English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 942-957 DOI: 10.7536/PC200869 前一篇   后一篇

• 综述 •

反应型次氯酸荧光探针

任春平, 聂雯, 冷俊强, 刘振波*()   

  1. 烟台大学化学化工学院 烟台 264005
  • 收稿日期:2020-08-27 修回日期:2020-09-27 出版日期:2021-06-20 发布日期:2020-12-28
  • 通讯作者: 刘振波
  • 基金资助:
    山东省自然科学(ZR2019QB017); 烟台大学2020年研究生科技创新(YDYB2010)

Reactive Fluorescent Probe for Hypochlorite

Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu*()   

  1. College of Chemistry and Chemical Engineering, Yantai University,Yantai 264005, China
  • Received:2020-08-27 Revised:2020-09-27 Online:2021-06-20 Published:2020-12-28
  • Contact: Zhenbo Liu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2019QB017); Scientific and Technological Innovation Fund for Postgraduates of Yantai University in 2020(YDYB2010)

生物体内的次氯酸是氯离子和过氧化氢(H2O2)由髓过氧化物酶(MPO)催化生成的,是生物体内最重要的活性氧(ROS)之一,在生理过程中发挥了至关重要的作用。但是,过量的次氯酸会导致一系列生理疾病,因此有效的识别和检测次氯酸备受研究者们的青睐。与传统检测方法相比,荧光探针具有选择性好、灵敏度高、可实时监测等诸多优势,因此在近年来得到了快速发展。本文主要基于不同的荧光团,综述了近三年次氯酸荧光探针的研究进展及生物应用。

Hypochlorous acid in organisms is produced from the reaction between chloride ions and hydrogen peroxide(H2O2) catalyzed by myeloperoxidase(MPO). It is one of the most important reactive oxygen species(ROS) in organisms and plays a vital role in physiological processes. However, excessive hypochlorite can lead to a series of physiological diseases, so the effective identification and detection of hypochlorite is favored by researchers. Compared with traditional detection methods, fluorescent probes have many advantages, such as good selectivity, high sensitivity and real-time monitoring, so they have been developed rapidly in recent years. In this paper, based on different fluorophores, the research progress and biological application of hypochlorite fluorescent probes in the last three years are reviewed.

Contents

1 Introduction

2 Hypochlorite fluorescent probes based on different fluorophores

2.1 BODIPY based HClO fluorescent probes

2.2 Fluorescein based HClO fluorescent probes

2.3 Rhodamine based HClO fluorescent probes

2.4 Coumarin based HClO fluorescent probes

2.5 Cyanine based HClO fluorescent probes

2.6 Benzothiazole based HClO fluorescent probes

2.7 Naphthalene dimethylimide based HClO fluorescent probes

2.8 Other HClO fluorescent probe

3 Conclusions and outlook

()
图1 BODIPY的结构
Fig.1 Structure of BODIPY
图2 探针1与HClO反应机理和细胞成像[35]
Fig.2 Reaction mechanism of probe 1 for HClO and cell imaging[35]
图3 探针2与ClO-反应机理[36]
Fig.3 Reaction mechanism of probe 2 for ClO- [36]
图4 探针3与HClO反应机理[37]
Fig.4 Reaction mechanism of probe 3 for HClO[37]
图5 探针4与HClO反应机理[38]
Fig.5 Reaction mechanism of probe 4 for HClO[38]
图6 探针5与HClO反应机理[39]
Fig.6 Reaction mechanism of probe 5 for HClO[39]
图7 探针6、7、8与HClO反应机理[40]
Fig.7 Reaction mechanism of probes 6,7,8 for HClO[40]
图8 探针9与HClO反应机理[41]
Fig.8 Reaction mechanism of probe 9 for HClO[41]
图9 探针10与ClO-反应机理[42]
Fig.9 Reaction mechanism of probe 10 for ClO-[42]
图10 荧光素分子的结构
Fig.10 Structure of fluorescein
图11 探针11与HClO反应机理[43]
Fig.11 Reaction mechanism of probe 11 for HClO[43]
图12 探针12与ClO-反应机理[44]
Fig.12 Reaction mechanism of probe 12 for ClO-[44]
图13 罗丹明B(左)和罗丹明6G(右)的结构
Fig.13 Structure of Rhodamine B(left) and Rhodamine 6G(right)
图14 探针13与HClO反应机理[45]
Fig.14 Reaction mechanism of probe 13 for HClO[45]
图15 探针14与HClO反应机理[46]
Fig.15 Reaction mechanism of probe 14 for HClO[46]
图16 探针15与HClO反应机理[47]
Fig.16 Reaction mechanism of probe 15 for HClO[47]
图17 探针16与HClO反应机理和细胞成像[48]
Fig.17 Reaction mechanism of probe 16 for HClO and cell imaging[48]
图18 探针17与HClO反应机理和细胞成像[49]
Fig.18 Reaction mechanism of probe 17 for HClO and cell imaging[49]
图19 探针18与HClO反应机理[50]
Fig.19 Reaction mechanism of probe 18 for HClO[50]
图20 香豆素的结构
Fig.20 Structure of coumarin
图21 探针19与HClO反应机理[51]
Fig.21 Reaction mechanism of probe 19 for HClO[51]
图22 探针20与HClO/ClO-反应机理[52]
Fig.22 Reaction mechanism of probe 20 for HClO/ClO-[52]
图23 探针21与HClO/ClO-反应机理[53]
Fig.23 Reaction mechanism of probe 21 for HClO/ClO-[53]
图24 探针22与HClO反应机理和细胞成像[54]
Fig.24 Reaction mechanism of probe 22 for HClO and cell imaging[54]
图25 探针23与HClO反应机理[55]
Fig.25 Reaction mechanism of probe 23 for HClO[55]
图26 花菁染料的结构
Fig.26 Structure of cyanine dye
图27 探针24与NaClO反应机理[56]
Fig.27 Reaction mechanism of probe 24 for NaClO[56]
图28 探针25与NaClO反应机理[21]
Fig.28 Reaction mechanism of probe 25 for NaClO[21]
图29 探针26与HClO反应机理[57]
Fig.29 Reaction mechanism of probe 26 for HClO[57]
图30 苯并噻唑的结构
Fig.30 Structure of benzothiazole
图31 探针27与ClO-反应机理[62]
Fig.31 Reaction mechanism of probe 27 for ClO-[62]
图32 探针28与HClO反应机理[63]
Fig.32 Reaction mechanism of probe 28 for HClO[63]
图33 探针29与HClO反应机理[64]
Fig.33 Reaction mechanism of probe 29 for HClO[64]
图34 探针30与HClO/ClO-反应机理[18]
Fig.34 Reaction mechanism of probe 30 for HClO/ClO-[18]
图35 探针31与HClO/ClO-反应机理[65]
Fig.35 Reaction mechanism of probe 31 for HClO/ClO-[65]
图36 萘-1,8-二甲酰亚胺衍生物的结构
Fig.36 Structure of 1,8-naphthalimide derivatives
图37 探针32与HClO 反应机理[66]
Fig.37 Reaction mechanism of probe 32 for HClO[66]
图38 探针33与HClO反应机理和细胞成像[67]
Fig.38 Reaction mechanism of probe 33 for HClO and cell imaging[67]
图39 探针34与HClO 反应机理和斑马鱼成像[68]
Fig.39 Reaction mechanism of probe 34 for HClO and zebrafish imaging[68]
图40 探针35与NaClO反应机理[69]
Fig.40 Reaction mechanism of probe 35 for NaClO[69]
图41 探针36与HClO 反应机理和斑马鱼成像[70]
Fig.41 Reaction mechanism of probe 36 for HClO and zebrafish imaging[70]
图42 探针37与HClO反应机理和细胞成像[71]
Fig.42 Reaction mechanism of probe 37 for HClO and cell imaging[71]
图43 探针38、39与HClO 反应机理[72]
Fig.43 Reaction mechanism of probes 38 and 39 for HClO[72]
图44 探针40与HClO反应机理和斑马鱼成像[73]
Fig.44 Reaction mechanism of probe 40 for HClO and zebrafish imaging[73]
图45 探针41与HClO/ClO-反应机理[74]
Fig.45 Reaction mechanism of probe 41 for HClO/ClO- [74]
图46 探针42与HClO反应机理和小鼠成像[75]
Fig.46 Reaction mechanism of probe 42 for HClO and mice imaging[75]
图47 探针43、44与ClO-反应机理[76]
Fig.47 Reaction mechanism of probe 43 and 44 for ClO-[76]
图48 探针45与HClO 反应机理[77]
Fig.48 Reaction mechanism of probe 45 for HClO[77]
图49 探针46与ClO-反应机理[78]
Fig.49 Reaction mechanism of probe 46 for ClO-[78]
图50 探针47与HClO反应机理和斑马鱼成像[79]
Fig.50 Reaction mechanism of probe 47 for HClO and zebrafish imaging[79]
图51 探针48与HClO 反应机理[33]
Fig.51 Reaction mechanism of probe 48 for HClO[33]
图52 探针49与 ClO-反应机理[80]
Fig.52 Reaction mechanism of probe 49 for ClO-[80]
图53 探针50与HClO 反应机理[81]
Fig.53 Reaction mechanism of probe 50 for HClO[81]
[1]
Gomes A, Fernandes E, Lima J L F C. J. Biochem. Biophys. Methods, 2005, 65:45.

pmid: 16297980
[2]
Chen X Q, Lee K A, Ren X T, Ryu J C, Kim G, Ryu J H, Lee W J, Yoon J. Nat. Protoc., 2016, 11:1219.

doi: 10.1038/nprot.2016.062     URL    
[3]
Prokopowicz Z M, Arce F, Biedron R, Chiang C L L, Ciszek M, Katz D R, Nowakowska M, Zapotoczny S, Marcinkiewicz J, Chain B M. J. Immunol., 2010, 184:824.

doi: 10.4049/jimmunol.0902606     pmid: 20018624
[4]
Fang F C. Nat. Rev. Microbiol., 2004, 2:820.

doi: 10.1038/nrmicro1004     URL    
[5]
Pattison D, Davies M. Curr. Med. Chem., 2006, 13:3271.

pmid: 17168851
[6]
Gorrini C, Harris I S, Mak T W. Nat. Rev. Drug Discov., 2013, 12:931.

doi: 10.1038/nrd4002     pmid: 24287781
[7]
Chen X Q, Tian X Z, Shin I, Yoon J. Chem. Soc. Rev., 2011, 40:4783.

doi: 10.1039/c1cs15037e     URL    
[8]
Pattison D I, Davies M J. Biochemistry, 2006, 45:8152.

pmid: 16800640
[9]
Xu T S, Li D X, Yan C X, Wu Y W, Yuan C S, Shao X F. Chin. J. Chem., 2019, 37:909.

doi: 10.1002/cjoc.v37.9     URL    
[10]
Kenmoku S, Urano Y, Kojima H, Nagano T. J. Am. Chem. Soc., 2007, 129:7313.

pmid: 17506554
[11]
Yuan L, Lin W Y, Xie Y N, Chen B, Song J Z. Chem. Eur. J., 2012, 18:2700.

doi: 10.1002/chem.201101918     URL    
[12]
Xu Q L, Lee K A, Lee S, Lee K M, Lee W J, Yoon J. J. Am. Chem. Soc., 2013, 135:9944.

doi: 10.1021/ja404649m     URL    
[13]
Zhang R L, Zhao J, Han G M, Liu Z J, Liu C, Zhang C, Liu B H, Jiang C L, Liu R Y, Zhao T T, Han M Y, Zhang Z P. J. Am. Chem. Soc., 2016, 138:3769.

doi: 10.1021/jacs.5b12848     URL    
[14]
Li K, Hou J T, Yang J, Yu X Q. Chem. Commun., 2017, 53:5539.

doi: 10.1039/C7CC01679D     URL    
[15]
Xiao H D, Li J H, Zhao J, Yin G, Quan Y W, Wang J, Wang R Y. J. Mater. Chem. B, 2015, 3:1633.

doi: 10.1039/C4TB02003K     URL    
[16]
Zou X M, Liu Y, Zhu X J, Chen M, Yao L M, Feng W, Li F Y. Nanoscale, 2015, 7:4105.

doi: 10.1039/C4NR06407K     URL    
[17]
Xu Q L, Heo C H, Kim G, Lee H W, Kim H M, Yoon J. Angew. Chem. Int. Ed., 2015, 54:4890.

doi: 10.1002/anie.201500537     URL    
[18]
Wu L L, Yang Q Y, Liu L Y, Sedgwick A C, Cresswell A J, Bull S D, Huang C S, James T D. Chem. Commun., 2018, 54:8522.

doi: 10.1039/C8CC03717E     URL    
[19]
Xi L L, Guo X F, Wang C L, Wu W L, Huang M F, Miao J Y, Zhao B X. Sensor Actuat. B: Chem., 2018, 255:666.

doi: 10.1016/j.snb.2017.08.073     URL    
[20]
Xing P F, Feng Y X, Niu Y M, Li Q, Zhang Z, Dong L, Wang C M. Chem. Eur. J., 2018, 24:5748.

doi: 10.1002/chem.v24.22     URL    
[21]
Zhang X F, Zhao W Y, Li B, Li W Q, Zhang C X, Hou X C, Jiang J, Dong Y Z. Chem. Sci., 2018, 9:8207.

doi: 10.1039/C8SC03226B     URL    
[22]
Cheng G H, Fan J L, Sun W, Cao J F, Hu C, Peng X J. Chem. Commun., 2014, 50:1018.

doi: 10.1039/C3CC47864E     URL    
[23]
Xiao H D, Xin K, Dou H F, Yin G, Quan Y W, Wang R Y. Chem. Commun., 2015, 51:1442.

doi: 10.1039/C4CC07411D     URL    
[24]
Liu C, Jiao X J, He S, Zhao L C, Zeng X S. Talanta, 2017, 174:234.

doi: 10.1016/j.talanta.2017.06.012     URL    
[25]
Tian F S, Jia Y, Zhang Y N, Song W, Zhao G J, Qu Z J, Li C Y, Chen Y H, Li P. Biosens. Bioelectron., 2016, 86:68.

doi: 10.1016/j.bios.2016.06.039     URL    
[26]
Zhang B B, Yang X P, Zhang R, Liu Y, Ren X L, Xian M, Ye Y, Zhao Y F. Anal. Chem., 2017, 89:10384.

doi: 10.1021/acs.analchem.7b02361     URL    
[27]
Wu L, Wu I C, DuFort C C, Carlson M A, Wu X, Chen L, Kuo C T, Qin Y L, Yu J B, Hingorani S R, Chiu D T. J. Am. Chem. Soc., 2017, 139:6911.

doi: 10.1021/jacs.7b01545     URL    
[28]
Deng B B, Ren M G, Kong X Q, Zhou K, Lin W Y. Sensor Actuat. B: Chem., 2018, 255:963.

doi: 10.1016/j.snb.2017.08.146     URL    
[29]
Zhu H, Fan J L, Wang J Y, Mu H Y, Peng X J. J. Am. Chem. Soc., 2014, 136:12820.

doi: 10.1021/ja505988g     URL    
[30]
Fan J L, Mu H Y, Zhu H, Du J J, Jiang N, Wang J Y, Peng X J. Ind. Eng. Chem. Res., 2015, 54:8842.

doi: 10.1021/acs.iecr.5b01904     URL    
[31]
Yuan L, Wang L, Agrawalla B K, Park S J, Zhu H, Sivaraman B, Peng J J, Xu Q H, Chang Y T. J. Am. Chem. Soc., 2015, 137:5930.

doi: 10.1021/jacs.5b00042     pmid: 25905448
[32]
Zhu B, Wu L, Zhang M, Wang Y, Liu C, Wang Z, Duan Q, Jia P. Biosens. Bioelectron., 2018, 107:218.

doi: 10.1016/j.bios.2018.02.023     URL    
[33]
Mao Z Q, Ye M T, Hu W, Ye X X, Wang Y Y, Zhang H J, Li C Y, Liu Z H. Chem. Sci., 2018, 9:6035.

doi: 10.1039/C8SC01697F     URL    
[34]
Treibs A, Kreuzer F H. Justus Liebigs Ann. Chem., 1968, 718:208.

doi: 10.1002/(ISSN)1099-0690     URL    
[35]
Gao Y L, Pan Y, Chi Y, He Y Y, Chen H Y, Nemykin V N. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 206:190.

doi: 10.1016/j.saa.2018.07.090     URL    
[36]
Shi W J, Huang Y, Liu W C, Xu D, Chen S T, Liu F G, Hu J Q, Zheng L Y, Chen K. Dye. Pigment., 2019, 170:107566.

doi: 10.1016/j.dyepig.2019.107566     URL    
[37]
Gao Y L, Pan Y, He Y Y, Chen H Y, Nemykin V N. Sensor Actuat. B: Chem., 2018, 269:151.

doi: 10.1016/j.snb.2018.04.135     URL    
[38]
Jin Y, Lv M, Tao Y F, Xu S, He J L, Zhang J, Zhao W L. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 219:569.

doi: 10.1016/j.saa.2019.04.085     URL    
[39]
Sun W, Li M, Fan J L, Peng X J. Acc. Chem. Res., 2019, 52:2818.

doi: 10.1021/acs.accounts.9b00340     URL    
[40]
Xu X H, Liu C, Mei Y, Song Q H. J. Mater. Chem. B, 2019, 7:6861.

doi: 10.1039/C9TB01641D     URL    
[41]
Duan C, Won M, Verwilst P, Xu J C, Kim H S, Zeng L T, Kim J S. Anal. Chem., 2019, 91:4172.

doi: 10.1021/acs.analchem.9b00224     URL    
[42]
Liu S Z, Yang D, Liu Y J, Pan H, Chen H B, Qu X Z, Li H M. Sensor Actuat. B: Chem., 2019, 299:126937.

doi: 10.1016/j.snb.2019.126937     URL    
[43]
Zhang C Y, Nie Q C, Ismail I, Xi Z, Yi L. Chem. Commun., 2018, 54:3835.

doi: 10.1039/C8CC01917G     URL    
[44]
Peng P P, Li H, Bai L, Wang L L, Chen B X, Yu C M, Zhang C W, Ge J Y, Li L, Huang W. ChemistrySelect, 2018, 3:5981.

doi: 10.1002/slct.v3.21     URL    
[45]
Mao G J, Liang Z Z, Bi J, Zhang H, Meng H, Su L, Gong Y J, Feng S, Zhang G. Anal. Chim. Acta, 2018,1048.
[46]
Gong Y J, Lv M K, Zhang M L, Kong Z Z, Mao G J. Talanta, 2019, 192:128.

doi: 10.1016/j.talanta.2018.08.089     URL    
[47]
Wang L, Ren M G, Li Z H, Dai L X, Lin W Y. Anal. Methods, 2019, 11:1580.

doi: 10.1039/C9AY00205G     URL    
[48]
Hu J W, Zhang X, Liu T T, Gao H W, Lu S L, Uvdal K, Hu Z J. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 219:232.

doi: 10.1016/j.saa.2019.04.024     URL    
[49]
Li L, Wang S, Lan H X, Gong G Y, Zhu Y F, Tse Y C, Wong K M C. ChemistryOpen, 2018, 7:136.

doi: 10.1002/open.v7.2     URL    
[50]
Ren M G, Li Z H, Deng B B, Wang L, Lin W Y. Anal. Chem., 2019, 91:2932.

doi: 10.1021/acs.analchem.8b05116     URL    
[51]
Wang X, Zhou Y M, Xu C G, Song H H, Li L, Zhang J L, Guo M X. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2018, 203:415.

doi: 10.1016/j.saa.2018.06.012     URL    
[52]
Wu W L, Ma H L, Xi L L, Huang M F, Wang K M, Miao J Y, Zhao B X. Talanta, 2019, 194:308.

doi: 10.1016/j.talanta.2018.10.006     URL    
[53]
Yan Y H, Ma H L, Miao J Y, Zhao B X, Lin Z M. Anal. Chimica Acta, 2019, 1064:87.

doi: 10.1016/j.aca.2019.03.004     URL    
[54]
Chen W, Li G, Chen C, Sheng J, Yang L. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2019, 228:117724.

doi: 10.1016/j.saa.2019.117724     URL    
[55]
Han J L, Liu X J, Xiong H Q, Wang J P, Wang B H, Song X Z, Wang W. Anal. Chem., 2020, 92:5134.

doi: 10.1021/acs.analchem.9b05604     URL    
[56]
Pan H, Liu Y J, Liu S Z, Ou Z P, Chen H B, Li H M. Talanta, 2019, 202:329.

doi: 10.1016/j.talanta.2019.05.009     URL    
[57]
Ma J L, Yan C X, Li Y J, Duo H X, Li Q, Lu X F, Guo Y. Chem. Eur. J., 2019, 25:7168.

doi: 10.1002/chem.v25.29     URL    
[58]
Yang P, Zhao J Z, Wu W H, Yu X R, Liu Y F. J. Org. Chem., 2012, 77:6166.

doi: 10.1021/jo300943t     URL    
[59]
Jin Y Z, Wang S, Zhang Y J, Song B. Sensor Actuat. B: Chem., 2016, 225:167.

doi: 10.1016/j.snb.2015.11.039     URL    
[60]
Sahana S, Mishra G, Sivakumar S, Bharadwaj P K. Dalton Trans., 2015, 44:20139.

doi: 10.1039/C5DT03719K     URL    
[61]
Chen S, Hou P, Wang J X, Song X Z. RSC Adv., 2012, 2:10869.

doi: 10.1039/c2ra21471g     URL    
[62]
Wang K, Xi D, Liu C, Chen Y, Gu H, Jiang L, Chen X, Wang F. Chin. Chem. Lett., 2020, 31:2955-2959.

doi: 10.1016/j.cclet.2020.03.064     URL    
[63]
Yang Y, Qiu F Z, Wang Y Z, Feng Y, Song X R, Tang X L, Zhang G L, Liu W S. Sensor Actuat. B: Chem., 2018, 260:832.

doi: 10.1016/j.snb.2017.12.204     URL    
[64]
He Y H, Xu Y, Shang Y T, Zheng S W, Chen W H, Pang Y. Anal. Bioanal. Chem., 2018, 410:7007.

doi: 10.1007/s00216-018-1332-z     URL    
[65]
Nguyen K H, Hao Y Q, Zeng K, Fan S N, Li F, Yuan S K, Ding X J, Xu M T, Liu Y N. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2018, 199:189.

doi: 10.1016/j.saa.2018.03.055     URL    
[66]
Ma Q, Wang C, Bai Y, Xu J, Zhang J, Li Z, Guo X. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2019, 223:117334.

doi: 10.1016/j.saa.2019.117334     URL    
[67]
Xia Q N, Wang X Y, Liu Y N, Shen Z F, Ge Z G, Huang H, Li X, Wang Y G. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2020, 229:117992.

doi: 10.1016/j.saa.2019.117992     URL    
[68]
Lu Y R, Dong B L, Song W H, Kong X Q, Mehmood A H, Lin W Y. J. Photochem. Photobiol. A: Chem., 2019, 384:111980.

doi: 10.1016/j.jphotochem.2019.111980     URL    
[69]
Song W H, Dong B L, Lu Y R, Kong X Q, Mehmood A H, Lin W Y. Anal. Methods, 2019, 11:4450.

doi: 10.1039/C9AY01390C     URL    
[70]
Zhang P S, Wang H, Hong Y X, Yu M L, Zeng R J, Long Y F, Chen J. Biosens. Bioelectron., 2018, 99:318.

doi: 10.1016/j.bios.2017.08.001     URL    
[71]
Zhang P S, Wang H, Zhang D, Zeng X Y, Zeng R J, Xiao L H, Tao H W, Long Y F, Yi P G, Chen J. Sensor Actuat. B: Chem., 2018, 255:2223.

doi: 10.1016/j.snb.2017.09.025     URL    
[72]
Zhang H, Zhang Y, Yin C. Sens. Actuators B Chem., 2018,269.
[73]
Xiong H Q, He L, Zhang Y, Wang J P, Song X Z, Yang Z G. Chin. Chem. Lett., 2019, 30:1075.

doi: 10.1016/j.cclet.2019.02.008     URL    
[74]
Lan J S, Guo J, Jiang X Y, Chen Y, Hu Z H, Que Y F, Li H X, Gu J Y, Ho R J Y, Zeng R F, Ding Y, Zhang T. Anal. Chimica Acta, 2020, 1094:70.

doi: 10.1016/j.aca.2019.09.076     URL    
[75]
Deng Y Z, Feng S M, Xia Q F, Gong S Y, Feng G Q. Talanta, 2020, 215:120901.

doi: 10.1016/j.talanta.2020.120901     URL    
[76]
Han X M, Ma Y F, Chen Y Z, Wang X F, Wang Z. Anal. Chem., 2020, 92:2830.

doi: 10.1021/acs.analchem.9b05347     URL    
[77]
Wang B B, Zhang F, Wang S K, Yang R J, Chen C H, Zhao W. Chem. Commun., 2020, 56:2598.

doi: 10.1039/C9CC07256J     URL    
[78]
Chen H, Sun T, Qiao X G, Tang Q O, Zhao S C, Zhou Z. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2018, 204:196.

doi: 10.1016/j.saa.2018.06.037     URL    
[79]
He L, Zhang Y, Xiong H Q, Wang J P, Geng Y N, Wang B H, Wang Y G, Yang Z G, Song X Z. Dye. Pigment., 2019, 166:390.

doi: 10.1016/j.dyepig.2019.03.029     URL    
[80]
Lin X, Chen Y, Bao L, Wang S, Liu K, Qin W D, Kong F. Dye. Pigment., 2020, 174:108113.

doi: 10.1016/j.dyepig.2019.108113     URL    
[81]
Shao C W, Yuan J W, Liu Y N, Qin Y J, Wang X A, Gu J, Chen G Q, Zhang B, Liu H K, Zhao J, Zhu H L, Qian Y. PNAS, 2020, 117:10155.

doi: 10.1073/pnas.1917946117     URL    
[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[4] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[5] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[6] 颜廷义, 张光耀, 喻琨, 李梦洁, 曲丽君, 张学记. 基于智能手机的即时检测[J]. 化学进展, 2022, 34(4): 884-897.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[10] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[11] 傅力, 张怀伟, 叶玮婷, 叶辰, 林正得. 固态电分析化学及其植物研究[J]. 化学进展, 2021, 33(8): 1440-1449.
[12] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[13] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[14] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[15] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
阅读次数
全文


摘要

反应型次氯酸荧光探针