English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1721-1731 DOI: 10.7536/PC160727 前一篇   后一篇

• 综述与评论 •

有机分子笼的合成及应用

喻娜1, 丁慧敏1, 汪成1,2*   

  1. 1. 武汉大学化学与分子科学学院 生物医用高分子教育部重点实验室 武汉 430072;
    2. 电子科技大学 电子薄膜与集成器件国家重点实验室 成都 610054
  • 收稿日期:2016-07-01 修回日期:2016-11-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 汪成,e-mail:chengwang@whu.edu.cn E-mail:chengwang@whu.edu.cn
  • 基金资助:
    国家自然科学基金(No.21572170)和电子薄膜与集成器件国家重点实验室开放课题(No.KFJJ201505)项目资助

Synthesis and Application of Organic Molecular Cages

Yu Na1, Ding Huimin1, Wang Cheng1,2*   

  1. 1. Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072;
    2. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
  • Received:2016-07-01 Revised:2016-11-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21572170) and the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (No.KFJJ201505).
近年来,作为一类具有永久空腔结构的三维有机分子,有机分子笼引起了科研工作者的广泛关注,在超分子化学中(主要是主客体相互作用)扮演着重要角色。早期研究中通常采用不可逆法制备有机分子笼,往往存在反应步骤多、分离提纯复杂、合成难度大等问题。为了有效解决上述问题,研究人员将动态共价化学引入到有机分子笼的合成中,从而简单、高效地制备出一系列不同的有机分子笼。关于有机分子笼的应用研究也在不断拓展中。研究发现,有机分子笼不仅在分子识别、分子反应器等方面存在广阔的应用前景,而且其可以通过自组装形成多孔材料,在气体吸附、分离等领域展现了巨大的应用潜能。本文中,我们综述了有机分子笼在合成方法(主要基于动态共价化学反应)及应用研究方面的最新进展。
As a kind of three-dimensional molecule with permanent cavity, organic molecular cages (OMCs) have gained intensive attention of the researchers in recent years, mainly due to their significant role in supramolecular chemistry as host molecules. Firstly, most of OMCs were synthesized via irreversible bond formation. However, the irreversible nature of these reactions usually caused serious problems, such as quite complex purification process and low overall yields. As an alternative approach, dynamic covalent chemistry has shown its power in the construction of OMCs from simple precursors with high yields. In recent years, by using various dynamic covalent reactions, a series of OMCs have been successfully synthesized in large scale, which facilitates their interesting applications. It is found that OMCs can not only show great potential applications in the fields of molecular recognition and molecular flask, but also form crystalline porous materials through self-assembly, which have shown interesting applications in gas absorption and separation. In this review, we will summarize the research progress of OMCs, highlight the synthesis of these OMCs by using various dynamic covalent reactions and also discuss their interesting applications in different areas. Perspectives of OMCs are also mentioned, regarding to their remaining challenging issues.

Contents
1 Introduction
2 Synthesis of organic molecular cages
2.1 Boronic acid condensation
2.2 Imine condensation reaction
2.3 Alkyne/alkene metathesis
2.4 Other dynamic covalent reactions
3 Applications of organic molecular cages
3.1 Molecular recognition
3.2 Molecular flask
3.3 Porous materials
4 Conclusion and outlook

中图分类号: 

()
[1] Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112:673.
[2] 郭瑞梅(Guo R M), 白金泉(Bai J Q), 张恒(Zhang H),谢亚勃(Xie Y B), 李建荣(Li J R). 化学进展(Progress in Chemistry), 2016, 28(2):232.
[3] Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42:548.
[4] Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48:3053.
[5] Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112:869.
[6] Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014, 136:15885.
[7] He Y, Zhou W, Qian G, Chen B. Chem. Soc. Rev., 2014, 43:5657.
[8] Ma L, Abney C, Lin W. Chem. Soc. Rev., 2009, 38:1248.
[9] Chang Z, Yang D H, Xu J, Hu T L, Bu X H. Adv. Mater., 2015, 27:5432.
[10] Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133:19816.
[11] Hu Z, Deibert B J, Li J. Chem. Soc. Rev., 2014, 43:5815.
[12] Lin G, Ding H, Yuan D, Wang B, Wang C. J. Am. Chem. Soc., 2016, 138:3302.
[13] Gui B, Meng X, Chen Y, Tian J, Liu G, Shen C, Zeller M, Yuan D, Wang C. Chem. Mater., 2015, 27:6426.
[14] Fang Q, Wang J, Gu S, Kaspar R B, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y. J. Am. Chem. Soc., 2015, 137:8352.
[15] Meng X, Gui B, Yuan D, Zeller M, Wang C. Sci. Adv., 2016, 2:e1600480.
[16] Tan L L, Li H, Qiu Y C, Chen D X, Wang X, Pan R Y, Wang Y, Zhang S X A, Wang B, Yang Y W. Chem. Sci., 2015, 6:1640.
[17] Hasell T, Cooper A. I. Nat. Rev. Mater., 2016, 1:16053.
[18] Wang Q, Yu C, Zhang C, Long H, Azarnoush S, Jin Y, Zhang W. Chem. Sci., 2016, 7:3370.
[19] Xiong M, Ding H, Li B, Zhou T, Wang C. Curr. Org. Chem., 2014, 18:1965.
[20] Zhang G, Mastalerz M. Chem. Soc. Rev., 2014, 43:1934.
[21] Ashton P R, Girreser U, Giuffrida D, Kohnke F H, Mathias J P, Raymo F M, Slawin A M Z, Stoddart J F, Williams D. J. Am. Chem. Soc., 1993, 115:5422.
[22] Lehn J M. Chem. Eur. J., 1999, 5:2455.
[23] Rowan S J, Cantrill S J, Cousins G R, Sanders J K, Stoddart J F. Angew. Chem. Int. Ed., 2002, 41:898.
[24] Corbett P T, Leclaire J, Vial L, West K R, Wietor J L, Sanders J K, Otto S. Chem. Rev., 2006, 106:3652.
[25] Jin Y, Yu C, Denman R J, Zhang W. Chem. Soc. Rev., 2013, 42:6634.
[26] Severin K. Dalton Trans., 2009, 27:5254.
[27] Kataoka K, James T D, Kubo Y. J. Am. Chem. Soc., 2007, 129:15126.
[28] Takahagi H, Fujibe S, Iwasawa N. Chem. Eur. J., 2009, 15:13327.
[29] Zhang G, Presly O, White F, Oppel I M, Mastalerz M. Angew. Chem. Int. Ed., 2014, 53:1516.
[30] Zhang G, Presly O, White F, Oppel I M, Mastalerz M. Angew. Chem. Int. Ed., 2014, 53:5126.
[31] Klotzbach S, Scherpf T, Beuerle F. Chem. Commun., 2014, 50:12454.
[32] Klotzbach S, Beuerle F. Angew. Chem. Int. Ed., 2015, 54:10356.
[33] Ono K, Johmoto K, Yasuda N, Uekusa H, Fujii S, Kiguchi M, Iwasawa N. J. Am. Chem. Soc., 2015, 137:7015.
[34] Tidwell T T. Angew. Chem. Int. Ed., 2008, 47:1016.
[35] Belowich M E, Stoddart J F. Chem. Soc. Rev., 2012, 41:2003.
[36] Quan M L C, Cram D J. J. Am. Chem. Soc., 1991, 113:2754.
[37] Mendoza S, Davidov P D, Kaifer A E. Chem. Eur. J., 1998, 4:864.
[38] Xu D, Warmuth R. J. Am. Chem. Soc., 2008, 130:7520.
[39] Tozawa T, Jones J T A, Swamy S I, Jiang S, Adams D J, Shakespeare S, Clowes R, Bradshaw D, Hasell T, Chong S Y, Tang C, Thompson S, Parker J, Trewin A, Bacsa J, Slawin A M Z, Steiner A, Cooper A I. Nat. Mater., 2009, 8:973.
[40] Briggs M E, Slater A G, Lunt N, Jiang S, Little M A, Greenaway R L, Hasell T, Battilocchio C, Ley S V, Cooper A I. Chem. Commun., 2015, 51:17390.
[41] Ding H, Yang Y, Li B, Pan F, Zhu G, Zeller M, Yuan D, Wang C. Chem. Commun., 2015, 51:1976.
[42] Ding H, Meng X, Cui X, Yang Y, Zhou T, Wang C, Zeller M, Wang C. Chem. Commun., 2014, 50:11162.
[43] Ding H, Wu X, Zeller M, Xie Y, Wang C. J. Org. Chem., 2015, 80:9360.
[44] Hong S, Rohman M R, Jia J, Kim Y, Moon D, Kim Y, Ko Y H, Lee E, Kim K. Angew. Chem. Int. Ed., 2015, 54:13241.
[45] Liu M, Little M A, Jelfs K E, Jones J T A, Schmidtmann M, Chong S Y, Hasell T, Cooper A I. J. Am. Chem. Soc., 2014, 136:7583
[46] Zhu G H, Hoffman C D, Liu Y, Bhattacharyya S, Tumuluri U, Jue M L, Wu Z L, Sholl D S, Nair S, Jones C W, Lively R P. Chem.-Eur. J., 2016, 22:10743.
[47] Inomata T, Konishi K. Chem. Commun., 2003, 1282.
[48] Taesch J, Heitz V, Topi D? F, Rissanen K. Chem. Commun., 2012, 48:5118.
[49] Zhang C, Wang Q, Long H, Zhang W. J. Am. Chem. Soc., 2011, 133:20995.
[50] Wang Q, Yu C, Long H, Du Y, Jin Y, Zhang W. Angew. Chem. Int. Ed., 2015, 54:7550.
[51] Wang Q, Zhang C, Noll B C, Long H, Jin Y, Zhang W. Angew. Chem. Int. Ed., 2014, 53:10663.
[52] Lee S, Yang A, Moneypenny T P, Moore J S. J. Am. Chem. Soc., 2016, 138:2182.
[53] Horng Y C, Lin T L, Tu C Y, Sung T J, Hsieh C C, Hu C H, Lee H M, Kuo T S. Eur. J. Org. Chem., 2009, 2009:1511.
[54] Li H, Zhang H, Lammer A D, Wang M, Li X, Lynch V M, Sessler J L. Nat. Chem., 2015, 7:1003.
[55] Hutin M, Bernardinelli G, Nitschke J R. Chem. Eur. J., 2008, 14:4585.
[56] Icli B, Christinat N, Toennemann J, Schuettler C, Scopelliti R, Severin K. J. Am. Chem. Soc., 2009, 131:3154.
[57] Jin Y, Jin A, McCaffrey R, Long H, Zhang W. J. Org. Chem., 2012, 77:7392.
[58] Mateus P, Delgado R, Brandao P, Carvalho S, Felix V. Org. Biomol. Chem., 2009, 7:4661.
[59] Acharyya K, Mukherjee P S. Chem. Commun., 2014, 50:15788.
[60] Mosquera J, Zarra S, Nitschke J R. Angew. Chem. Int. Ed., 2014, 53:1556.
[61] Lin Z, Sun J, Efremovska B, Warmuth R. Chem. Eur. J., 2012, 18:12864.
[62] McCaffrey R, Long H, Jin Y, Sanders A, Park W, Zhang W. J. Am. Chem. Soc., 2014, 136:1782.
[63] Sun J K, Zhan W W, Akita T, Xu Q. J. Am. Chem. Soc., 2015, 137:7063.
[64] Mondal B, Acharyya K, Howlader P, Mukherjee P S. J. Am. Chem. Soc., 2016, 138:1709.
[65] Jin Y, Voss B A, Jin A, Long H, Noble R D, Zhang W. J. Am. Chem. Soc., 2011, 133:6650.
[66] Hasell T, Miklitz M, Stephenson A, Little M A, Chong S Y, Clowes R, Chen L, Holden D, Tribello G A, Jelfs K E, Cooper A I. J. Am. Chem. Soc., 2016, 138:1653.
[67] Kim M B, Yoon T U, Hong D Y, Kim S Y, Lee S J, Kim S I, Lee S K, Chang J S, Bae Y S. Chem. Eng. J., 2015, 276:315.
[68] Kim M B, Lee S J, Lee C Y, Bae Y S. Microporous Mesoporous Mater., 2014, 190:356.
[69] Chen L, Reiss P S, Chong S Y, Holden D, Jelfs K E, Hasell T, Little M A, Kewley A, Briggs M E, Stephenson A, Thomas K M, Armstrong J A, Bell J, Busto J, Noel R, Liu J, Strachan D M, Thallapally P K, Cooper A I. Nat. Mater., 2014, 13:954.
[70] Mitra T, Jelfs K E, Schmidtmann M, Ahmed A, Chong S Y, Adams D J, Cooper A I. Nat. Chem., 2013, 5:276.
[71] Hasell T, Zhang H, Cooper A I. Adv. Mater., 2012, 24:5732.
[72] Song Q L, Jiang S, Hasell T, Liu M, Sun S J, Cheetham A K, Sivaniah E, Cooper A I. Adv. Mater., 2016, 28:2629.
[73] Bushell A F, Budd P M, Attfield M P, Jones J T, Hasell T, Cooper A I, Bernardo P, Bazzarelli F, Clarizia G, Jansen J C. Angew. Chem. Int. Ed., 2013, 52:1253.
[74] Zhang J H, Xie S M, Chen L, Wang B J, He P G, Yuan L M. Anal. Chem., 2015, 87:7817.
[75] Zhang J H, Xie S M, Wang B J, He P G, Yuan L M. J. Chromatogr. A, 2015, 1426:174.
[76] Kewley A, Stephenson A, Chen L, Briggs M E, Hasell T, Cooper A I. Chem. Mater., 2015, 27:3207.
[77] James S L. Adv. Mater., 2016, 28:5712.
[78] Giri N, Pópolo M G D, Melaugh G, Greenaway R L, Rätzke K, Koschine T, Pison L, Gomes M F C, Cooper A I, James S L. Nature, 2015, 527:216.
[1] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[2] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[3] 李健, 张恩爽, 刘圆圆, 黄红岩, 苏岳锋, 李文静. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
[4] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[5] 张丹维, 王辉, 黎占亭. 芳香大分子和超分子螺旋管构筑及其功能[J]. 化学进展, 2020, 32(11): 1665-1679.
[6] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[7] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[8] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[9] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[10] 姚臻, 王祖飞, 于云飞, 杨文龙, 曹堃*. 聚双环戊二烯基多孔材料的制备及性能[J]. 化学进展, 2017, 29(5): 524-529.
[11] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[12] 王辉, Ponmani Jeyakkumar, Sangaraiah Nagarajan, 孟江平, 周成合. 苝类化合物研究与应用[J]. 化学进展, 2015, 27(6): 704-743.
[13] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[14] 桂珍, 严枫, 李金昌, 葛梦圆, 鞠熀先. 锁核酸分子信标在分子识别与生物分析中的应用[J]. 化学进展, 2015, 27(10): 1448-1458.
[15] 赵传奇, 曲晓刚*. 稀土手性配合物在核酸识别及调控方面的研究[J]. 化学进展, 2013, 25(04): 539-544.
阅读次数
全文


摘要

有机分子笼的合成及应用