English
新闻公告
More
化学进展 2015, Vol. 27 Issue (6): 775-784 DOI: 10.7536/PC150312 前一篇   

• 综述与评论 •

基于芳香分子-糖类手性超分子组装体及功能

王克让*1,2   

  1. 1. 河北省化学生物学重点实验室 河北大学化学与环境科学学院 保定 07100;
    2. 药物化学与分子诊断教育部重点实验室 保定 071002
  • 收稿日期:2015-03-01 修回日期:2015-04-01 出版日期:2015-06-15 发布日期:2015-04-08
  • 通讯作者: 王克让 E-mail:kerangwang@hbu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21372059)和河北省教育厅优秀青年基金项目(No.YQ2013006)资助

Chiral Supramolecular Assemblies Based on Aromatic Molecules-Carbohydrate Conjugates and Their Applications

Wang Kerang*1,2   

  1. 1. Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 07100;
    2. Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, China
  • Received:2015-03-01 Revised:2015-04-01 Online:2015-06-15 Published:2015-04-08
  • Contact: 10.7536/PC150312 E-mail:kerangwang@hbu.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21372059) and the Foundation of Hebei Education Department (No. YQ2013006).
手性超分子组装体广泛存在于自然界中,因其在材料、化学和生物学等领域广阔的应用前景,引起了科学家们极大的兴趣。其中以糖类分子作为手性源,经分子自组装构筑手性超分子组装体的研究已成为超分子化学领域的研究热点之一。本文综述了基于糖类修饰的苝酰亚胺分子、偶氮苯分子、联苯类分子和卟啉类分子等芳香分子化合物经自组装构筑的手性超分子组装体,介绍了其在有机溶剂和水的混合溶剂、水中的凝胶性质,超分子手性特征和功能,糖分子类型与超分子组装体手性间的关系等,并对基于糖类的手性超分子组装体的前景进行了展望。
In nature, helical self-assembly by non-covalent interactions is a widely observed feature. Inspired by the unique features of fascinating chiral superstructures, chemists have paid more attention to design numerous helical supramolecular assemblies. In them, carbohydrates as a natural source of chirality have been widely investigated in the construction of chiral supramolecular assembly, which possessed potential application in materials, chemistry and biology. This review aims to overview of the chiral supramolecular assembly based on aromatic molecules-carbohydrate conjugates, including perylene bisimides, azobenzene, poly(p-phenylene), porphyrins, and so on. Their gel properties, supramolecular chirality and functionalization in the mixtures of organic solution and water, or in water, and the relationship between their supramolecular chirality and the type of the carbohydrates are described. Furthermore, the potential application and future development of the chiral supramolecular assembly based on carbohydrates are discussed.

Contents
1 Introduction
2 Chiral supramolecular assembly based on perylene bisimides-carbohydrate conjugates
2.1 Solvent controlled supramolecular assembly
2.2 Substituent controlled supramolecular assembly in the bay position
2.3 Temperature controlled supramolecular assembly
2.4 Water soluble supramolecular assembly
3 Chiral supramolecular assembly based on azobenzene-carbohydrate conjugates
4 Chiral supramolecular assembly based on poly(p-phenylene)-carbohydrate conjugates
5 Chiral supramolecular assembly based on porphyrin-carbohydrate conjugates
6 Chiral supramolecular assembly based on other aromatic molecules-carbohydrate conjugates
7 Conclusion

中图分类号: 

()
[1] Mackenzie K R. Chem. Rev., 2006, 106: 1931.
[2] Hannah K, Armitage B A. Acc. Chem. Res., 2004, 37: 845.
[3] Wang Y, Xu J, Wang Y W, Chen H Y. Chem. Soc. Rev., 2013, 42: 2930.
[4] Lim Y B, Moon K S, Lee M. Chem. Soc. Rev., 2009, 38: 925.
[5] 袁菁 (Yuan J), 张莉 (Zhang L), 黄昕 (Huang X), 姜思光(Jiang S G), 刘鸣华 (Liu M H). 化学进展 (Progress in Chemistry), 2005, 17: 780.
[6] 靳清贤 (Jin Q X), 李晶 (Li J), 李孝刚 (Li X G), 张莉(Zhang L), 方少明 (Fang S M), 刘鸣华 (Liu M H). 化学进展 (Progress in Chemistry), 2014, 26: 919.
[7] Kim H J, Kim T, Lee M. Acc. Chem. Res., 2011, 44: 72.
[8] Palmer L C, Stupp S I. Acc. Chem. Res., 2008, 41: 1674.
[9] Ryu J H, Hong D J, Lee M. Chem. Commun., 2008, 9: 1043.
[10] Kim Y, Li W, Shin S, Lee M. Acc. Chem. Res., 2013, 46: 2888.
[11] Dube D H, Bertozzi C R. Nat. Rev. Drug Discov., 2005, 4: 477.
[12] Ohtsubo K, Marth J D. Cell, 2006, 126: 855.
[13] Kim B S, Hong D J, Bae J, Lee M. J. Am. Chem. Soc., 2005, 127: 16333.
[14] Kim B S, Yang W Y, Ryu J H, Yoo Y S, Lee M. Chem. Commun., 2005, 15: 2035.
[15] Lee D W, Kim T, Park II S, Huang Z, Lee M. J. Am. Chem. Soc., 2012, 134: 14722.
[16] Ryu J H, Lee E, Lim Y B, Lee M. J. Am. Chem. Soc., 2007, 129: 4808.
[17] Kim T, Lee H, Kim Y, Nam J M, Lee M. Chem. Commun., 2013, 49: 3949.
[18] Lim Y B, Lee M. Org. Biomol. Chem., 2007, 5: 401.
[19] John G, Masuda M, Okada Y, Shimizu T. Adv. Mater., 2001, 13: 715.
[20] Jung J H, John G, Yoshida K, Shimizu T. J. Am. Chem. Soc., 2002, 124: 10674.
[21] Jung J H, Do Y, Lee Y A, Shimizu T. Chem. Eur. J., 2005, 11: 5538.
[22] Jung J H, John G, Masuda M, Yoshida K, Shinkai S, Shimizu T. Langmuir, 2001, 17: 7229.
[23] John G, Jung J H, Minamikawa H, Yoshida K, Shimizu T. Chem. Eur. J., 2002, 8: 5494.
[24] Vemula P K, Aslam U, Mallia V A, John G. Chem. Mater., 2007, 19: 138.
[25] Vemula P K, John G. Acc. Chem. Res., 2008, 41: 769.
[26] Shimizu T, Masuda M, Minamikawa H. Chem. Rev., 2005, 105: 1401.
[27] Würthner F. Chem. Commun., 2004, 14: 1564.
[28] Schenning A P H J, Herrikhuyzen J V, Jonkheijm P, Chen Z J, Würthner F, Meijer E W. J. Am. Chem. Soc., 2002, 124: 10252.
[29] Krieg E, Rybtchinski B. Chem. Eur. J., 2011, 17: 9016.
[30] Ho R M, Li M C, Lin S C, Wang H F, Lee Y D, Hasegawa H, Thomas E. J. Am. Chem. Soc., 2012, 134: 10974.
[31] Kumar M, George S J. Chem. Sci., 2014, 5: 3025.
[32] Seki T, Asano A, Seki S, Kikkawa Y, Murayama H, Karatsu T, Kitamura A, Yagai S. Chem. Eur. J., 2011, 17: 3598.
[33] Stepaneko V, Li X Q, Gershberg J, Würthner F. Chem. Eur. J., 2013, 19: 4176.
[34] Dehm V, Chen Z J, Baumeister U, Prins P, Siebbeles L D A, Würthner F. Org. Lett., 2007, 9: 1085.
[35] Ke D M, Tang A L, Zhan C L, Yao J N. Chem. Commun., 2013, 49: 4914.
[36] Kumar J, Nakashima T, Tsumatori H, Mori M, Naito M, Kawai T. Chem. Eur. J., 2013, 19: 14090.
[37] Kumar J, Nakashima T, Kawai T. Langmuir, 2014, 30: 6030.
[38] Huang Y W, Hu J C, Kuang W F, Wei Z X, Faul C F J. Chem. Commun., 2011, 47: 5554.
[39] Huang Y W, Wang J C, Wei Z X. Chem. Commun., 2014, 50: 8343.
[40] Hu J C, Kuang W F, Deng K, Zou W J, Huang Y W, Wei Z X, Faul C F J. Adv. Funct. Mater., 2012, 22: 4149.
[41] Guo Q, Wang J C, Zhu L Y, Wei Z X. Chin. J. Chem., 2015, 33: 95.
[42] Huang Y W, Wang J C, Zhai H Y, Zhu L Y, Wei Z X. Soft Mater., 2014, 10: 7920.
[43] Sun K, Xiao C Y, Liu C M, Fu W X, Wang Z H, Li Z B. Langmuir, 2014, 30: 11040.
[44] Wang K R, An H W, Wu L, Zhang J C, Li X L. Chem. Commun., 2012, 48: 5644.
[45] Wang K R, An H W, Wang Y Q, Zhang J C, Li X L. Org. Biomol. Chem., 2013, 11: 1007.
[46] Wang K R, An H W, Rong R X, Cao Z R, Li X L. Biosens. Bioelectron., 2014, 58: 27.
[47] Wang K R, Han D, Cao G J, Li X L. Chem. Asian J., 2015, 10: 1204.
[48] Samanta A, Stuart M C A, Ravoo B J. J. Am. Chem. Soc., 2012, 134: 19909.
[49] Srinivas O, Mitra N, Surolia A, Jayaraman N. J. Am. Chem. Soc., 2002, 124: 2124.
[50] Weber T, Chandrasekaran V, Stamer I, Thygesen M B, Terfort A, Lindhorst T K. Angew. Chem. Int. Ed., 2014, 53: 14583.
[51] Kobayashi H, Friggri A, Koumoto K, Amaike M, Shinkai S, Reinhoudt D N. Org. Lett., 2002, 4: 1423.
[52] Kobayashi H, Koumoto K, Jung J H, Shinkai S. J. Chem. Soc. Perkin Trans. 2, 2002, 1930.
[53] Ogawa Y, Yoshiyama C, Kitaoka T. Langmuir, 2012, 28: 4404.
[54] Clemente M J, Tejedor R M, Romero P, Fitremann J, Oriol L. RSC Adv., 2012, 2: 11419.
[55] Rajaganesh R, Gopal A, Das T M, Ajayaghosh A. Org. Lett., 2012, 14: 748.
[56] Cui J, Liu A, Guan Y, Zheng J, Shen Z, Wan X. Langmuir, 2010, 26: 3615.
[57] Cui J, Zheng Y, Shen Z, Wan X. Langmuir, 2010, 26: 15508.
[58] Cui J, Shen Z, Wan X. Langmuir, 2010, 26: 97.
[59] Štěpánek P, Dukh M, Šaman D, Moravcová J, Knie?o L, Monti D, Venanzi M, Mancini G, Drašar P. Org. Biomol. Chem., 2007, 5: 960.
[60] Monti D, Venanzi M, Gatto E, Mancini G, Sorrenti A, Štěpánek P, Drašar P. New J. Chem., 2008, 32: 2127.
[61] Zheng J, Qiao W, Wan X, Gao J P, Wang Z Y. Chem. Mater., 2008, 20: 6163.
[62] Schmid S, Mena-Osteritz E, Kopyshev A, Bäuerle P. Org. Lett., 2009, 11: 5098.
[63] Pescitelli G, Omar O H, Operamolla A, Farinola G M, Bari L D. Macromolecules, 2012, 45: 9626.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[3] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[4] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[5] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[6] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[7] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[8] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[9] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[10] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[11] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[12] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[13] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[14] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[15] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.