English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1665-1679 DOI: 10.7536/PC200530 前一篇   后一篇

• •

芳香大分子和超分子螺旋管构筑及其功能

张丹维1,**(), 王辉1, 黎占亭1,**()   

  1. 1. 复旦大学化学系 上海 200438
  • 收稿日期:2020-05-14 修回日期:2020-06-02 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 张丹维, 黎占亭
  • 作者简介:

    张丹维

    1972年生于上海,1994年于复旦大学化学系保送研究生,2000年获理学博士学位(导师:吴世晖教授)后留校任教。2001年在香港大学化学系做访问学者,2015年至今为复旦大学教授。现主要从事物理有机和超分子化学研究。

    黎占亭

    1985年郑州大学化学系毕业,1992年在中科院上海有机所获博士学位,先后在南丹麦大学和美国伊利诺伊大学做博士后研究,2002年任上海有机所研究员,2010年至今任复旦大学化学系教授。主要从事物理有机、超分子化学和材料研究。

    ** Corresponding author e-mails: (Dan-Wei Zhang); (Zhan-Ting Li)
  • 基金资助:
    *国家自然科学基金项目(21772026)

Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions

Dan-Wei Zhang1,**(), Hui Wang1, Zhan-Ting Li1,**()   

  1. 1. Department of Chemistry, Fudan University, Shanghai 200438, China
  • Received:2020-05-14 Revised:2020-06-02 Online:2020-11-24 Published:2020-09-01
  • Contact: Dan-Wei Zhang, Zhan-Ting Li
  • Supported by:
    the National Natural Science Foundation of China(21772026)

疏溶剂作用、氢键、静电作用、卤键和配位作用等非共价键作用力都可以用于控制芳香大分子和超分子的折叠和螺旋,由此形成的芳香聚合物螺旋管内径尺寸相对固定,内穴深度可调,作为主体分子可以识别或包结多种客体分子,通过络合能够产生手性诱导与传递和跨膜输送功能,也能够促进有机化学转化等。本文综述了由芳香砌块构筑的这类大分子和超分子螺旋管的构筑和功能。首先介绍了通过不同策略形成管状结构的背景,以及超分子和大分子方法的特点,着重介绍了由芳香酰胺、酰肼、三唑和乙炔重复链段的不同低聚物分子形成的分子管,并总结了形成超分子管的自组装策略,最后讨论了长高分子管的合成挑战以及这种结构独特的结构家族的新的潜在应用。

It has been established that hydrophobicity, hydrogen bonding, electrostatic attraction, halogen bonding and coordination all can be utilized to stabilize the folding and/or helicity of aromatic macromolecules and supramolecular systems. The resulting aromatic helical tubes possess defined diameters and tunable depth and can be used as synthetic receptors for recognizing or encapsulating a variety of guest species, achieving chirality induction and transfer, promoting organic transformations, and as artificial channels for transmembrane transport. This review highlights the advance in the construction of such family of macromolecular and supramolecular tubes from aromatic segments and their important functions. In the first section, we introduce the background of the formation of tubular structures from different strategies and the features of the supramolecular and macromolecular approaches. We then highlight the formation of molecular tubes from various oligomeric molecules with aromatic amide, hydrazide, triazole and ethyne repeat segments. In the following section, we describe the use of polymeric backbones with the above repeat segments. The self-assembly strategy for the formation of supramolecular tubes is then summarized in another section. In particular, the utility of hydrogen bonding, halogen bonding and coordination interactions has been described. When available, the functions of the tubular structures are briefly presented. In the last section, we discuss the synthetic challenges for the formation of long macromolecular tubes and the new potential applications of this family of structurally unique structures.

Contents

1 Introduction

2 Aromatic oligomeric tubes

2.1 Aromatic amide and hydrazide backbones

2.2 Aromatic triazole backbones

2.3 Aromatic ethyne backbones

3 Aromatic polymeric tubes

3.1 Aromatic amide backbones and analogues

3.2 Aromatic triazole and oxadiazole backbones

3.3 Aromatic ethyne backbones

4 Aromatic supramolecular tubes

5 Conclusion and outlook

()
图1 寡聚体7的单晶结构[34]
Fig.1 The crystal structure of oligomer 7[34]
图2 寡聚体8的单晶结构[35]
Fig.2 The crystal structure of oligomer 8[35]
图3 寡聚体11,(R)-12, 13受疏溶剂作用驱动发生螺旋诱导螺旋的示意图[53]
Fig.3 Schematic representation of solvophobically driven folding-inducing-folding of oligomers 11,(R)-12 and 13[53]
图式1 聚合物P25~P27的合成
Scheme 1 The synthesis of polymers P25~P27
图4 理论计算模拟的聚合物P29a(9个螺旋,空腔内径为1.3 nm)的螺旋结构 (a) 侧视图和(b) 正视图,为了清楚简洁,四乙二醇链用甲基取代[71]
Fig.4 (a) Side and (b) top view of optimized right-handed helix formed by polymer P29a of 9 turns with a cavity diameter of 1.3 nm. The tetra(ethylene glycol) chains were replaced with methyl groups for clarity[71]
图5 螺旋聚合物P30形成跨膜离子通道示意图[74]
Fig.5 Schematic presentation of the transmembrane channel formed by helical polymer P30[74]
图6 理论模拟的聚合物P34和P35的螺旋结构[82]
Fig.6 Calculated helix of polymers P34 and P35, highlighting a large cavity diameter[82]
图式2 聚合物P41和P42的合成[86]
Scheme 2 The synthesis of polymers P41 and P42[86]
图式3 吡啶-Pd2+配位超分子螺旋管或超分子柱的构建[93]
Scheme 3 Pyridine-Pd2+ binding of 48a~c forms metal-ligand complexes to generate coordination supramolecular helical polymer or π-stacked columnar polymer[93]
图7 53a·MeOH的单晶结构[98]
Fig.7 Crystal structure of 53a·MeOH[98]
图8 53b·H2O的单晶结构[99]
Fig.8 Crystal structure of 53b·H2O[99]
[1]
Harada A, Li J, Kamachi M . Nature, 1993,364:516.
[2]
Ikeda T, Ooya T , Yui N. Macromol. Rapid Commun., 2000,21:1257.
[3]
Liu C Z, Yan M, Wang H, Zhang D W, Li Z T . ACS Omega, 2018,3:5165.
[4]
Tasis D, Tagmatarchis N , Bianco A. Prato M. Chem. Rev., 2006,106:1105.
[5]
Liu L, Niu Z, Chen J. Chinese Chem . Lett., 2018,29:571.
[6]
李晓微 ( Li X W), 许海芬(Xu H F), 周晋(Zhou J), 闫格(Yan G), 张雷(Zhang L), 禚淑萍(Zhuo S P). 有机化学(Chinese Journal of Organic Chemistry), 2018,38:1917.
[7]
Hartgerink J D, Clark T D , Ghadiri M R. Chem. Eur. J., 1998,4:1367.
[8]
Harada A , Kamachi M. Polym. Adv. Technol., 1997,8:241.
[9]
Zhang D W, Wang H , Li Z T. Macromol. Rapid Commun., 2017,38:1700179.
[10]
Schwartz E, Koepf M, Kitto H J , Nolte R J M, Rowan A E. Polym. Chem., 2011,2:33.
[11]
Wang Q, Chu B F, Chu J H, Liu N , Wu Z Q. ACS Macro Lett., 2018,7:127.
[12]
Zhou L, Shen L, Huang J, Liu N, Zhu Y Y , Wu Z Q. Chinese J. Polym. Sci., 2018,36:163.
[13]
Horne W S , Gellman S H. Acc. Chem. Res., 2008,41:1399.
[14]
Ferrand Y , Huc I. Acc. Chem. Res., 2018,51:970.
[15]
江华 ( Jiang H), 李巧连(Li Q L), 王光霞(Wang G X). 有机化学( Chinese Journal of Organic Chemistry), 2018,38:1065.
[16]
王恒 ( Wang H), 张宇坤(Zhang Y K),邹胜(Zou S),曹金鑫(Cao J X),黄晴菲(Huang Q F),王启卫(Wang Q W), 朱槿(Zhu J). 有机化学( Chinese Journal of Organic Chemistry), 2018,38:2060.
[17]
Huo Y , Zeng H. Acc. Chem. Res., 2016,49:922.
[18]
刘传志 ( Liu Z T), 王辉(Wang H),张丹维(Zhang D W),赵新(Zhao X),黎占亭(Li Z T). 有机化学( Chinese Journal of Organic Chemistry), 2019,39:28.
[19]
Zhang D W, Zhao X , Li Z T. Acc. Chem. Res., 2014,47:1961.
[20]
Yamato K, Kline M, Gong B . Chem. Commun., 2012,48:12142.
[21]
Zhang D W, Zhao X, Hou J L , Li Z T. Chem. Rev., 2012,112:5271.
[22]
Zheng D, Yu C, Zheng L, Zhan Y , Jiang H. Chin. Chem. Lett., 2020,31:673.
[23]
Gong B. Acc. Chem. Res., 2008,41:1376.
[24]
Li Z T, Hou J L , Li C. Acc. Chem. Res., 2008,41:1343.
[25]
Li Z T, Hou J L, Li C , Yi H P. Chem. Asian J., 2006,1:766.
[26]
Huc I. Eur. J. Org. Chem., 2004,17.
[27]
Gong B. Chem. Eur. J., 2001,7:4336.
[28]
Yi H P, Shao X B, Hou J L, Li C, Jiang X K , Li Z T. New J. Chem., 2005,29:1213.
[29]
Hou J L, Shao X B, Chen G J, Zhou Y X, Jiang X K, Li Z T . Am. Chem. Soc., 2004,126:12386.
[30]
Li C, Ren S F, Hou J L, Yi H P, Zhu S Z, Jiang X K , Li Z T. Angew. Chem. Int. Ed., 2005,44:5725.
[31]
Yi H P, Li C, Hou J L, Jiang X K, Li Z T . Tetrahedron, 2005,61:7974.
[32]
Li X, Markandeya N, Jonusauskas G , McClenaghan N D, Maurizot V, Denisov S A, Huc I. Am. Chem. Soc., 2016,138:13568.
[33]
Huc I, Maurizot V, Gornitzka H , Léger J M. Chem. Commun., 2002,578.
[34]
Ong W Q, Zhao H, Du Z , Yeh J Z Y, Ren C, Tan L Z W, Zhang K, Zeng H. Chem. Commun., 2011,6416.
[35]
Hu Z Q, Hu H Y, Chen C F . Org. Chem., 2006,71:1131.
[36]
Garric J, Léger J M , Huc I. Angew. Chem. Int. Ed., 2005,44:1954.
[37]
Gan Q, Ferrand Y, Bao C, Kauffmann B, Grélard A, Jiang H, Huc I . Science, 2011,331:1172.
[38]
Gan Q, Wang X, Kauffmann B, Rosu F, Ferrand Y, Huc I . Nature Biotech., 2017,12:447.
[39]
Guichard G, Huc I . Chem. Commun., 2011,47:5933.
[40]
Gan Q, Bao C, Kauffmann B, Grélard A, Xiang J, Liu S, Huc I , Jiang H. Angew. Chem. Int. Ed., 2008,47:1715.
[41]
Hanan G S, Lehn J M, Kyritsakas N, Fischer J . Chem. Soc. Chem. Commun., 1995,765.
[42]
Yuan Q, Cheng Y, Lou X , Xia F. Chin. J. Chem., 2019,37:1072.
[43]
王昭 ( Wang Z),郝凌云(Hao L Y),张小娟(Zhang X J),盛瑞隆(Sheng R L). 有机化学( Chinese Journal of Organic Chemistry), 2019,39:2379.
[44]
Peng R, Xu Y , Cao Q. Chin. Chem. Lett., 2018,29:1465.
[45]
Zhang M , Liang G. Sci. China Chem., 2018,61:1088.
[46]
Wu D, Xie X, Kadi A A , Zhang Y. Chin. Chem. Lett., 2018,29:1098.
[47]
Meudtner R M , Hecht S. Angew. Chem. Int. Ed., 2008,47:4926.
[48]
Valverde I E, Mindt T L . Chimia, 2013,67:262.
[49]
McDonald K P, Hua Y, Flood A H . 1,2,3-Triazoles and the Expanding Utility of Charge Neutral CH…Anion Interactions. In: Gale P, Dehaen W.(eds). Anion Recognition in Supramolecular Chemistry. Topics in Heterocyclic Chemistry, Berlin, Heidelberg: Springer, 2010, vol 24.
[50]
Juwarker H, Lenhardt J M, Pham D M , Craig S L. Angew. Chem. Int. Ed., 2008,47:3740.
[51]
Shang J, Zhao W, Li X, Wang Y, Jiang H. . Chem. Commun., 2016,52:4505.
[52]
Yang L, Zhao W, Che Y K, Wang Y, Jiang H . Chinese Chem. Lett., 2017,28:1659.
[53]
Wu C F, Li Z M, Xu X N, Zhao Z X, Zhao X, Wang R X , Li Z T. Chem. Eur. J., 2014,20:1418.
[54]
You L Y, Chen S G, Zhao X, Liu Y, Lan W X, Zhang Y, Lu H J, Cao C Y , Li Z T. Angew. Chem. Int. Ed., 2012,51:1657.
[55]
Liu Y H, Zhang L, Xu X N, Li Z M, Zhang D W, Zhao X , Li Z T. Org. Chem. Front., 2014,1:494.
[56]
Lang C, Deng X, Yang F, Yang B, Wang W, Qi S, Zhang X, Zhang C, Dong Z , Liu J. Angew. Chem. Int. Ed., 2017,56:12668.
[57]
Nelson J C, Saven J G, Moore J S, Wolynes P G . Science, 1997,277:1793.
[58]
Prince R B, Barnes S A, Moore J S . Am. Chem. Soc., 2000,122:2758.
[59]
Tanatani T, Hughes T S , Moore J S. Angew. Chem. Int. Ed., 2002,41:325.
[60]
Prince R B, Brunsveld L, Meijer E W , Moore J S. Angew. Chem. Int. Ed., 2000,39:228.
[61]
Inouye M, Waki M, Abe H . Am. Chem. Soc., 2004,126:2022.
[62]
Chang K J, Kang B N, Lee M H, Jeong K S . Am. Chem. Soc., 2005,127:12214.
[63]
Suk J m, Jeong K S . Am. Chem. Soc., 2008,130:11868.
[64]
Lee C, Lee H, Lee S, Jeon H G, Jeong K S . Org. Chem. Front., 2019,6:299.
[65]
Kim Y H, Calabrese J , McEwen C. J. Am. Chem. Soc., 1996,118:1545.
[66]
Zhang C, Shoji Y, Higashihara T, Tsukuda A, Ochi T, Ueda M . J. Polym. Sci. Part A Polym. Chem., 2011,49:4725.
[67]
Lu Y X, Shi Z M, Li Z T, Guan Z. . Chem. Commun., 2010,46:9019.
[68]
Kanamori D , Okamura T a, Yamamoto H, Ueyama N. Angew. Chem. Int. Ed., 2005,44:969.
[69]
Cao J, Kline M, Chen Z, Luan B, Lv M, Zhang W, Lian C, Wang Q, Huang Q, Wei X, Deng J, Zhu J, Gong B. . Chem. Commun., 2012,11112.
[70]
Xu Y X, Zhan T G, Zhao X , Li Z T. Org. Chem. Front., 2014,1:73.
[71]
Zhang P, Zhang L, Wang H, Zhang D W , Li Z T. Polym. Chem., 2015,6:2955.
[72]
Zhang P, Zhang L, Wang Z K, Zhang Y C, Guo R, Wang H, Zhang D W , Li Z T. Chem. Asian J., 2016,11:1725.
[73]
Zhang P, Wang Z, Zhang L, Wang H, Zhang D, Hou J , Li Z. Chin. J. Chem., 2016,34:678.
[74]
Xin P, Zhu P, Su P, Hou J L, Li Z T . Am. Chem. Soc., 2014,136:13078.
[75]
Si W, Xin P, Li Z T , Hou J L. Acc. Chem. Res., 2015,48:1612.
[76]
Guo R, Zhang L, Wang H, Zhang D W , Li Z T. Polym. Chem., 2015,6:2382.
[77]
van Gorp J J, Vekemans J A J M, Meijer E W . Chem. Commun., 2004,60.
[78]
Sinkeldam R W, van Houtem M H C J, Pieterse K, Vekemans J A J M, Meijer E W . Chem. Eur. J., 2006,12:6129.
[79]
Sinkeldam R W , Hoeben F J M, Pouderoijen M J, De Cat I, Zhang J, Furukawa S, De Feyter S, Vekemans J A J M, Meijer E W. Am. Chem. Soc., 2006,128:16113.
[80]
Meudtner R M , Hecht S. Macromol. Rapid Commun., 2008,29:347.
[81]
Meudtner R M, Ostermeier M, Goddard R, Limberg C , Hecht S. Chem. Eur. J., 2007,13:9834.
[82]
Pfukwa R , Kouwer P H J, Rowan A E, Klumperman B. Angew. Chem. Int. Ed., 2013,52:11040.
[83]
Zhu J, Dong Z, Lei S, Cao L, Yang B, Li W, Zhang Y, Liu J , Shen J. Angew. Chem. Int. Ed., 2015,54:3097.
[84]
Lang C, Li W, Dong Z, Zhang X, Yang F, Yang B, Deng X, Zhang C, Xu J , Liu J. Angew. Chem. Int. Ed., 2016,55:9723.
[85]
Chen F, Shen J, Li N, Roy A, Ye R, Ren C , Zeng H. Angew. Chem. Int. Ed., 2020,59:1440.
[86]
Hecht S , Khan A. Angew. Chem. Int. Ed., 2003,42:6021.
[87]
Block M A B, Hecht S . Macromolecules, 2008,41:3219.
[88]
Waki M, Abe H , Inouye M. Chem. Eur. J., 2006,12:7839.
[89]
Abe H, Okada K, Makida H , Inouye M. Org. Biomol. Chem., 2012,10:6930.
[90]
Makida H, Abe H , Inouye M. Org. Biomol. Chem., 2015,13:1700.
[91]
Zhao D , Moore J S. Org. Biomol. Chem., 2003,1:3471.
[92]
Zhao D, Moore J S . Am. Chem. Soc., 2003,125:16294.
[93]
Wackerly J W, Moore J S . Macromolecules, 2006,39:7269.
[94]
Li W, Zhang C, Qi S, Deng X, Wang W, Yang B, Liu J, Dong Z . Polym. Chem. 2017,8:1294.
[95]
Zeng C, Zhang C Y, Zhu J Y , Dong Z Y. Chinese J. Polym. Sci. 2018,36:261.
[96]
Yan T, Yang F, Qi S, Fan X, Liu S, Ma N, Luo Q, Dong Z, Liu J. . Chem. Commun., 2019,2509.
[97]
Zhang C, Deng X, Wang C, Bao C, Yang B, Zhang H, Qi S, Dong Z . Chem. Sci., 2019,10:8648.
[98]
Zhao H, Ong W Q, Zhou F, Fang X, Chen X , Li S F Y, Su H, Cho N J, Zeng H. Chem. Sci., 2012,3:2042.
[99]
Zhao H, Sheng S, Hong Y, Zeng H . Am. Chem. Soc., 2014,136:14270.
[100]
Liu C Z, Koppireddi S, Wang H, Zhang D W , Li Z T. Angew. Chem. Int. Ed., 2019,58:226.
[101]
Koppireddi S, Liu C Z, Wang H, Zhang D W, Li Z T . CrystEngComm, 2019,21:2626.
[102]
Zhang A M, Ferguson J S, Yamato K, Zheng C, Gong B . Org. Lett., 2006,8:5117.
[103]
Shi Z M, Huang J, Ma Z, Zhao X, Guan Z, Li Z T . Macromolecules, 2010,43:6185.
[1] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[2] 高玉霞, 梁云, 胡君, 巨勇. 基于天然小分子化合物的超分子手性自组装[J]. 化学进展, 2018, 30(6): 737-752.
[3] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[4] 喻娜, 丁慧敏, 汪成. 有机分子笼的合成及应用[J]. 化学进展, 2016, 28(12): 1721-1731.
[5] 王辉, Ponmani Jeyakkumar, Sangaraiah Nagarajan, 孟江平, 周成合. 苝类化合物研究与应用[J]. 化学进展, 2015, 27(6): 704-743.
[6] 桂珍, 严枫, 李金昌, 葛梦圆, 鞠熀先. 锁核酸分子信标在分子识别与生物分析中的应用[J]. 化学进展, 2015, 27(10): 1448-1458.
[7] 蒋邦平, 郭东升, 刘育*. 苝酰亚胺和大环化合物的超分子组装[J]. 化学进展, 2013, 25(06): 869-880.
[8] 赵传奇, 曲晓刚*. 稀土手性配合物在核酸识别及调控方面的研究[J]. 化学进展, 2013, 25(04): 539-544.
[9] 张安运, 肖成梁, 柴之芳. 硅基超分子识别材料在乏燃料后处理中的研究进展[J]. 化学进展, 2011, 23(7): 1355-1365.
[10] 万德成, 金明, 浦鸿汀. 超分子模糊识别[J]. 化学进展, 2011, 23(10): 2095-2102.
[11] 戚丽 张宝华 吴芳英. 功能化量子点应用于无机离子和小分子识别[J]. 化学进展, 2010, 22(06): 1077-1085.
[12] 孙涛 李媛媛 张华承 郝爱友. 基于环糊精的分子印迹技术[J]. 化学进展, 2010, 22(05): 888-897.
[13] 陈琳 石乃恩 钱妍 解令海 范曲立 黄维. 点击化学与功能有机/聚合物材料*[J]. 化学进展, 2010, 22(0203): 406-416.
[14] 阚显文 尹宇新 耿志荣 王志林. 基于硅材料的分子印迹聚合物的制备及应用* [J]. 化学进展, 2010, 22(01): 107-112.
[15] 朱文兵,吴芳英. 硼酸类荧光受体识别单糖* [J]. 化学进展, 2009, 21(6): 1241-1253.