English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 879-887 DOI: 10.7536/PC180222 前一篇   后一篇

• 综述 •

超分子组装体系中基于三重态-三重态湮灭的上转换发光

范鸿川1,2, 杨东1,2, 段鹏飞1*   

  1. 1. 国家纳米科学中心 中国科学院纳米科学卓越创新中心 中国科学院纳米系统与多级次制造重点实验室 北京 100190;
    2. 中国科学院大学材料科学与光电技术学院 北京 101408
  • 收稿日期:2018-02-26 修回日期:2018-04-27 出版日期:2018-07-15 发布日期:2018-05-16
  • 通讯作者: 段鹏飞 E-mail:duanpf@nanoctr.cn
  • 基金资助:
    国家自然科学基金项目(No.51673050)资助

Triplet-Triplet Annihilation-Based Upconversion in Supramolecular System

Hongchuan Fan1,2, Dong Yang1,2, Pengfei Duan1*   

  1. 1. Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology(NCNST), Beijing 100190, China;
    2. College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2018-02-26 Revised:2018-04-27 Online:2018-07-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51673050).
超分子组装实质上是对分子的精密组织和调控,结合三重态-三重态湮灭上转换发光,能够调控分子激发态能量的转移,提高上转换效率。本文综述了超分子组装体系中上转换发光的研究进展,包括基于有机凝胶、亲疏溶剂组装的超分子膜、纳米颗粒、聚合物薄膜以及主-客体配位超分子等体系。这些超分子体系为上转换发光提供了良好的基质,取代了传统三重态-三重态湮灭上转换发光的溶液体系,既解决了由于染料溶解性导致的聚集荧光猝灭,又有效地阻隔了氧气,同时,将上转换发光体系固体化而便于集成到器件等各个应用领域。值得注意的是,不同的超分子组装体系中的上转换发光,有着温度响应,可逆开/关效应,甚至是将光能转化为机械能的特性。
Self-assembly is an essential process that can precisely organize molecules into supramolecular systems by artificial control. Introducing this concept into triplet-triplet annihilation-based upconversion(TTA-UC) system, triplet-triplet energy transfer and triplet-triplet annihilation can be regulated easily, thus the upconversion emission efficiency might be significantly improved. This review concentrates on the research progress about supramolecular system-based TTA-UC, including organogel, membrane, nanoparticles, polymer films, host-guest complexes, etc. Instead of conventional solution system, supramolecular systems provide ideal matrixes, which not only avoid the fluorescence quenching caused by aggregation and phase-segregation of dye molecules, but also prevent the triplet oxygen caused quenching. Meanwhile, supramolecular systems are facile enough to integrate TTA-UC system into devices. Furthermore, integrating TTA-UC and different supramolecular systems, variety properties can be achieved, such as temperature responsibility, all-or-none switching, and so on. In brief, supramolecular systems make TTA-UC system more potential to be applied in many fields, such as photonic devices, solar cell, nano-medical, bio-imagining and so forth.
Contents
1 Introduction
2 Triplet-triplet annihilation-based photon upconversion
3 Research progress of the upconvertion supramolecular systems
3.1 Upconversion in gel system
3.2 Upconversion in membrane system
3.3 Upconversion in polymer nanoparticle system
3.4 Upconversion in host-guest complex system
3.5 Upconversion in polymer film system
4 Conclusion and outlook

中图分类号: 

()
[1] Parker C A, Hatchard C G. Trans. Faraday Soc., 1963, 59:284.
[2] Kimizuka N, Yanai N, Morikawa M A. Langmuir, 2016, 32:12304.
[3] Monguzzi A, Mezyk J, Scotognella F, Tubino R, Meinardi F. Phys. Rev. B, 2008, 78.
[4] Zhao J Z, Wu W H, Sun J F, Guo S. Chem. Soc. Rev., 2013, 42:5323.
[5] Ogawa T, Yanai N, Monguzzi A, Kimizuka N. Sci. Rep., 2015, 5:10882.
[6] Ye C Q, Zhou L W, Wang X M, Liang Z Q. Phys. Chem. Chem. Phys., 2016, 18:10818.
[7] 赵兵(Zhao B), 祁宁(Qi N), 张克勤(Zhang K Q). 化学进展(Prog. Chem.), 2016, 28:1615.
[8] 刘政(Liu Z), 孙丽宁(Sun L N), 施利毅(Shi L Y), 张登松(Zhang D S). 化学进展(Prog. Chem.), 2011, 23:153.
[9] 刘涛(Liu T), 孙丽宁(Sun L N), 刘政(Liu Z), 仇衍楠(Qiu Y N), 施利毅(Shi L Y).化学进展(Prog. Chem.), 2012, 24:304.
[10] Duan P, Yanai N, Kimizuka N. J. Am. Chem. Soc., 2013, 135:19056.
[11] Duan P, Yanai N, Kimizuka N. Chem. Commun., 2014, 50:13111.
[12] 王栋东(Wang D D), 董化(Dong H), 雷小丽(Lei X L), 于跃(Yu Y), 焦博(Jiao B), 吴朝新(Wu Z X). 化学进展(Prog. Chem.), 2015, 27:492.
[13] Duan P, Cao H, Zhang L, Liu M. Soft Matter, 2014, 10:5428.
[14] Duan P, Li Y, Jiang J, Wang T, Liu M. Sci. China Chem., 2011, 54:1051.
[15] Liu M, Zhang L, Wang T. Chem. Rev., 2015, 115:7304.
[16] 袁青(Yuan Q), 张莉(Zhang L), 黄昕(Huang X),姜思光(Jiang S G),刘鸣华(Liu M H). 化学进展(Prog. Chem.), 2005, 17:780.
[17] 靳清贤(Jin Q X), 李晶(Li J), 李孝刚(Li X G), 张莉(Zhang L), 方少明(Fang S M), 刘鸣华(Liu M H). 化学进展(Prog. Chem.), 2014, 26:919.
[18] Huo S, Duan P, Jiao T, Peng Q, Liu M. Angew. Chem. Int. Ed., 2017, 56:12174.
[19] Shi Y, Duan P, Huo S, Li Y, Liu M. Adv. Mater., 2018, 30:1705011.
[20] Yang D, Duan P, Zhang L, Liu M. Nat. Commun., 2017, 8:15727.
[21] Liu X C, Fei J B, Zhu P L, Li J B. Chem. Asian J., 2016, 11:2700.
[22] Duan P, Yanai N, Nagatomi H, Kimizuka N. J. Am. Chem. Soc., 2015, 137:1887.
[23] Duan P, Asthana D, Nakashima T, Kawai T, Yanai N, Kimizuka N. Faraday Discuss., 2017, 196:305.
[24] Duan P, Yanai N, Kurashige Y, Kimizuka N. Angew. Chem. Int. Ed., 2015, 54:7544.
[25] 郭培志(Guo P Z), 刘鸣华(Liu M H), 赵修松(Zhao X S). 化学进展(Prog. Chem.), 2008, 20:644.
[26] Huang X, Li C, Jiang S G, Wang X S, Zhang B W, Liu M H. J. Am. Chem. Soc., 2004, 126:1322.
[27] Qiu Y F, Chen P L, Liu M H. J. Am. Chem. Soc., 2010, 132:9644.
[28] Yuan J, Liu M H. J. Am. Chem. Soc., 2003, 125:5051.
[29] Kouno H, Ogawa T, Amemori S, Mahato P, Yanai N, Kimizuka N. Chem. Sci., 2016, 7:5224.
[30] Poznik M, Faltermeier U, Dick B, König B. RSC Adv., 2016, 6:41947.
[31] Chen G Y, Qiu H L, Prasad P N, Chen X Y. Chem. Rev., 2014, 114:5161.
[32] Liu Q, Wang W P, Zhan C Y, Yang T S, Kohane D S. Nano Lett., 2016, 16:4516.
[33] Wang W P, Liu Q, Zhan C Y, Barhoumi A, Yang T S, Wylie R G, Armstrong P A, Kohane D S. Nano Lett., 2015, 15:6332.
[34] Kim J H, Kim J H. J. Am. Chem. Soc., 2012, 134:17478.
[35] Katta K, Busko D, Avlasevich Y, Munoz-Espi R, Baluschev S, Landfester K. Macromol. Rapid Commun., 2015, 36:1084.
[36] Simon Y C, Weder C. J. Mater. Chem., 2012, 22:20817.
[37] Kang J H, Reichmanis E. Angew. Chem. Int. Ed., 2012, 51:11841.
[38] Thevenaz D C, Monguzzi A, Vanhecke D, Vadrucci R, Meinardi F, Simon Y C, Weder C. Mater. Horizons, 2016, 3:602.
[39] Liu Q, Yin B R, Yang T S, Yang Y C, Shen Z, Yao P, Li F Y. J. Am. Chem. Soc., 2013, 135:5029.
[40] Fan C Y, Wu W H, Chruma J J, Zhao J Z, Yang C. J. Am. Chem. Soc., 2016, 138:15405.
[41] Amemori S, Sasaki Y, Yanai N, Kimizuka N. J. Am. Chem. Soc., 2016, 138:8702.
[42] Deng F, Sommer J R, Myahkostupov M, Schanze K S, Castellano F N. Chem. Commun., 2013, 49:7406.
[43] Guo S, Xu L, Xu K J, Zhao J Z, Küçüköz B, Karatay A, Yaglioglu H G, Hayvali M, Elmali A. Chem. Sci., 2015, 6:3724.
[44] Filatov M A, Etzold F, Gehrig D, Laquai F, Busko D, Landfester K, Baluschev S. Dalton Trans., 2015, 44:19207.
[45] Yu S, Zeng Y, Chen J P, Yu T J, Zhang X H, Yang G Q, Li Y Y. RSC Adv., 2015, 5:70640.
[46] Mahato P, Monguzzi A, Yanai N, Yamada T, Kimizuka N. Nat. Mater., 2015, 14:924.
[47] Jiang Z, Xu M, Li F Y, Yu Y L. J. Am. Chem. Soc., 2013, 135:16446.
[48] Zhou J, Liu Q, Feng W, Sun Y, Li F Y. Chem. Rev., 2015, 115:395.
[1] 王阳, 胡珀, 周帅, 傅佳骏. 稀土上转换发光纳米材料的防伪安全应用[J]. 化学进展, 2021, 33(7): 1221-1237.
[2] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[3] 王克让. 基于芳香分子-糖类手性超分子组装体及功能[J]. 化学进展, 2015, 27(6): 775-784.
[4] 张宁强, 黄晓玲, 班琳哲, 苏海全. 葫芦[n]脲应用研究进展[J]. 化学进展, 2015, 27(2/3): 192-211.
[5] 王军, 张阿方. 多肽基超分子螺旋聚合物[J]. 化学进展, 2015, 27(10): 1413-1424.
[6] 刘涛, 孙丽宁, 刘政, 仇衍楠, 施利毅. 稀土上转换发光纳米材料的应用[J]. 化学进展, 2012, 24(0203): 304-317.
[7] 周义锋. 环境响应的智能小分子有机凝胶材料[J]. 化学进展, 2011, 23(01): 125-135.
[8] 陈琳 石乃恩 钱妍 解令海 范曲立 黄维. 点击化学与功能有机/聚合物材料*[J]. 化学进展, 2010, 22(0203): 406-416.
[9] 郭培志,刘鸣华,赵修松. 手性光学开关研究*[J]. 化学进展, 2008, 20(05): 644-649.
[10] 袁青,张莉,黄昕,姜思光,刘鸣华. 手性超分子组装研究进展*[J]. 化学进展, 2005, 17(05): 780-788.