English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 539-544 DOI: 10.7536/PC121055 前一篇   后一篇

• 金属与核酸 •

稀土手性配合物在核酸识别及调控方面的研究

赵传奇, 曲晓刚*   

  1. 中科院长春应用化学研究所化学生物学实验室/稀土资源利用国家重点实验室 长春 130022
  • 收稿日期:2012-10-01 修回日期:2012-12-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 曲晓刚 E-mail:xqu@ciac.jl.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2011CB936004)和国家自然科学基金项目(No.21210002,91213302,21202158)资助

Recent Progress on Molecular Recognition and Modulation of Nucleic Acids Using Chiral Rare-Earth Complexes

Zhao Chuanqi, Qu Xiaogang*   

  1. Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2012-10-01 Revised:2012-12-01 Online:2013-04-24 Published:2013-04-09

通过小分子选择性靶向特殊基因,进而调节该基因所参与的生物学功能一直是生物无机化学领域十分活跃的研究课题。其中,DNA的手性识别引起了人们的高度重视,因为越来越多的研究表明,DNA的手性转化以及DNA构象的多样性与一系列重要的生命过程密切相关。此外,DNA的手性识别对于药物的合成以及DNA构象探针的设计也非常重要。在过去的几十年里,人们合成了大量的手性小分子和金属配合物,能够对B-DNA,Z-DNA以及G-四链DNA表现出特异性识别。由于独特的4fn的电子结构,稀土配合物已经广泛地应用于生物荧光探针以及磁共振成像。另外,作为人工核酸酶,稀土配合物表现出高效的促进DNA和RNA的水解能力,并且不会造成氧化损伤。近年来,人们正努力发现能够选择性靶向DNA进而调制DNA性质的稀土手性配合物,并已经取得了显著的成果。本文总结了目前关于稀土手性配合物对核酸的手性识别及选择性调控等方面的研究进展。

There is great interest in design and synthesis of small molecules which selectively target specific genes to inhibit biological functions. Among these studies, chiral DNA recognition has been received much attention because more evidences have shown that conversions of the chirality and diverse conformations of DNA are involved in a series of important life events. In addition, chiral molecular recognition of DNA is important for rational drug design and developing structural probes of DNA conformation. Over the past few decades, considerable attention has focused on the design of DNA binding chiral agents, especially B-DNA, Z-DNA and G-quadruplex DNA binding agents. Rare-earth compounds, due to a unique 4fn electronic configuration, have been widely used as probes in luminescent resonance energy transfer for bioassays and as reagents for diagnosis in magnetic resonance imaging. As chemical nucleases, rare-earth complexes have also shown a high efficiency to hydrolyze DNA and RNA without redox chemistry. Recently, there is great interest in the design and synthesis of chiral rare-earth complexes which selectively target specific DNA. Excitedly, some interesting results have been reported. This review summarizes the current progress in chiral rare-earth complexes binding to nucleic acids and their chiral selectivity.

Contents
1 Introduction
2 Synthesis of rare-earth chiral compounds
3 Recognition of rare-earth chiral compounds to duplex DNA
4 Recognition of rare-earth chiral compounds to single strand DNA and quadruplex DNA
5 Perspective

中图分类号: 

()

[1] Barton J K, Dannenberg J J, Raphael A L. J. Am. Chem. Soc., 1982, 104: 4967-4969
[2] Barton J K. Science, 1986, 233: 727-734
[3] Qu X G, Trent J O, Fokt I, Priebe W, Chaires J B. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 12032-12037
[4] Yu H J, Wang X H, Fu M L, Ren J S, Qu X G. Nucleic Acids Res., 2008, 36: 5695-5703
[5] Shinohara K I, Sannohe Y, Kaieda S, Tanaka K I, Osuga H, Tahara H, Xu Y, Kawase T, Bando T, Sugiyama H. J. Am. Chem. Soc., 2010, 132: 3778-3782
[6] Xu Y, Zhang Y X, Sugiyama H, Umano T, Osuga H, Tanaka K. J. Am. Chem. Soc., 2004, 126: 6566-6567
[7] Yu H, Zhao C, Chen Y, Fu M, Ren J, Qu X. J. Med. Chem., 2009, 53: 492-498
[8] Zhao C, Geng J, Feng L, Ren J, Qu X. Chem. Eur. J., 2011, 17: 8209-8215
[9] Muller B C, Raphael A L, Barton J K. Proc. Natl Acad. Sci., U. S. A., 1987, 84: 1764-1768
[10] Zeglis B M, Pierre V C, Barton J K. Chem. Commun., 2007, 4565-4579
[11] Schatzschneider U, Barton J K. J. Am. Chem. Soc., 2004, 126: 8630-8631
[12] Bunzli J C G, Piguet C. Chem. Soc. Rev., 2005, 34: 1048-1077
[13] Tsukube H, Shinoda S. Chem. Rev., 2002, 102: 2389-2403
[14] Lo K K W, Choi A W T, Law W H T. Dalton Trans., 2012, 41: 6021-6047
[15] Xu Y, Suzuki Y, Loennberg T, Komiyama M. J. Am. Chem. Soc., 2009, 131: 2871-2874
[16] Di Bari L, Salvadori P. Coord. Chem. Rev., 2005, 249: 2854-2879
[17] Parker D, Dickins R S, Puschmann H, Crossland C, Howard J A K. Chem. Rev., 2002, 102: 1977-2010
[18] Muller G. Dalton Trans., 2009, 9692-9707
[19] Govenlock L J, Mathieu C E, Maupin C L, Parker D, Riehl J P, Siligardi G, Williams J A G. Chem. Commun., 1999, 1699-1700
[20] Frias J C, Bobba G, Cann M J, Hutchison C J, Parker D. Org. Biomol. Chem., 2003, 1: 905-907
[21] Bobba G, Bretonniere Y, Frias J C, Parker D. Org. Biomol. Chem., 2003, 1: 1870-1872
[22] Montgomery C P, Murray B S, New E J, Pal R, Parker D. Acc. Chem. Res., 2009, 42: 925-937
[23] Beeby A, Dickins R S, FitzGerald S, Govenlock L J, Maupin C L, Parker D, Riehl J P, Siligardi G, Williams J A G. Chem. Commun., 2000, 1183-1184
[24] Ha S C, Lowenhaupt K, Rich A, Kim Y G, Kim K K. Nature, 2005, 437: 1183-1186
[25] Zhang H Y, Yu H J, Ren J S, Qu X G. Biophys. J., 2006, 90: 3203-3207
[26] Geng J, Zhao C, Ren J, Qu X. Chem. Commun., 2010, 7187-7189
[27] Geng J, Li M, Ren J, Wang E, Qu X. Angew. Chem. Int. Ed., 2011, 50: 4184-4188
[28] Krezel A, Lisowski J. J. Inorg. Biochem., 2012, 107: 1-5
[29] Meistermann I, Moreno V, Prieto M J, Moldrheim E, Sletten E, Khalid S, Rodger P M, Peberdy J C, Isaac C J, Rodger A, Hannon M J. Proc. Natl Acad. Sci. U. S. A., 2002, 99: 5069-5074
[30] Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1993, 32: 2573-2584
[31] Zhao C, Ren J, Gregoliński J, Lisowski J, Qu X. Nucleic Acids Res., 2012, 40: 8186-8196
[32] Gregoli Dn' ski J, Starynowicz P, Hua K T, Lunkley J L, Muller G, Lisowski J. J. Am. Chem. Soc., 2008, 130: 17761-17773
[33] Gregoliński J, Lisowski J. Angew. Chem. Int. Ed., 2008, 47: 10013-10013
[34] Zhang H Y, Yu H Y, Xu H X, Ren J S, Qu X G. Polyhedron, 2007, 26: 5250-5256
[35] Zhang H Y, Yu H J, Ren J S, Qu X G. FEBS Letters, 2006, 580: 3726-3730
[36] Xu H X, Zhang H Y, Qu X G. J. Inorg. Biochem., 2006, 100: 1646-1652

[1] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[2] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[3] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[4] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[5] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[6] 张丹维, 王辉, 黎占亭. 芳香大分子和超分子螺旋管构筑及其功能[J]. 化学进展, 2020, 32(11): 1665-1679.
[7] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[8] 张聪, 岳巧丽, 陶丽霞, 胡莹莹, 李晨钟, 唐波. 基于核酸探针的光学传感方法和细胞成像研究[J]. 化学进展, 2019, 31(6): 858-871.
[9] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[10] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[11] 单艳群, 王晓英*. 赭曲霉毒素A的电化学适体传感检测[J]. 化学进展, 2018, 30(6): 797-808.
[12] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[13] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[14] 郑小辉, 夏立新, 毛宗万. 基于核酸修饰新策略的抗肿瘤铂配合物设计[J]. 化学进展, 2016, 28(7): 1029-1038.
[15] 姜玲, 阙亚萍, 丁勇, 胡林华, 张昌能, 戴松元. 上/下转换材料在染料敏化太阳电池中的应用进展[J]. 化学进展, 2016, 28(5): 637-646.