English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 9-17 DOI: 10.7536/PC150748 前一篇   后一篇

• 综述与评论 •

灌注液体型光滑多孔表面制备及应用

韦存茜1, 严杰2, 唐浩2, 张庆华1*, 詹晓力1, 陈丰秋1   

  1. 1. 浙江大学化学工程与生物工程学院 杭州 310027;
    2. 浙江飞鲸新材料科技有限公司 舟山 316104
  • 收稿日期:2015-07-01 修回日期:2015-09-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 张庆华 E-mail:qhzhang@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21476195,21576236)和浙江省自然科学基金项目(No.Y14B060038)资助

Fabrication and Application of Slippery Liquid-Infused Porous Surface

Wei Cunqian1, Yan Jie2, Tang Hao2, Zhang Qinghua1*, Zhan Xiaoli1, Chen Fengqiu1   

  1. 1. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Zhejiang FeiJing New Materials Technology Co., Ltd., Zhoushan 316104, China
  • Received:2015-07-01 Revised:2015-09-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476195, 21576236) and the Zhejiang Provincial Natural Science Foundation of China (No. Y14B060038).
仿猪笼草效应的灌注润滑液的光滑多孔表面(SLIPS)是将润滑液如全氟聚醚、硅油、离子液体等灌注到微/纳粗糙结构基材中制备的。SLIPS材料表面可达到分子尺度的光滑,能显著减小液滴滑动角和滞后角,具有全方位疏液、自修复、透明度高、温度和压力稳定性好等诸多优点,能够高效抑制各种基材包括油脂、血液、冰以及生物膜的黏附,在自清洁涂料、海洋防污、生物医用领域具有广阔的应用前景。近年来SLIPS材料因其具有的特殊表面润湿性能而备受研究者的关注,本文详细介绍了SLIPS材料的构建机理和制备方法,包括浸润法和溶胀法等。综述了SLIPS材料在防污、促进滴状冷凝、防霜防覆冰、油水分离等方面的最新进展,并对SLIPS目前存在的问题与发展方向进行了分析和展望。
A new type of nepenthes pitcher plant-inspired materials called slippery liquid infused porous surfaces (SLIPS) has been introduced recently that exhibit special anti-wetting performances to many liquids. SLIPS materials are prepared by infusing rough micro/nanostructured substrates with non-covalent bound liquid films of lubricating liquids, such as perfluoropolyethers, silicone oil or ionic liquid, creating smooth liquid-infused surfaces at the molecular-level. These surfaces are demonstrated to possess advantages of low sliding angle and contact angle hysteresis to various and complex liquids. SLIPS materials have board applications in self-cleaning coatings, marine antifouling coatings and biomedical materials because of their omniphobicity, self-healing, good optical transparency, extreme temperature pressure stability, as well as effective against adhesion of a wide range of substances including crude oil, blood, ice and bacterial biofilms. In recent years, SLIPS materials attract much attention of scientists because of the special surface wetting properties. In this review, the research mechanism and progress of designing and fabricating of SLIPS are introduced, including impregnation and swelling methods. Furthermore, the latest development of SLIPSs serve as omniphobic materials capable of meeting needs in anti-fouling, enhancing dropwise condensation, anti-frosting, anti-icing and oil-water separation are reviewed. Finally, the prospective tendency of SLIPS materials is proposed based on the current challenges.

Contents
1 Introduction
2 Mechanism and fabrication of SLIPS
2.1 SLIPS fabricated from etching
2.2 SLIPS fabricated from porous polymer membrane
2.3 SLIPS fabricated from chemical deposition
2.4 SLIPS fabricated from sol-gel
2.5 SLIPS fabricated from layer-by-layer
2.6 SLIPS fabricated from polymer swelling
3 Applications of SLIPS
3.1 Antifouling
3.2 Enhancing condensation
3.3 Anti-frosting and anti-icing
3.4 Oil-water separation
3.5 Other applications
4 Conclusion and outlook

中图分类号: 

()
[1] Samaha M, Gad-El-Hak M. Polymers, 2014, 6(5): 1266.
[2] 阎映弟(Yan Y D), 罗能镇(Luo N Z), 相咸高(Xiang X G),徐义明(Xu M Y), 张庆华(Zhang Q H), 詹晓力(Zhan X L). 化学进展(Progress in Chemistry), 2014, 26(1): 214.
[3] 赵宁(Zhao N), 卢晓英(Lu X Y), 张晓艳(Zhang X Y), 刘海云(Liu H Y), 谭帅霞(Tan S X), 徐坚(Xu J). 化学进展(Progress in Chemistry), 2007, 19(6): 860.
[4] 徐建海(Xu H J), 李梅(Li M), 赵燕(Zhao Y), 路庆华(Lu Q H). 化学进展(Progress in Chemistry), 2006, 18(11): 1425.
[5] Kota A K, Li Y, Mabry J M, Tuteja A. Adv. Mater., 2012, 24(43): 5838.
[6] Tuteja A, Choi W, Mabry J M, Mckinley G H, Cohen R E. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(47): 18200.
[7] Tuteja A, Choi W, Ma M, Mabry J M, Mazzella S A, Rutledge G C, Mckinley G H, Cohen R E. Science, 2007, 318(5856): 1618.
[8] Zhan X L, Yan Y D, Zhang Q H, Chen F Q. J. Mater. Chem. A, 2014,(2): 9390.
[9] Zhang Q H, Wang Q Y, Jiang J X, Zhan X L, Chen F Q. Langmuir, 2015, 31(16): 4752.
[10] Tang Y Q, Zhang Q H, Zhan X L, Chen F Q. Soft Matter, 2015, 11(22): 4540.
[11] Deng X, Mammen L, Butt H, Vollmer D. Science, 2012, 335: 67.
[12] Pokroy B, Epstein A K, Persson-Gulda M C M, Aizenberg J. Adv. Mater., 2009, 21(4): 463.
[13] Zhou Y N, Li J J, Zhang Q, Luo Z H. AIChE J., 2014, 60(12): 4211.
[14] Zhang T, Wang J M, Chen L, Zhai J, Song Y L, Jiang L. Angew. Chem. Int. Ed., 2011, 50(23): 5311.
[15] Mazumder S, Falkinham J R, Dietrich A M, Puri I K. Biofouling, 2010, 26(3): 333.
[16] Sigal G B, Mrksich M, Whitesides G M. J. Am. Chem. Soc., 1998, 120(14): 3464.
[17] Nhung Nguyen T P, Brunet P, Coffinier Y, Boukherroub R. Langmuir, 2010, 26(23): 18369.
[18] Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin I P. Science, 2015, 347(6226): 1129.
[19] Liu Y Y, Chen X Q, Xin J H. J. Mater. Chem., 2009, 19(31): 5602.
[20] Vogel N, Belisle R A, Hatton B, Wong T S, Aizenberg J. Nat. Commun., 2013, 4:2176.
[21] Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477(7365): 443.
[22] Rykaczewski K, Paxson A T, Staymates M, Walker M L, Sun X D, Anand S, Srinivasan S, Mckinley G H, Chinn J, Scott J H J, Varanasi K K. Sci. Rep., 2014, 4: 4158.
[23] Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R T E, Mckinley G H, Varanasi K K. Soft Mater, 2013,(9): 1772.
[24] Lafuma A, Quére D. Europhys.Lett., 2011, 96: 56001.
[25] Boreyko J B, Polizos G, Datskos P G, Sarles S A, Collier C P. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(21): 7588.
[26] Khalil K S, Mahmoudi S R, Abu-Dheir N, Varanasi K K. Appl. Phys. Lett., 2014, 105(4): 41604.
[27] Anand S, Rykaczewski K, Subramanyam S B, Beysens D, Varanasi K K. Soft Matter, 2015, 11: 69.
[28] Rykaczewski K, Anand S, Subramanyam S B, Varanasi K K. Langmuir, 2013, 29(17): 5230.
[29] Subramanyam S B, Rykaczewski K, Varanasi K K. Langmuir, 2013, 29(44): 13414.
[30] Li J S, Kleintschek T, Rieder A, Cheng Y, Baumbach T, Obst U, Schwartz T, Levkin P A. ACS Appl. Mat. Interfaces, 2013, 5(14): 6704.
[31] Xiao L L, Li J S, Mieszkin S, Di Fino A, Clare A S, Callow M E, Callow J A, Grunze M, Rosenhahn A, Levkin P A. ACS Appl. Mat. Interfaces, 2013, 5(20): 10074.
[32] Okada I, Shiratori S. ACS Appl. Mat. Interfaces, 2014, 6(3): 1502.
[33] Lalia B S, Anand S, Varanasi K K, Hashaikeh R. Langmuir, 2013, 29(42): 13081.
[34] Miranda D F, Urata C, Masheder B, Dunderdale G J, Yagihashi M, Hozumi A. APL Materials, 2014, 2(5): 56108.
[35] Jacquemin J, Husson P, Padua A A H, Majer V. Green Chem., 2006, 8(2): 172.
[36] Charpentier T V J, Neville A, Baudin S, Smith M J, Euvrard M, Bell A, Wang C, Barker R. J. Colloid Interface Sci., 2015, 444: 81.
[37] Wang P, Lu Z, Zhang D. Corros. Sci., 2015, 93: 159.
[38] Kim P, Wong T S, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano, 2012, 6(8): 6569.
[39] Kim P, Kreder M J, Alvarenga J, Aizenberg J. Nano Lett., 2013: 1082505526.
[40] Tadanaga K, Katata N, Minami T. J. Am. Ceram. Soc., 1997, 4(80): 1040.
[41] Ma W, Higaki Y, Otsuka H, Takahara A. Chem. Commun., 2013, 49: 597.
[42] He M, Zhou X, Zeng X P, Cui D P, Zhang Q L, Chen J, Li H L, Wang J J, Cao Z X, Song Y L, Jiang L. Soft Matter, 2012, 8(25): 6680.
[43] Shillingford C, Maccallum N, Wong T S, Kim P, Aizenberg J. Nanotechnology, 2014, 25(1): 14019.
[44] Sunny S, Vogel N, Howell C, Vu T L, Aizenberg J. Adv. Funct. Mater., 2014, 24(42): 6658.
[45] Huang X Y, Chrisman J D, Zacharia N S. ACS Macro Lett., 2013, 2(9): 826.
[46] Zhang J P, Wu L, Li B C, Li L X, Seeger S, Wang A Q. Langmuir, 2014, 30(47): 14292.
[47] Zhang J P, Wang A Q, Seeger S. Adv. Funct. Mater., 2014, 24(8): 1074.
[48] Howell C, Vu T L, Johnson C P, Hou X, Ahanotu O, Alvarenga J, Leslie D C, Uzun O, Waterhouse A, Kim P, Super M, Aizenberg M, Ingber D E, Aizenberg J. Chem. Mater., 2015, 27(5): 1792.
[49] Mruetusatorn P Y, Boreyko J B, Venkatesan G A, Sarles S A, Hayes D O G, Collier C P. Soft Matter, 2014, 10: 2530.
[50] Zhu L, Xue J, Wang Y Y, Chen Q M, Ding J F, Wang Q J. ACS Appl. Mat. Interfaces, 2013, 5(10): 4763.
[51] Eifert A, Paulssen D, Varanakkottu S N, Baier T, Hardt S. Adv. Mater. Interfaces, 2014, 1(3): 1300138.
[52] Maccallum N, Howell C, Kim P, Sun D, Friedlander R, Ranisau J, Ahanotu O, Lin J J, Vena A, Hatton B, Wong T S, Aizenberg J. ACS Biomater. Sci. Eng., 2015, 1(1): 43.
[53] Yao X, Dunn S S, Kim P, Duffy M, Alvarenga J, Aizenberg J. Angew. Chem. Int. Ed., 2014, 53(17): 4418.
[54] Howell C, Vu T L, Lin J J, Kolle S, Juthani N, Watson E, Weaver J C, Alvarenga J, Aizenberg J. ACS Appl. Mat. Interfaces, 2014, 6(15): 13299.
[55] Wu W, Deconinck A, Lewis J A. Adv. Mater., 2011, 23(24): H178.
[56] Urata C, Dunderdale G J, England M W, Hozumi A. J. Mater. Chem. A, 2015, 3:12626.
[57] Solomon B R, Khalil K S, Varanasi K K. Langmuir, 2014, 30(36): 10970.
[58] Lee C, Kim H, Nam Y. Langmuir, 2014, 30(28): 8400.
[59] Carlson A, Kim P, Amberg G, Stone H A. Europhys. Lett.,2013, 104: 34008.
[60] Damle V G, Tummala A, Chandrashekar S, Kido C, Roopesh A, Sun X, Doudrick K, Chinn J, Lee J R, Burgin T P, Rykaczewski K. ACS Appl. Mat. Interfaces, 2015, 7(7): 4224.
[61] Manabe K, Kyung K, Shiratori S. ACS Appl. Mat. Interfaces, 2015, 7(8): 4763.
[62] Manna U, Lynn D M. Advanced Materials, 2015,27(19): 3007.
[63] Epstein A K, Hong D, Kim P, Aizenberg J. New J. Phys., 2013(15): 95018.
[64] Epstein A K, Wong T S, Belisle R A, Boggs E M, Aizenberg J. Proc. Natl. Acad. Sci.U.S.A., 2012, 33(109): 13182.
[65] Grinthal A, Aizenberg J. Chem. Mater., 2014, 26(1): 698.
[66] Anand S, Paxson A T, Dhiman R, Smith J D, Varanasi K K. ACS Nano, 2012, 6(11): 10122.
[67] Xiao R, Miljkovic N, Enright R, Wang E N. Sci. Rep., 2013, 3:1998.
[68] Quéré D. Annu. Rev. Mater. Res., 2008, 38(1): 71.
[69] Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J. ACS Nano, 2010, 4(12): 7699.
[70] Cao L L, Jones A K, Sikka V K, Wu J Z, Gao D. Langmuir, 2009, 25(21): 12444.
[71] Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos D. Langmuir, 2011, 27(6): 3059.
[72] Wilson P W, Lu W Z, Xu H J, Kim P, Kreder M J, Alvarenga J, Aizenberg J. Phys. Chem. Chem. Phys., 2013, 15(2): 581.
[73] Stone H A. ACS Nano, 2012, 6(8): 6536.
[74] Liu Q, Yang Y, Huang M, Zhou Y X, Liu Y Y, Liang X D. Appl. Surf. Sci., 2015, 346: 68
[75] Lv J, Song Y L, Jiang L, Wang J J. ACS Nano, 2014, 8(4): 3152.
[76] Chen L Q, Geissler A, Bonaccurso E, Zhang K. ACS Appl. Mat. Interfaces, 2014, 6(9): 6969.
[77] Yin X Y, Zhang Y, Wang D A, Liu Z L, Liu Y P, Pei X W, Yu B, Zhou F. Adv. Funct. Mater., 2015, 25(27): 4237.
[78] Chen J, Dou R M, Cui D P, Zhang Q L, Zhang Y F, Xu F J, Zhou X, Wang J J, Song Y L, Jiang L. ACS Appl. Mat. Interfaces, 2013, 5(10): 4026.
[79] Chen J, Luo Z Q, Fan Q R, Lv J Y, Wang J J. Small, 2014, 10(22): 4693.
[80] Dou R, Chen J, Zhang Y F, Wang X P, Cui D P, Song Y L, Jiang L, Wang J J. ACS Appl. Mat. Interfaces, 2014, 6(10): 6998.
[81] Sun X D, Damle V G, Liu S L Z, Rykaczewski K. Adv. Mater. Interfaces, 2015, 2(5):1400479.
[82] Chen P P, Xu Z K. Sci. Rep., 2013, 3: 2776.
[83] Hou X, Hu Y, Grinthal A, Khan M, Aizenberg J. Nature, 2015, 519(7541): 70.
[84] Yao X, Hu Y H, Grinthal A, Wong T S, Mahadevan L, Aizenberg J. Nat. Mater., 2013, 12(6): 529.
[85] You I, Lee T G, Nam Y S, Lee H. ACS Nano, 2014, 8(9): 9016.
[1] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[2] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[3] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[4] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[5] 袁思成, 林丹, 张曦光, 汪怀远. SLIPS功能表面的制备及应用[J]. 化学进展, 2021, 33(1): 87-96.
[6] 周翠平, 刘启明, 赵绚, 李春生, 李辉, 张书香. 柔性抗结冰表面的制备及其性能[J]. 化学进展, 2019, 31(7): 1056-1066.
[7] 侯瑞, 李桂群, 张岩, 李明俊, 周桂明, 柴晓明. 基于超分子聚合物的自修复材料[J]. 化学进展, 2019, 31(5): 690-698.
[8] 程龙, 于大江, 尤加健, 龙腾, 陈素素, 周传健. 有机硅自修复材料[J]. 化学进展, 2018, 30(12): 1852-1862.
[9] 詹晓力, 金碧玉, 张庆华*, 陈丰秋. 多功能超润湿材料的设计制备与应用[J]. 化学进展, 2018, 30(1): 87-100.
[10] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[11] 安光明, 凌世全, 王智伟, 栾琳, 吴天准. 基于微纳结构液体灌注的超滑表面的制备与应用[J]. 化学进展, 2015, 27(12): 1705-1713.
[12] 李思超, 韩朋, 许华平*. 自修复高分子材料[J]. 化学进展, 2012, 24(07): 1346-1352.
[13] 祁恒治, 赵蕴慧, 朱孔营, 袁晓燕. 自修复聚合物材料的研究进展[J]. 化学进展, 2011, 23(12): 2560-2567.
[14] 汪海平, 容敏智, 章明秋. 微胶囊填充型自修复聚合物及其复合材料[J]. 化学进展, 2010, 22(12): 2397-2407.
[15] 丁玲 何天稀 熊云 吴家峰 陈立功 陈国需. 离子液体作为新型润滑材料的研究进展*[J]. 化学进展, 2010, 22(0203): 298-308.