T, Zheng F, Onyilagha O, Zhu Z. J Mater. Chem. C., 2020, 8:11468.

doi: 10.1039/D0TC00443J     URL    
[17]
Tao J, Dong M, Li L, Wang C, Li J, Liu Y, Bao R, Pan C. Microsyst. Nanoeng., 2020, 6:62.

doi: 10.1038/s41378-020-0171-1     URL    
[18]
Yu G, Hu J, Tan J, Gao Y, Lu Y, Xuan F. Nanotechnology., 2018, 29:115502.

doi: 10.1088/1361-6528/aaa855     URL    
[19]
Jia J, Huang G, Deng J, Pan K. Nanoscale., 2019, 11:4258.

doi: 10.1039/C8NR08503J     URL    
[20]
马龙全( Ma L Q). 深圳大学硕士论文( Master Dissertation of Shenzhen University), 2019.
[21]
Ruth S R A, Feig V R, Tran H, Bao Z. Adv. Funct. Mater., 2020, 30:2003491.

doi: 10.1002/adfm.v30.39     URL    
[22]
Chen J, Guo H, He X, Liu G, Xi Y, Shi H, Hu C. ACS Appl. Mater. Interfaces., 2016, 8:736.

doi: 10.1021/acsami.5b09907     URL    
[23]
Chun J, Kim J W, Jung W S, Kang C Y, Kim S W, Wang Z L, Baik J M. Energy. Environ. Sci., 2015, 8:3006.

doi: 10.1039/C5EE01705J     URL    
[24]
Mannsfeld S C, Tee B C, Stoltenberg R M, Chen C V, Barman S, Muir B V, Sokolov A N, Reese C, Bao Z N. Nat. Mater., 2010, 9:859.

doi: 10.1038/nmat2834     pmid: 20835231
[25]
Van Long T, Chung C K. Small., 2017, 13.1700373.

doi: 10.1002/smll.v13.29     URL    
[26]
Pang C, Koo J H, Amanda N, Caves J M, Kim M G, Chortos A, Kim K, Wang P J, Tok J B H. Bao Z. Adv. Mater., 2015, 27:634.

doi: 10.1002/adma.201403807     URL    
[27]
Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H. ACS Nano., 2014, 8:4689.

doi: 10.1021/nn500441k     URL    
[28]
Yang G, Cong L, Yu G, Jin S, Tan J, Xuan F. Nanotechnology., 2019, 30:325502.

doi: 10.1088/1361-6528/ab1a86     pmid: 30995625
[29]
Peng S, Blanloeuil P, Wu S, Wang C H. Adv. Mater. Interfaces., 2018, 5:1800403.

doi: 10.1002/admi.v5.18     URL    
[30]
Wang X, Gu Y, Xiong Z, Cui Z, Zhang T. Adv. Mater., 2014, 26:1336.

doi: 10.1002/adma.201304248     URL    
[31]
Li T, Luo H, Qin L, Wang X, Xiong Z, Ding H, Gu Y, Liu Z, Zhang T. Small., 2016, 12:5042.

doi: 10.1002/smll.201600760     URL    
[32]
Wei Y, Chen S, Lin Y, Yang Z, Liu L. J Mater. Chem. C., 2015, 3:9594.

doi: 10.1039/C5TC01723H     URL    
[33]
赵玉( Zhao Y). 北京科技大学博士论文(Doctoral Dissertation of University of Science and Technology Beijing), 2019.
[34]
Lee J, Kwon H, Seo J, Shin S, Koo J H, Pang C, Son S, Kim J H, Jang Y H, Kim D E, Lee T. Adv. Mater., 2015, 27:2433.

doi: 10.1002/adma.201500009     URL    
[35]
Biggs J, Danielmeier K, Hitzbleck J, Krause J, Kridl T, Nowak S, Orselli E, Quan X, Schapeler D, Sutherland W, Wagner J. Angew. Chem. Int. Ed., 2013, 52:9409.

doi: 10.1002/anie.v52.36     URL    
[36]
Reese C, Chung W J, Ling M m, Roberts M, Bao Z. Appl. Phys. Lett., 2006, 89:1302.
[37]
Hu W, Niu X, Zhao R, Pei Q. Appl. Phys. Lett., 2013, 102:083303.

doi: 10.1063/1.4794143     URL    
[38]
Wongtimnoi K, Guiffard B, Bogner Van de Moortele A, Seveyrat L, Gauthier C, Cavaille J Y. Compos. Sci. And. Technol., 2011, 71:885.

doi: 10.1016/j.compscitech.2011.02.003     URL    
[39]
Hu W, Zhang S N, Niu X, Liu C, Pei Q, J.Mater. Chem. C., 2014, 2:1658.
[40]
Ryabchun A, Kollosche M, Wegener M, Sakhno O. Adv Mater., 2016, 28:10217.

doi: 10.1002/adma.201602881     URL    
[41]
Kim Y, Jang S, Oh J H. Microelectron. Eng., 2019, 215:18908.
[42]
Thouti E, Nagaraju A, Chandran A, Prakash P V B S S, Shivanarayanamurthy P, Lal B, Kumar P, Kothari P, Panwar D. Sensor Actuat. A: Phys., 2020, 314:112251.

doi: 10.1016/j.sna.2020.112251     URL    
[43]
Yoon J I, Choi K S, Chang S P. Microelectron. Eng., 2017, 179:60.

doi: 10.1016/j.mee.2017.04.028     URL    
[44]
Wang J, Suzuki R, Shao M, Gillot F, Shiratori S. ACS Appl. Mater. Interfaces., 2019, 11:11928.

doi: 10.1021/acsami.9b00941     URL    
[45]
杜青( Du Q). 太原理工大学硕士论文( Master Dissertation of Taiyuan University of Technology), 2018.
[46]
Li W, Jin X, Zheng Y, Chang X D, Wang W Y, Lin T, Fan Zheng, Obiora T, Zhu Z T.. J. Mater. Chem. C, 2020, 8:11468.

doi: 10.1039/D0TC00443J     URL    
[47]
Wen Z, Yang J, Ding H, Zhang W, Wu D, Xu J, Shi Z, Xu T, Tian Y T, Li X. J Mater. Sci. Mater. Electron., 2018, 29:20978.

doi: 10.1007/s10854-018-0242-3     URL    
[48]
Ding H, Wen Z, Qin E, Yang Y, Zhang W, Yan B, Wu D, Shi Z, Tian Y T, Li X. Mater. Res. Express., 2019, 6:106546.

doi: 10.1088/2053-1591/ab3885     URL    
[49]
Kim S, Amjadi M, Lee T I, Jeong Y, Kwon D, Kim M S, Kim K, Kim T S, Oh Y S, Park I. ACS Appl. Mater. Interfaces., 2019, 11:23639.

doi: 10.1021/acsami.9b07636     URL    
[50]
Han M, Lee J, Kim J K, An H K, Kang S W, Jung D. Sensor. Actuat. A. Phys., 2020, 305:11941.
[51]
Zhao T, Li T, Chen L, Yuan L, Li X. Zhang J. ACS Appl. Mater. Interfaces., 2019, 11:29466.

doi: 10.1021/acsami.9b09265     URL    
[52]
Kwon D, Lee T I, Shim J, Ryu S, Kim M S, Kim S, Kim T S, Park I. ACS Appl. Mater. Interfaces., 2016, 8:16922.

doi: 10.1021/acsami.6b04225     URL    
[53]
Kim D, Park S J, Jeon S B, Seol M L, Choi Y K. Adv. Electr. Mater., 2016, 2:1500331.
[54]
Xia X, Chen J, Guo H, Liu G, Wei D, Xi Y, Wang X, Hu C. Nano. Res., 2016, 10:320.

doi: 10.1007/s12274-016-1294-4     URL    
[55]
Liu S Y, Lu J G, Shieh H P D. IEEE. Sens. J., 2018, 18:1870.

doi: 10.1109/JSEN.2017.2789242     URL    
[56]
Chen S J, Zhuo B G, Guo X J. ACS Appl. Mater. Interfaces, 2016, 8:20364.

doi: 10.1021/acsami.6b05177     URL    
[57]
Kou H, Zhang L, Tan Q L, Liu G, Dong H, Zhang W, Xiong J. Sci. Rep., 2019, 9:3916.

doi: 10.1038/s41598-019-40828-8     URL    
[58]
陈瞳( Chen T), 王瑞荣( Wang R R), 李晓红( Li X H). 传感技术学报( Journal of Sensing Technology), 2019, 32(04):528.
[59]
Lee K Y, Chun J, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W. Adv Mater., 2014, 26:5037.

doi: 10.1002/adma.201401184     URL    
[60]
He X, Mu X, Wen Q, Wen Z, Yang J, Hu C G, Shi H. Nano. Res., 2016, 9:3714.

doi: 10.1007/s12274-016-1242-3     URL    
[61]
李玲( Li L), 岳凤英( Yue F Y), 乔霖( Qiao L), 申恒瑞( Shen H R), 索艳春( Suo Y C) 仪表技术与传感器( Instrumentation technology and sensors), 2019, 000(04):15.
[62]
Lee B Y, Kim J, Kim H, Kim C, Lee S D. Sensor. Actuat. A. Phys., 2016, 240:103.

doi: 10.1016/j.sna.2016.01.037     URL    
[63]
Xu H B, Kim J H, Kim S, Hwang H J, Maurya D, Choi D, Kang C Y, Song H C. Nano. Energy., 2019, 62:144.

doi: 10.1016/j.nanoen.2019.04.097     URL    
[64]
Bijender, Kumar A. ACS Omega., 2020, 5:16944.

doi: 10.1021/acsomega.0c02278     pmid: 32685864
[65]
Lee J H, Yoon H J, Kim T Y, Gupta M K, Lee J H, Seung W, Ryu H, Kim S W. Adv. Funct. Mater., 2015, 25:3203.

doi: 10.1002/adfm.v25.21     URL    
[66]
Zhu B, Niu Z, Wang H, Leow W R, Wang H, Li Y, Zheng L, Wei J, Huo F, Chen X D. Small., 2014, 10:3625.

doi: 10.1002/smll.v10.18     URL    
[67]
Choi W, Lee J, Kyoung Yoo Y, Kang S, Kim J, Hoon Lee J. Appl. Phys. Lett., 2014, 104:123701.

doi: 10.1063/1.4869816     URL    
[68]
Lee J J, Gandla S, Lim B, Kang S, Kim S Y, Lee S J, Kim S K. NPG. Asia. Mater., 2020, 12:65.

doi: 10.1038/s41427-020-00238-z     URL    
[69]
Gang L, Chen D, Cheng L, Liu W, Liu H. Adv. Sci., 2020, 7:2000154.

doi: 10.1002/advs.v7.18     URL    
[70]
Yang J C, Kim J O, Oh J, Kwon S Y, Sim J Y, Kim D W, Choi H B, Park S. ACS Appl. Mater. Interfaces., 2019, 11:19472.

doi: 10.1021/acsami.9b03261     URL    
[71]
Wang X L, Xia Z, Zhao C, Huangb P, Zhao S f, Gao M, Nie J k. Sensors and Actuators A Physical., 2020, 312:112147.

doi: 10.1016/j.sna.2020.112147     URL    
[72]
Lee K, Lee J, Kim G, Kim Y, Kang S, Cho S, Kim S, Kim J K, Lee W, Kim D E, Kang S, Kim D, Lee T, Shim W Y. Small., 2017, 13:1700368.

doi: 10.1002/smll.v13.43     URL    
[73]
Zhuo B, Chen S, Zhao M, Guo X J. IEEE. J. Electron. Device. Soc., 2017, 5:219.

doi: 10.1109/JEDS.2017.2683558     URL    
[74]
Vandeparre H, Watson D, Lacour S P. Appl. Phys. Lett., 2013, 103:204103.

doi: 10.1063/1.4832416     URL    
[75]
Li Q, Li J, Tran D, Luo C, Gao Y, Yu C, Xuan F. J. Mater Chem. C., 2017, 5:11092.

doi: 10.1039/C7TC03434B     URL    
[76]
Chhetry A, Sharma S, Yoon H, Ko S, Park J Y. Adv Funct Mater., 2020, 30,1910020.

doi: 10.1002/adfm.v30.31     URL    
[77]
Tee B C K, Chortos A, Dunn R R, Schwartz G, Eason E, Bao Z N. Adv. Funct. Mater., 2014, 24(34):5427.

doi: 10.1002/adfm.201400712     URL    
[78]
Deng W J, Wang L F, Dong L, Huang Q A. IEEE. Sens. J., 2018, 18:4886.

doi: 10.1109/JSEN.2018.2831229     URL    
[79]
Shi R, Lou Z, Chen S, Shen G Z. Sci. China. Mater., 2018, 61:1587.

doi: 10.1007/s40843-018-9267-3     URL    
[80]
Teng F R, Ren Q, Lai T C, Liu C, Li A D. J. Phys. D: Appl Phys., 2020, 53:505402.

doi: 10.1088/1361-6463/abb1e5     URL    
[81]
Biutty M N, Koo J M, Zakia M, Handayani P L, Choi U H, Yoo S I. RSC Adv., 2020, 10:21309.

doi: 10.1039/D0RA03522J     URL    
[82]
Chen J, Guo H Y, He X. ACS Appl. Mater. Interfaces, 2015, 8:736.

doi: 10.1021/acsami.5b09907     URL    
[83]
Kim D, Tcho I W, Jin I K, Park S J, Jeon S B, Kim W G, Cho H S, Lee H S, Jeoung S C, Choi Y K. Nano Energy. 2017, 35:379.

doi: 10.1016/j.nanoen.2017.04.013     URL    
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[8] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[9] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[10] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[11] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[12] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[13] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[14] 范路洁, 陈莉, 何崟, 刘皓. 基于3D导电材料的柔性应力/应变传感器[J]. 化学进展, 2021, 33(5): 767-778.
[15] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.