English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1221-1237 DOI: 10.7536/PC200726 前一篇   后一篇

• 综述 •

稀土上转换发光纳米材料的防伪安全应用

王阳, 胡珀(), 周帅*(), 傅佳骏*   

  1. 南京理工大学化工学院 南京 210094
  • 收稿日期:2020-07-13 修回日期:2020-08-25 出版日期:2020-12-28 发布日期:2020-12-28
  • 通讯作者: 周帅, 傅佳骏
  • 基金资助:
    国家自然科学基金面上项目(52072177); 中央高校基本科研业务费(30918012201); 中央高校基本科研业务费(30919011405)

Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors

Yang Wang, Po Hu(), Shuai Zhou(), Jiajun Fu   

  1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2020-07-13 Revised:2020-08-25 Online:2020-12-28 Published:2020-12-28
  • Contact: Shuai Zhou, Jiajun Fu
  • Supported by:
    National Science Foundation of China(52072177); Fundamental Research Funds for the Central Universities(30918012201); Fundamental Research Funds for the Central Universities(30919011405)

与有机荧光染料、量子点等传统发光材料相比,稀土上转换发光纳米材料(UCNPs)具有反斯托克斯位移大、发光谱带多且狭窄、荧光寿命长、光化稳定性高、无光闪烁和光漂白等独特优势,将其与图形编码、防伪印刷技术结合可获得难以仿冒的隐形荧光图案,这已经成为防伪安全领域的应用研究热点。本文首先介绍了UCNPs的上转换发光机理及其合成方法,然后阐述近年来UCNPs在防伪安全领域的研究现状,归纳总结出上转换防伪安全图案的四种形式(NIR单波长激发、NIR双波长激发、NIR/UV双波长激发以及三波长激发)。最后,本文指出UCNPs应用于防伪安全领域所面临的问题与挑战,并对未来的发展方向进行了展望。

Compared with the traditional luminescent materials such as organic dyes and quantum dots, rare-earth upconversion nanophosphors (UCNPs) have the unique advantages of large anti-Stokes shift, shaper and multicolor emission bands, long fluorescence life, high photostability and chemical stability, no photoblinking and photobleaching. The combination of UCNPs, graphical coding and anticounterfeiting printing technologies enables the formulation of invisible fluorescent patterns that are difficult to counterfeit. This has become a research hotspot in the field of anticounterfeiting and security. In this paper, the upconversion mechanism and synthetic methods of UCNPs are first introduced. Afterwards, the research status of UCNPs in the field of anticounterfeiting and security is elaborated, and four forms of upconversion anticounterfeiting and security patterns are summarized (i.e. NIR single-wavelength excitation, NIR dual-wavelength excitation, NIR/UV dual-wavelength excitation and three-wavelength excitation). Finally, the problems and challenges that UCNPs are facing in the field of anticounterfeiting and security, and future development directions are also proposed.

Contents

1 Introduction

2 Overview of upconversion luminescence mechanism of UCNPs

3 Synthetic methods of UCNPs

3.1 Co-precipitation method

3.2 Hydrothermal/solvothermal method

3.3 Thermal decomposition method

3.4 Other synthetic methods

4 Application of UCNPs in the field of anticounterfeiting security

4.1 NIR single wavelength excited upconversion anticounterfeiting security pattern

4.2 NIR dual wavelength excited upconversion anticounterfeiting security pattern

4.3 NIR/UV dual wavelength excited upconversion anticounterfeiting security pattern

4.4 Three wavelength excited upconversion anticounterfeiting security pattern

5 Conclusion and outlook

()
图1 简化后的上转换过程示意图:Ⅰ.激发态吸收,Ⅱ.连续能量传递,Ⅲ.合作上转换,Ⅳ.光子雪崩和Ⅴ.能量迁移辅助上转换。棕色实线、绿色实线、褐红色虚线和红色梯度实线分别表示吸收光子、激发、跃迁和辐射过程;Ⅵ. E r 3 +、T m 3 +和H o 3 +的能级跃迁谱图
Fig. 1 Simplified schematic illustrations of upconversion processes of Ⅰ. ESA, Ⅱ. SET, Ⅲ. CU, Ⅳ. EMU, and Ⅴ. PA. The brown full lines, green full lines, maroon dotted lines, and red gradient full lines represent photon absorption, excitation, transition, and radiation processes, respectively; Ⅵ. The energy level transition spectrum of E r 3 +、T m 3 + and H o 3 +
表1 UCNPs的合成方法及其特点.
Table 1 Synthetic methods of UCNPs and their characteristics
图2 共沉淀法、水热/溶剂热法和热分解法的装置图与合成流程图
Fig. 2 The device diagram and synthesis flow chart of Co-precipitation method, hydrothermal/solvothermal method and thermal decomposition method
图3 (a)带有嵌入式信息“SDSM&T”的QR(快速响应)码[75];(b)AFM纳米静电印刷过程的原理图、防伪二维码图案及厚度与光致发光强度关系图[76];(c)在日光下的二维码和用980 nm激光束激发的二维码[77];(d)丝网印刷图案用于人民币防伪应用[78];(e)1550 nm激发下带有“西北大学”字样的印模[79];(f)带有指纹的金-银复合膜在日光下,在980 nm激发下及放大后的图案[80]
Fig. 3 (a)QR (Quick Response) code with embedded message “SDSM&T” [75];(b)Schematics of the AFM nanoxerography process、anticounterfeiting QR code and relationship between thickness and photoluminescence intensity[76];(c)The QR code in daylight and excited by 980 nm excitation laser beam respectively;(d)Screen printing patterns are applied for RMB anticounterfeiting application[78];(e)Stamper with the Chinese words “Northwest University” under 1550 nm excitation [79];(f)Pattern of Au-Ag composite film with fingerprint under sunlight, excitation under 980 nm and magnification[80]
图4 (a)具有字符“USD”、“U”、“S”、“D”和“SD”的QR码的上转换图案[81];(b)用RGB-UCNP油墨打印的多色二维码的上转换图案[82];(c)开发的智能手机应用程序与上转换防伪二维码相结合的原理[20];(d)通过低成本策略(旋涂、冲压和丝网印刷)制作的防伪标签,用于模切包装的安全应用[1];(e)980 nm激光激发下在A4纸上用RGB-UCHMs墨水喷墨打印的图案的多功能光学显微照片[83]
Fig. 4 (a) Upconverting image of QR code which has the literal text “USD”, “U”,”S”,”D” and “SD” [81];(b) Upconversion image of the multi-colored QR code printed using RGB-UCNP inks[82];(c) The principle of the combination of the developed smartphone application and the upconversion anticounterfeiting QR code[20];(d) The fabricated anticounterfeiting labels via low-cost strategies (spin-coating, stamping and screen printing for die-cutting of package security application[1];(e) Versatile optical micrographs of the inkjet printing patterns based on RGB-UCHMs inks on an A4 paper substrate under 980 nm laser excitation[83]
图5 (a)在弱荧光环境下,“IMT”学院徽标(13 mm×6 mm)的透明荧光标签的图案[84];(b)调制功率快速扫描激光的平板显示板的概念与喷墨打印的荧光防伪图案[85];(c)分别在室温和413 K下,980 nm激发在纸上用UCNPs油墨画的图案的相应数码显微照片[87];(d)温度响应型防伪油墨打印的图案[88];(e)日光下PMIU/PET膜上弯曲时的马赛克图案和防伪衣服图标[89];(f)角度依赖性红外防伪成像[90]
Fig. 5 (a) The images of transparent ?uorescent label of “IMT” institute logo (13 mm×6 mm) under weak ?uorescent light environment [84];(b) Concept for flat-panel display by the fast scanning of a laser with modulated power and ?uorescent anticounterfeiting patterns by inkjet printing[85];(c) Corresponding digital micrographs of patterns drawn on paper with UCNPs ink excited with 980 nm at room temperature and 413 K, respectively[87];(d) A pattern printed with temperature responsive anticounterfeiting ink[88];(e) Curving mosaic pattern on the PMIU/PET film and clothes icon anticounterfeiting under the daylight[89];(f) Angle-dependent infrared anti-counterfeit imaging[90]
图6 (a)在不同强度的980 nm激光激励下,记录有无微珠覆盖的UCNP嵌入PDMS上转换膜的上转换发光图像[91];(b)在脉冲激光激发下,用于防伪的NaYF4∶Er/Tm@NaYF4纳米晶的可调发光颜色照片[92];(c)NaGdF4∶Yb/Er@NaYF4∶Yb@NaGdF4∶Yb/Nd@NaYF4@NaGdF4∶Yb/Tm@NaYF4的正交激发发射的防伪发光图像[93];(d)纳米晶体/PDMS复合材料的全彩三维显示的演示[94];(e)在808 nm激发和980 nm激发下的加密信息“8888”和“UCNPs-INK”的图像[95];(f)Er和Tm@Tb@Y@Er@Nd@Y纳米颗粒分别在980 nm和808 nm稳态激发和时间门控状态下激发的伪彩上转换发光图像[96];(g)三种情况下人民币中“100”的上转换发光图案的颜色变化[97];(h)UCNPs物理混合的丝网印刷图案与应用于防止红酒仿冒的透明PVC自粘标签[98]
Fig. 6 (a)Upconversion luminescence images of the UCNP-embedded PDMS upconverting films recorded with and without the microbead coverage upon 980 nm laser excitation at different intensities[91];(b)The photograph of tunable emission color of NaYF4∶Er/Tm@NaYF4 nanocrystals under pulsed laser excitation for anti-counterfeiting[92];(c)Anticounterfeiting luminescence images of the orthogonal excitations-emissions NaGdF4∶Yb/Er@NaYF4∶Yb@NaGdF4∶Yb/Nd@NaYF4@NaGdF4∶Yb/Tm@NaYF4[93];(d)Demonstration of full-colour volumetric three-dimensional display in nanocrystal/PDMS composite materials[94];(e)Images of the encrypted information “8888” and “UCNPs-INK” under 808 nm excitation and 980 nm excitation [95];(f)Pseudocolored upconversion luminescence images of Er and Tm@Tb@Y@Er@Nd@Y nanoparticles under steady-state and time-gated state of 980 and 808 nm excitation, respectively[96];(g)The color change of the "100" UCL patterns in RMB under three conditions[97];(h)Physically mixed screen printing patterns of UCNPs and transparent PVC self-adhesive label for wine anticounterfeiting applications[98]
图7 (a)透明膜上印有指纹的明场、上转换和下转换荧光图像[99];(b)双模防伪:使用上转换荧光油墨打印的二维码和荧光油墨打印的“BEBC”符号[100];(c)使用研究的Yb/Ho/Mn(上:HDU)和Yb/Er/Mn(下:FJNU)三掺杂荧光粉的双模发光标签照片[101];(d)基于UCNPs/IPQDs组合的双模式防伪策略示意图。在近红外光和紫外光激发下显示了不同的图案[102];(e)人民币中的“100”在低、高功率980 nm激光及365 nm紫外光激发下的照片[103];(f)光刻过程的示意图,四叶幸运草防伪图案在980 nm、808 nm和254 nm激励下的光学显微照片和相应的发射光谱[104];(g)在980 nm、800 nm和1530 nm激发下观察到的不同数字及颜色[105]
Fig. 7 (a)Bright field, UC and DC fluorescence images of fingerprints impressed on the transparent film[99];(b)Dual-mode anticounterfeiting: two-dimensional code printed using upconversion fluorescent ink and “BEBC” mark printed using downconversion fluorescent ink [100];(c)Photographs of dual-modal luminescent labeling using the investigated Yb/Ho/Mn (top: HDU) and Yb/Er/Mn (bottom: FJNU) tri-doped phosphor[101];(d)Schematic illustration of the dual-mode anticounterfeiting strategy based on the UCNPs/IPQDs compositions. Different images were obtained under NIR and UV excitations[102];(e)Photograph of "100" in RMB under the excitation of low and high power of 980 nm laser and 365 nm UV light[103];(f)Schematic illustration of photolithography procedures, optical micrographs and corresponding emission spectra of four-leaf clover-shaped anticounterfeiting patterns under the excitation of 980 nm, 808 nm and 254 nm[104];(g)Different numbers and colors observed under 980 nm, 800 nm and 1530 nm excitation[105]
[1]
Yao W J, Tian Q Y, Liu J, Xue Q W, Li M X, Liu L, Lu Q, Wu W. Nanoscale, 2017, 9(41):15982.

doi: 10.1039/C7NR05744J     URL    
[2]
Li R M, Zhang Y T, Tan J, Wan J X, Guo J, Wang C C. ACS Appl Mater Inter., 2016, 8:9384.

doi: 10.1021/acsami.6b02359     URL    
[3]
Park K, Jung K, Kwon S J, Jang H S, Byun D, Han I K, Ko H. Adv. Funct. Mater., 2016, 26(43):7836.

doi: 10.1002/adfm.v26.43     URL    
[4]
Ren W, Lin G G, Clarke C, Zhou J J, Jin D Y. Adv. Mater., 2020, 32(18):1901430.

doi: 10.1002/adma.v32.18     URL    
[5]
Tan H H, Gong G, Xie S W, Song Y, Zhang C F, Li N, Zhang D, Xu L J, Xu J X, Zheng J. Langmuir, 2019, 35:11503.

doi: 10.1021/acs.langmuir.9b01919     URL    
[6]
Oh S W, Kim C W, Cha H J, Pal U, Kang Y S. Adv. Mater., 2009, 21(48):4987.

doi: 10.1002/adma.200901595     URL    
[7]
Takazawa K, Kitahama Y, Kimura Y, Kido G. Nano Lett., 2005, 5(7):1293.

pmid: 16178226
[8]
Li F, Wang X D, Xia Z G, Pan C F, Liu Q L. Adv. Funct. Mater., 2017, 27(17):1700051.

doi: 10.1002/adfm.v27.17     URL    
[9]
Bai L Q, Xue N, Zhao Y F, Wang X R, Lu C, Shi W Y. Nano Res., 2018, 11(4):2034.

doi: 10.1007/s12274-017-1820-z     URL    
[10]
Jiang K, Zhang L, Lu J F, Xu C X, Cai C Z, Lin H W. Angew. Chem. Int. Ed., 2016, 55(25):7231.

doi: 10.1002/anie.201602445     URL    
[11]
Tian Z, Li D, Ushakova E V, Maslov V G, Zhou D, Jing P T, Shen D Z, Qu S N, Rogach A L. Adv. Sci., 2018, 5(9):1800795.

doi: 10.1002/advs.201800795     URL    
[12]
Dong H, Sun L D, Yan C H. Chem. Soc. Rev., 2015, 44(6):1608.

doi: 10.1039/c4cs00188e     pmid: 25242465
[13]
Shikha S, Salafi T, Cheng J T, Zhang Y. Chem. Soc. Rev., 2017, 46(22):7054.

doi: 10.1039/c7cs00271h     pmid: 29022018
[14]
Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G. Nat. Mater., 2011, 10(12):968.

doi: 10.1038/nmat3149     URL    
[15]
Wang F, Liu X G. J. Am. Chem. Soc., 2008, 130(17):5642.

doi: 10.1021/ja800868a     URL    
[16]
Zhang Y H, Zhang L X, Deng R R, Tian J, Zong Y, Jin D Y, Liu X G. J. Am. Chem. Soc., 2014, 136(13):4893.

doi: 10.1021/ja5013646     URL    
[17]
Chen G Y, Damasco J, Qiu H L, Shao W, Ohulchanskyy T Y, Valiev R R, Wu X, Han G, Wang Y, Yang C H, Ågren H, Prasad P N. Nano Lett., 2015, 15(11):7400.

doi: 10.1021/acs.nanolett.5b02830     URL    
[18]
Liu H L, Xu J H, Wang H, Liu Y J, Ruan Q F, Wu Y M, Liu X G, Yang J K W. Adv. Mater., 2019, 31(15):1807900.

doi: 10.1002/adma.v31.15     URL    
[19]
Kumar P, Dwivedi J, Gupta B K. J. Mater. Chem. C, 2014, 2(48):10468.

doi: 10.1039/C4TC02065K     URL    
[20]
You M L, Lin M, Wang S R, Wang X M, Zhang G, Hong Y, Dong Y Q, Jin G R, Xu F. Nanoscale, 2016, 8(19):10096.

doi: 10.1039/C6NR01353H     URL    
[21]
Chen B. Doctoral Dissertation of Zhejiang University, 2017.
( 陈冰. 浙江大学博士论文, 2017.)
[22]
Tu L P, Liu X M, Wu F, Zhang H. Chem. Soc. Rev., 2015, 44(6):1331.

doi: 10.1039/C4CS00168K     URL    
[23]
Liu Q, Yang T S, Feng W, Li F Y. J. Am. Chem. Soc., 2012, 134(11):5390.

doi: 10.1021/ja3003638     URL    
[24]
Auzel F. Chem. Rev., 2004, 104(1):139.

doi: 10.1021/cr020357g     URL    
[25]
Lingeshwar Reddy K, Balaji R, Kumar A, Krishnan V. Small, 2018, 14(37):1801304.

doi: 10.1002/smll.201801304     pmid: 30066489
[26]
Yao W J, Tian Q Y, Wu W. Adv. Opt. Mater., 2019, 7(6):1801171.

doi: 10.1002/adom.v7.6     URL    
[27]
Chen J, Zhao J X. Sensors, 2012, 12(3):2414.

doi: 10.3390/s120302414     URL    
[28]
Sun Y J, Chen Y, Tian L J, Yu Y, Kong X G, Zhao J W, Zhang H. Nanotechnology, 2007, 18(27):275609.

doi: 10.1088/0957-4484/18/27/275609     URL    
[29]
Chen G Y, Ohulchanskyy T Y, Kumar R, Ågren H, Prasad P N. ACS Nano, 2010, 4(6):3163.

doi: 10.1021/nn100457j     URL    
[30]
Chen G Y, Ohulchanskyy T Y, Kachynski A, Ågren H, Prasad P N. ACS Nano, 2011, 5(6):4981.

doi: 10.1021/nn201083j     URL    
[31]
Auzel F. J. Lumin., 1990, 45(1/6):341.

doi: 10.1016/0022-2313(90)90189-I     URL    
[32]
Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F, Liu X G. J. Am. Chem. Soc., 2012, 134(51):20849.

doi: 10.1021/ja3111048     URL    
[33]
Chivian J S, Case W E, Eden D D. Appl. Phys. Lett., 1979, 35(2):124.

doi: 10.1063/1.91044     URL    
[34]
Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A. Adv. Funct. Mater., 2009, 19(18):2924.

doi: 10.1002/adfm.v19:18     URL    
[35]
Zhou B, Tao L L, Tsang Y H, Jin W. J. Mater. Chem. C, 2013, 1(28):4313.

doi: 10.1039/c3tc30654b     URL    
[36]
Ding M Y, Chen D Q, Wan Z Y, Zhou Y, Zhong J S, Xi J H, Ji Z G. J. Mater. Chem. C, 2015, 3(21):5372.

doi: 10.1039/C5TC00881F     URL    
[37]
Liu S, Chen G Y, Ohulchanskyy T Y, Swihart M T, Prasad P N. Theranostics, 2013, 3(4):275.

doi: 10.7150/thno.4983     URL    
[38]
Lezhnina M M, Jüstel T, Kätker H, Wiechert D U, Kynast U H. Adv. Funct. Mater., 2006, 16(7):935.

doi: 10.1002/(ISSN)1616-3028     URL    
[39]
Wu M, Yan L, Wang T, Zhou B, Zhang Q Y. Adv. Funct. Mater., 2019, 29(25):1804160.

doi: 10.1002/adfm.v29.25     URL    
[40]
Zhou B, Yang W F, Han S Y, Sun Q, Liu X G. Adv. Mater., 2015, 27(40):6208.

doi: 10.1002/adma.201503482     URL    
[41]
Cheng X W, Pan Y, Yuan Z, Wang X W, Su W H, Yin L S, Xie X J, Huang L. Adv. Funct. Mater., 2018, 28(22):1800208.

doi: 10.1002/adfm.v28.22     URL    
[42]
Wang G F, Qin W P, Zhang J S, Zhang J S, Wang yan, Cao C Y, Wang L L, Wei G D, Zhu P F, Kim R. J. Phys. Chem. C, 2008, 112(32):12161.

doi: 10.1021/jp8004713     URL    
[43]
Boyer J C, Vetrone F, Cuccia L A, Capobianco J A. J. Am. Chem. Soc., 2006, 128(23):7444.

doi: 10.1021/ja061848b     URL    
[44]
Patra A, Friend C S, Kapoor R, Prasad P N. Chem. Mater., 2003, 15(19):3650.
[45]
Xiong L Q, Chen Z G, Yu M X, Li F Y, Liu C, Huang C H. Biomaterials, 2009, 30(29):5592.

doi: 10.1016/j.biomaterials.2009.06.015     pmid: 19564039
[46]
Xu L L, Yu Y N, Li X G, Somesfalean G, Zhang Y G, Gao H, Zhang Z G. Opt. Mater., 2008, 30(8):1284.

doi: 10.1016/j.optmat.2007.06.007     URL    
[47]
Han S Y, Qin X, An Z F, Zhu Y H, Liang L L, Han Y, Huang W, Liu X G. Nat. Commun., 2016, 7(1):1.
[48]
Wang M, Abbineni G, Clevenger A, Mao C B, Xu S K. Nanomed.: Nanotechnol. Biol. Med., 2011, 7(6):710.

doi: 10.1016/j.nano.2011.02.013     URL    
[49]
Yan C L, Zhao H G, Perepichka D F, Rosei F. Small, 2016, 12(29):3888.

doi: 10.1002/smll.v12.29     URL    
[50]
Yi G S, Lu H C, Zhao S Y, Ge Y, Yang W J, Chen D P, Guo L H. Nano Lett., 2004, 4(11):2191.

doi: 10.1021/nl048680h     URL    
[51]
Luwang M N, Ningthoujam R S, Srivastava S K, Vatsa R K. J. Am. Chem. Soc., 2011, 133(9):2998.

doi: 10.1021/ja1092437     pmid: 21309554
[52]
Parchur A K, Ningthoujam R S. Dalton Trans., 2011, 40(29):7590.

doi: 10.1039/c1dt10327j     pmid: 21695334
[53]
Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437(7055):121.

doi: 10.1038/nature03968     URL    
[54]
Wang L Y, Li Y D. Chem. Mater., 2007, 19(4):727.

doi: 10.1021/cm061887m     URL    
[55]
Wang L Y, Li Y D. Nano Lett., 2006, 6(8):1645.

doi: 10.1021/nl060684u     URL    
[56]
Li C X, Quan Z W, Yang J, Yang P P, Lin J. Inorg. Chem., 2007, 46(16):6329.

doi: 10.1021/ic070335i     URL    
[57]
Li C X, Quan Z W, Yang P P, Yang J, Lian H Z, Lin J. J. Mater. Chem., 2008, 18(12):1353.

doi: 10.1039/b717363f     URL    
[58]
Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G. Nature, 2010, 463(7284):1061.

doi: 10.1038/nature08777     URL    
[59]
Zhang Y W, Sun X, Si R, You L P, Yan C H. J. Am. Chem. Soc., 2005, 127(10):3260.

pmid: 15755126
[60]
Yi G S, Chow G M. Adv. Funct. Mater., 2006, 16(18):2324.

doi: 10.1002/(ISSN)1616-3028     URL    
[61]
Ye X, Collins J E, Kang Y, Chen J, Chen D T N, Yodh A G, Murray C B. PNAS, 2010, 107(52):22430.

doi: 10.1073/pnas.1008958107     URL    
[62]
Liu D M, Xu X X, Du Y, Qin X, Zhang Y H, Ma C S, Wen S H, Ren W, Goldys E M, Piper J A, Dou S X, Liu X G, Jin D Y. Nat. Commun., 2016, 7(1):1.
[63]
Chen G J, Jaskula-Sztul R, Esquibel C R, Lou I, Zheng Q F, Dammalapati A, Harrison A, Eliceiri K W, Tang W P, Chen H, Gong S Q. Adv. Funct. Mater., 2017, 27(8):1604671.

doi: 10.1002/adfm.v27.8     URL    
[64]
Zhu X H, Zhang J, Liu J L, Zhang Y. Adv. Sci., 2019, 6(22):1901358.

doi: 10.1002/advs.v6.22     URL    
[65]
Zhou B, Shi B Y, Jin D Y, Liu X G. Nat. Nanotechnol., 2015, 10(11):924.

doi: 10.1038/nnano.2015.251     pmid: 26530022
[66]
Li X, Cheng Y, Xu J, Lin H, Wang Y S. J. Mater. Sci., 2020, 55(16):6891.

doi: 10.1007/s10853-020-04512-x     URL    
[67]
Wu Y M, Xu J H, Liu X G. J. Rare Earths, 2020, 38(5):546.

doi: 10.1016/j.jre.2020.01.015     URL    
[68]
Yuan Z, Zhang L, Li S Z, Zhang W N, Lu M, Pan Y, Xie X J, Huang L, Huang W. J. Am. Chem. Soc., 2018, 140(45):15507.

doi: 10.1021/jacs.8b10122     pmid: 30350963
[69]
Zuo J, Sun D P, Tu L P, Wu Y N, Cao Y H, Xue B, Zhang Y L, Chang Y L, Liu X M, Kong X G, Buma W J, Meijer E J, Zhang H. Angew. Chem. Int. Ed., 2018, 57(12):2979.

doi: 10.1002/anie.201801883     URL    
[70]
Liu J, Rijckaert H, Zeng M, Haustraete K, Laforce B, Vincze L, van Driessche I, Kaczmarek A M, van Deun R. Adv. Funct. Mater., 2018, 28(17):1707365.

doi: 10.1002/adfm.v28.17     URL    
[71]
Ren Y T, Yang Z W, Li M J, Ruan J F, Zhao J Y, Qiu J B, Song Z G, Zhou D C. Adv. Optical Mater., 2019, 7(15):1900213.

doi: 10.1002/adom.v7.15     URL    
[72]
Lee J, Yoo B, Lee H, Cha G D, Lee H S, Cho Y, Kim S Y, Seo H, Lee W, Son D, Kang M, Kim H M, Park Y I, Hyeon T, Kim D H. Adv. Mater., 2017, 29(1):1603169.

doi: 10.1002/adma.201603169     URL    
[73]
Ni R P, Qian B, Liu C, Liu X F, Qiu J R. Opt. Express, 2018, 26(19):25481.

doi: 10.1364/OE.26.025481     URL    
[74]
Liu X W, Wang Y, Li X Y, Yi Z G, Deng R R, Liang L L, Xie X J, Loong D T B, Song S Y, Fan D Y, All A H, Zhang H J, Huang L, Liu X G. Nat. Commun., 2017, 8(1):1.

doi: 10.1038/s41467-016-0009-6     URL    
[75]
Blumenthal T, Meruga J, Stanley May P, Kellar J, Cross W, Ankireddy K, Vunnam S, Luu Q N. Nanotechnology, 2012, 23(18):185305.

doi: 10.1088/0957-4484/23/18/185305     pmid: 22498888
[76]
Sangeetha N M, Moutet P, Lagarde D, Sallen G, Urbaszek B, Marie X, Viau G, Ressier L. Nanoscale, 2013, 5(20):9587.

doi: 10.1039/c3nr02734a     URL    
[77]
Kaboli F, Ghazyani N, Riahi M, Zare-Behtash H, Majles Ara M H, Heydari E. ACS Appl. Nano Mater., 2019, 2(6):3590.

doi: 10.1021/acsanm.9b00549     URL    
[78]
Yao W J, Tian Q Y, Liu J, Wu Z H, Cui S Y, Ding J, Dai Z G, Wu W. J. Mater. Chem. C, 2016, 4(26):6327.

doi: 10.1039/C6TC01513A     URL    
[79]
Hu W T, Li T, Liu X, Dastan D, Ji K W, Zhao P J. J. Alloys Compd., 2020, 818:152933.

doi: 10.1016/j.jallcom.2019.152933     URL    
[80]
Chen X, Xu W, Zhang L H, Bai X, Cui S B, Zhou D L, Yin Z, Song H W, Kim D H. Adv. Funct. Mater., 2015, 25(34):5462.

doi: 10.1002/adfm.201502419     URL    
[81]
Meruga J M, Cross W M, Stanley May P, Luu Q, Crawford G A, Kellar J J. Nanotechnology, 2012, 23(39):395201.

doi: 10.1088/0957-4484/23/39/395201     URL    
[82]
Meruga J M, Baride A, Cross W, Kellar J J, May P S. J. Mater. Chem. C, 2014, 2(12):2221.

doi: 10.1039/c3tc32233e     URL    
[83]
Xie S W, Tong C, Tan H H, Li N, Gong L, Xu J X, Xu L J, Zhang C F. Mater. Chem. Front., 2018, 2(11):1997.

doi: 10.1039/C8QM00278A     URL    
[84]
Gao G J, Busko D, Joseph R, Turshatov A, Howard I A, Richards B S. Part. Part. Syst. Charact., 2019, 36(3):1800462.

doi: 10.1002/ppsc.v36.3     URL    
[85]
Zhang C, Yang L, Zhao J, Liu B H, Han M Y, Zhang Z P. Angew. Chem. Int. Ed., 2015, 54(39):11531.

doi: 10.1002/anie.201504518     URL    
[86]
Han X X, Song E H, Zhou B, Zhang Q Y. J. Mater. Chem. C, 2019, 7(27):8226.

doi: 10.1039/C9TC02171J     URL    
[87]
Lei L, Chen D Q, Li C, Huang F, Zhang J J, Xu S Q. J. Mater. Chem. C, 2018, 6(20):5427.

doi: 10.1039/C8TC01433G     URL    
[88]
Zhou J J, Wen S H, Liao J Y, Clarke C, Tawfik S A, Ren W, Mi C, Wang F, Jin D Y. Nat. Photonics, 2018, 12(3):154.

doi: 10.1038/s41566-018-0108-5     URL    
[89]
Wang H, Li M C, Yin Z, Zhang T X, Chen X, Zhou D L, Zhu J Y, Xu W, Cui H N, Song H W. ACS Appl. Mater. Interfaces, 2017, 9(42):37128.

doi: 10.1021/acsami.7b10015     URL    
[90]
Zhou D L, Liu D L, Xu W, Chen X, Yin Z, Bai X, Dong B, Xu L, Song H W. Chem. Mater., 2017, 29(16):6799.

doi: 10.1021/acs.chemmater.7b01783     URL    
[91]
Liang L L, Teh D B L, Dinh N D, Chen W Q, Chen Q S, Wu Y M, Chowdhury S, Yamanaka A, Sum T C, Chen C H, Thakor N V, All A H, Liu X G. Nat. Commun., 2019, 10(1):1.

doi: 10.1038/s41467-018-07882-8     URL    
[92]
Han Y D, Li H Y, Wang Y B, Pan Y, Huang L, Song F, Huang W. Sci. Rep., 2017, 7(1):1.

doi: 10.1038/s41598-016-0028-x     URL    
[93]
Li X M, Guo Z Z, Zhao T C, Lu Y, Zhou L, Zhao D Y, Zhang F. Angew. Chem. Int. Ed., 2016, 55(7):2464.

doi: 10.1002/anie.201510609     URL    
[94]
Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G. Nat. Nanotechnol., 2015, 10(3):237.

doi: 10.1038/nnano.2014.317     URL    
[95]
Ma Q Q, Wang J, Li Z H, Wang D, Hu X X, Xu Y S, Yuan Q. Inorg. Chem. Front., 2017, 4(7):1166.

doi: 10.1039/C7QI00194K     URL    
[96]
Dong H, Sun L D, Feng W, Gu Y Y, Li F Y, Yan C H. ACS Nano, 2017, 11(3):3289.

doi: 10.1021/acsnano.7b00559     pmid: 28238259
[97]
Xue B, Wang D, Zhang Y L, Zuo J, Chang Y L, Tu L P, Liu X M, Yuan Z, Zhao H Y, Song J, Qu J L, Kong X G. J. Mater. Chem. C, 2019, 7(28):8607.

doi: 10.1039/C9TC02293G     URL    
[98]
Yao W J, Tian Q Y, Tian B, Li M X, Wang H J, Zeng P, Liu L, Zheng H, Wu W. Sci. China Mater., 2019, 62(3):368.

doi: 10.1007/s40843-018-9341-8     URL    
[99]
Liu Y L, Ai K L, Lu L H. Nanoscale, 2011, 3(11):4804.

doi: 10.1039/c1nr10752f     URL    
[100]
You M L, Zhong J J, Hong Y, Duan Z F, Lin M, Xu F. Nanoscale, 2015, 7(10):4423.

doi: 10.1039/C4NR06944G     URL    
[101]
Chen D Q, Liu Y, Chen J K, Huang H, Zhong J S, Zhu Y W. J. Mater. Chem. C, 2019, 7(5):1321.

doi: 10.1039/C8TC05921G     URL    
[102]
Rao M N, Fu J, Wen X, Sun B, Wu J, Liu X H, Dong X L. New J. Chem., 2018, 42(15):12353.

doi: 10.1039/C8NJ02315H     URL    
[103]
Lei L, Dai X R, Cheng Y, Wang Y S, Xiao Z, Xu S Q. J. Mater. Chem. C, 2019, 7(11):3342.

doi: 10.1039/c8tc05467c    
[104]
Sun T Y, Xu B Z, Chen B, Chen X, Li M Y, Shi P, Wang F. Nanoscale, 2017, 9(8):2701.

doi: 10.1039/C6NR09083D     URL    
[105]
Zuo J, Li Q Q, Xue B, Li C X, Chang Y L, Zhang Y L, Liu X M, Tu L P, Zhang H, Kong X G. Nanoscale, 2017, 9(23):7941.

doi: 10.1039/C7NR01403A     URL    
[106]
Liu J N, Bu W B, Pan L M, Shi J L. Angew. Chem. Int. Ed., 2013, 52(16):4375.

doi: 10.1002/anie.201300183     URL    
[107]
Ni D L, Bu W B, Zhang S J, Zheng X P, Li M, Xing H Y, Xiao Q F, Liu Y Y, Hua Y Q, Zhou L P, Peng W J, Zhao K L, Shi J L. Adv. Funct. Mater., 2014, 24(42):6613.

doi: 10.1002/adfm.v24.42     URL    
[108]
Zhou S, Ding C D, Wang Y, Jiang W, Fu J J. ACS Biomater. Sci. Eng., 2019, 5(11):6022.

doi: 10.1021/acsbiomaterials.9b01227     URL    
[109]
Huang P, Zheng W, Zhou S Y, Tu D T, Chen Z, Zhu H M, Li R F, Ma E, Huang M D, Chen X Y. Angew. Chem. Int. Ed., 2014, 53(5):1252.

doi: 10.1002/anie.v53.5     URL    
[1] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[2] 范鸿川, 杨东, 段鹏飞. 超分子组装体系中基于三重态-三重态湮灭的上转换发光[J]. 化学进展, 2018, 30(7): 879-887.
[3] 刘涛, 孙丽宁, 刘政, 仇衍楠, 施利毅. 稀土上转换发光纳米材料的应用[J]. 化学进展, 2012, 24(0203): 304-317.