English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1298-1307 DOI: 10.7536/PC180208 前一篇   后一篇

• 综述 •

纳米铁酸铋及其改性物的环境催化性能

安俊健1,2, 王梦玲1,2, 黄梦璇1,2, 王鹏1,2, 张光彦1,2*   

  1. 1. 湖北工业大学绿色轻工材料湖北省重点实验室 湖北工业大学材料与化学工程学院 武汉 430068;
    2. 湖北工业大学绿色轻质材料与加工协同创新中心 武汉 430068
  • 收稿日期:2018-02-06 修回日期:2018-03-09 出版日期:2018-09-15 发布日期:2018-05-16
  • 通讯作者: 张光彦 E-mail:zhangguangyan@whu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.31300494)、湖北省自然科学基金项目(No.2014CFB586)、湖北省教育厅青年人才项目(No.B2015046,Q20131402)、湖北省绿色轻工材料重点实验室资助项目(No.201710A09,20132)和湖北工业大学博士启动资金(No.BSQD13008,BSQD12037)资助

Environmental Catalytic Performance of BiFeO3 and Its Modifier

Junjian An1,2, Mengling Wang1,2, Mengxuan Huang1,2, Peng Wang1,2, Guangyan Zhang1,2*   

  1. 1. Hubei Provincial Key Laboratory of Green Materials for Light Industry, College of Material and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
    2. Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
  • Received:2018-02-06 Revised:2018-03-09 Online:2018-09-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31300494),the Natural Science Foundation of Hubei Province (No. 2014CFB586),the Foundation of Scientific Research Project from Hubei Provincial Department of Education (No. B2015046, Q20131402), the Foundation of Hubei Provincial Key Laboratory of Green Materials for Light Industry (No.201710A09,20132) and the Doctoral Scientific Research Foundation of Hubei University of Technology (No. BSQD13008, BSQD12037).
铁酸铋(BiFeO3)是一种典型的钙钛矿型氧化物,具有一定的可见光催化和多相类芬顿催化性能。在可见光照射且存在过氧化氢的情况下,BiFeO3可活化过氧化氢并产生强氧化性物种,这些物种会攻击污染物分子从而使其降解。但BiFeO3量子效率不高,光生电子和空穴容易复合;其活化过氧化氢的能力也有待提高。本文综述了近二十年来铁酸铋及其改性物作为可见光催化剂及多相类芬顿催化剂的研究进展,重点介绍了在制备过程中对其形貌的调控、贵金属沉积、离子掺杂、半导体复合、或负载于其他材料表面等改善其环境催化性能方法与效果,改性后发现BiFeO3的可见光催化和多相类芬顿催化性能均得到提升。最后,对铁酸铋复合催化剂未来的发展方向进行了展望。
As a kind of classic perovskite type oxide, BiFeO3 possesses a certain visible light catalytic and heterogeneous Fenton-like catalytic performance. Under the irradiation of visible light and in the presence of hydrogen peroxide, BiFeO3 could activate H2O2 and generate abundant strong oxidizing species, which attack the molecules of pollutants, therefore inducing the degradation of them. However, the problems of low quantum efficiency and easy recombination between photogenerated electrons and holes during the visible light catalytic process of BiFeO3 still exist. It could hardly degrade the stable organic pollutants effectively under the irradiation of visible light. Except that, its ability of activating H2O2 still needs enhancing. The research progress of BiFeO3 and its modifier which are used as a kind of visible light and heterogeneous Fenton-like catalyst in almost two decades is summarized in this paper. And the methods and effects to improve the environmental catalytic performance of BiFeO3 (such as morphology control in preparation, noble metal deposition, ion doping, semiconductor recombination and load on the surface of other materials) are introduced emphatically. Through the modification, it was found that the visible light catalytic performance and heterogeneous Fenton-like catalytic ability of BiFeO3 are strengthened. And a large number of pollutants could be degraded effectively by BiFeO3 and its modifiers. At last, the research direction of BiFeO3 compound catalyst in future is prospected.
Contents
1 Introduction
2 Fenton-like catalytic ability of BiFeO3
3 Fenton-like catalytic ability of BiFeO3 modifiers
4 Visible light catalytic ability of BiFeO3 and its modifiers
4.1 Visible light catalytic ability of BiFeO3
4.2 Visible light catalytic ability of BiFeO3 modifiers
5 Visible light and Fenton-like catalytic performance of BiFeO3 and its modifiers
5.1 Visible light and Fenton-like catalytic performance of BiFeO3
5.2 Visible light and Fenton-like catalytic performance of BiFeO3 modifiers
6 Conclusion and outlook

中图分类号: 

()
[1] Masomboon N, Ratanatamskul C, Lu M C. Environ. Sci. Technol., 2009, 43:8269.
[2] Feng J Y, Hu X J, Yue P L. Environ. Sci. Technol., 2004, 38:5773.
[3] Linsebigler A, Lu G, Yates J. Chem. Rev., 1995, 95:735.
[4] Wang N, Chen Z F, Zhu L H, Jiang X, Lv B, Tang H Q. J. Photochem. Photobiol. A:Chem., 2007, 191:193.
[5] Chowdhury P, Viraraghavan T. Sci. Total Environ., 2009, 407:2474.
[6] Qiang Z M, Liu C, Dong B Z, Zhang Y L. Chemosphere, 2010, 78:517.
[7] Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R, Kim D M, Baek S H, Eom C B, Ramesh R. Nature Mater., 2006, 5:823.
[8] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Spaldin N A. Science, 2003, 299:1719.
[9] Chu Y H, Martin L W, Holcomb M B, Gajek M, Han S J, He Q, Zhan Q. Nature Mater., 2008, 7:478.
[10] Luo W, Zhu L H, Wang N, Tang H Q, Cao M J, She Y B. Environ. Sci. Technol., 2010, 44:1786.
[11] Rusevova K, Köferstein R, Rosell M, Richnow H H, Kopinke F D, Georgi A. Chem. Eng. J., 2014, 239:322.
[12] Zou J, Gong W Y, Ma J N, Li L, Jiang J Z. J. Nanosci. Nanotechnol., 2015, 15(2):1304.
[13] Yang J, Li X C, Zhou J Y, Tang Y, Zhang Y M, Li Y W. J. Alloy. Compd., 2011, 509(37):9271.
[14] Farhadi S, Rashidi N. J. Iran Chem. Soc., 2012, 9:1021.
[15] Li S, Zhang G S, Zheng H S, Zheng Y J, Wang P, Environ Sci Pollut Res., 2017, 2:1.
[16] Qi Y J, Liu Z K, Lu C J, Zhang T. J. Sci. Adv. Mater., 2017, 9(3/4):501.
[17] Wang N, Zhu L H, Lei M, She Y B, Cao M J, Tang H Q. ACS Catal., 2011, 1(10):1193.
[18] Song Z, Wang N, Zhu L H, Huang A Z, Zhao X R, Tang H Q. Chem. Eng. J., 2012, 198:379.
[19] An J J, Zhu L H, Zhang Y Y, Tang H Q. J. Environ. Sci., 2013, 25(6):1213.
[20] Zhao H Y, Cao J L, Lv H L, Wang Y B, Zhao G H. Catal. Commun., 2013, 41:87.
[21] Ramezanalizadeh H, Manteghi F. RSC Adv., 2016, 6:99096.
[22] Li S, Zhang G S, Zhang W, Zheng H S, Zhu W Y, Sun N, Zheng Y J, Wang P. Chem. Eng. J. 2017, 326(15):756.
[23] Palai R, Katiyar R S, Schmid H, Tissot P, Clark S J, Robertson J, Redfern S A T, Catalan G, Scott J F,Phys. Rev. B, 2008, 77(1):4110.
[24] Chen C, Cheng J R, Yu S W, Che L J, Meng Z Y. J. Cryst. Growth., 2006, 291:135.
[25] Han J T, Huang Y H, Wu X J, Wu C L,Wei W, Peng B, Huang W, Goodenough J B. Adv. Mater., 2006, 18:2145.
[26] Kim J K, Kim S S, Kim W J. Mater. Lett., 2005, 59:4006.
[29] Yin J, Liao G, Zhou J, Huang C, Ling Y, Lu P, Li L. Sep. Purif. Technol., 2016, 168:134.
[30] Achenbach G D, James W J, Gerson R. J. Am. Ceram. Soc., 1967, 8:437.
[31] Valant M, Axelsson A K, Alford N. Chem. Mater., 2007, 19:5431.
[32] Shetty S, Palkar V R, Pinto R. Pramana J. Phys., 2002, 58:1027.
[33] Sakamoto W, Iwata A, Yogo T. J. Appl. Phys., 2008, 104:1041061.
[34] Gao F, Yuan Y, Wang K F, Chen X Y, Chen F, Liu J M, Ren Z F. Appl. Phys. Lett., 2006, 89:1025061.
[35] Zhang X Y, Lai C W, Zhao X, Wang D Y, Dai J Y. Appl. Phys. Lett., 2005, 87:1431021.
[36] Kim J K, Kim S S, Kim W J. Mater. Lett., 2005, 59:4006.
[37] Chen J, Xing X R, Watson A, Wang W, Yu R, Deng J. Chen X. Chem. Mater., 2007, 19:3598.
[38] Xian T, Yang H, Dai J F, Wei Z Q, Ma J Y, Feng W J. Materials Letters, 2011, 65:1573.
[39] Wang X, Lin Y, Ding X F, Jiang J G. J. Alloy. Compd., 2011, 509:6585.
[40] Tayyebe S, Mohammad H. Entezari. J. Mol. Catal. A-Chem., 2013, 377:197.
[41] Tayyebe S, Entezari M H. Ultrason. Sonochem., 2013, 20(5):1245.
[42] Dhanalakshmi R, Muneeswaran M, Vanga P R, Ashok M, Giridharan N V. Appl. Phys. A, 2016, 122(1):13.
[43] Huo Y N, Jin Y, Zhang Y. J. Mol. Catal. A:Chem., 2010, 331:15.
[44] Li S, Lin Y H, Zhang B P, Wang Y, Nan C W. J. Phys. Chem. C, 2010, 114:2903.
[45] Lu X M, Xie J M, Song Y Z, Lin J M. J. Mater. Sci., 2007, 42:6824.
[46] Fei L F, Yuan J K, Hu Y M, Wu C Z, Wang J L, Wang Y. Cryst. Growth Des., 2011, 11:1049.
[47] Huang J, Tan G Q, Yang W, Zhang L L, Ren H J, Xia A. Mat. Sci. in Semicon. Proc., 2014, 25:84.
[48] Chen D, Niu F, Qin L S, Wang S, Zhang N, Huang Y X. Sol. Energ. Mat. Sol. C., 2017, 171:24.
[49] Liu Z K, Qi Y J, Lu C J. Process. J. Mater. Sci:Mater. Electron., 2010, 21:380.
[50] Joshi U A, Jang J S, Borse P H, Lee J S. Appl. Physics Lett., 2008, 92:242106.
[51] Yang H, Xian T, Wei Z Q, Dai J F, Jiang J L, Feng W J. J Sol-Gel Sci. Technol., 2011, 58:238.
[52] Farhadi S, Rashidi N. Polyhedron., 2010, 29:2959.
[53] Reitz C, Suchomski C, Weidmann C, Brezesinski T. Nano. Res., 2011, 4(4):414.
[54] Wu Q, Chen P F, Zhao L, Yao W F, Qi X M. Mater. Res. Bull., 2015, 61:189.
[55] Wang W, Li N, Chi Y, Li Y J, Yan W F, Li X T, Shao C L. Ceram. Int., 2013, 39:3511.
[56] Moniz S J, Blackman C S, Southern P, Weaver P M, Tang J, Carmalt C J. Nanoscale, 2015, 7:16343.
[57] Papadas I, Christodoulides J A, Kioseoglou G, Armatas G S. J. Mater. Chem. A, 2015, 3(4):1587.
[58] 吴子伟(Wu Z W), 吕晓萌(Lv X M), 沈佳宇(Shen J Y), 谢吉民(Xie J M). 无机化学学报(Chinese J. Inorg. Chem.), 2014, 30(3):492.
[59] Guo R Q, Fang L, Dong W, Zheng F G, Shen M R. J. Phys. Chem. C, 2010, 114:21390.
[60] Mohan S, Subramanian B, Bhaumik I, Gupta P K, Jaisankar S N. RSC Adv., 2014, 4(32):16871.
[61] Vanga P R, Mangalaraja R V, Ashok M. J. Mater. Sci.:Mater. Electron., 2016, 27:5699.
[62] Madhu C, Bellakki M B, Manivannan V. Indian J. Eng. Mater. S., 2012, 17:131.
[63] Soltani T, Lee B K. J. Hazard. Mater., 2016, 316:122.
[64] Zhang Y, Cai Z Y, Ma X M. Physica B, 2015, 479:101.
[65] Zaki M I, Ramadan W, Katrib A, Rabee A I. Appl. Surf. Sci., 2014, 317:929.
[66] Dhanalakshmi R, Vanga P R, Ashok M, Giridharan N V. IEEE Magn. Lett., 2016, 7:2106904.
[67] Luo J H, Maggard P A. Adv. Mater., 2006, 18:514.
[68] Li S, Lin Y H, Zhang B P, Li J F, Nan C W. J. Appl. Phys., 2009, 105:054310.
[69] Gong L X, Zhou Z F, Wang S M, Wang B. Mat. Sci. in Semicon. Proc., 2013,16:288.
[70] Humayun M, Zada A, Li Z J, Xie M Z, Zhang X L, Qu Y, Jing L Q. Appl. Catal. B:Environ., 2016, 180:219.
[71] Liu H Y, Guo Y P, Guo B, Zhang D. Solid State Sci., 2013, 19:69.
[72] Liu H Y, Guo Y P, Guo B, Zhang D. J. Eur. Ceram. Soc., 2012, 32:4335.
[73] Bhunia M K, Das S K, Dutta A, Sengupta A, Bhaumik A. J. Nanosci. Nanotechno., 2013, 13(4):2557.
[74] Mohan S, Subramanian B, Sarveswaran G. J. Mater. Chem. C, 2014, 2(33):6835.
[75] Ramezanalizadeh H,Manteghi F. J. Photoch. Photobio. A, 2017, 346:89.
[76] Fatima S, Ali S I, Iqbal M Z,Rizwan S. RSC Adv., 2017, 7:35928.
[77] An J J, Zhu L H, Zhang Y Y, Tang H Q. J. Environ. Sci., 2013, 25(6):1213.
[78] Soltani T, Entezari M H. Chem. Eng. J., 2014, 251:207.
[79] Zhou M, Li W J, Du Y, Kong D, Wang Z, Meng Y, Sun X L, Yan T J, Kong D S, You J M. J. Nanopart. Res., 2016, 18:346.
[80] Tong T, Zhang H, Chen J G, Jin D R, Cheng J R. Catal. Commun., 2016, 87:23.
[81] Chi F L, Song B, Yang B, Lv Y H, Ran S L, Huo Q S. RSC Adv., 2015, 5(83):67412.
[82] Vanga P R, Mangalaraja R V, Ashok M. Mater. Res. Bull., 2015, 72:299.
[83] Soltani T, Lee B K. Chem. Eng. J. 2017, 313:1258.
[84] An J J, Zhu L H, Wang N, Song Z, Yang Z Y, Du D Y, Tang H Q. Chem. Eng. J., 2013, 219:225.
[85] An J J, Zhang G Y, Zheng R F, Wang P. J. Environ. Sci., 2016, 48:218.
[86] Moitra D, Ghosh B K, Chandel M, Ghosh N N. RSC Adv., 2016, 6:97941.
[1] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[2] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[3] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[4] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[5] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[6] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[7] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.
[8] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[9] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[10] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[11] 刘红梅*, 金剑波, 周军, 黄开勋, 徐辉碧. 硒蛋白S的结构、功能及与疾病的关系[J]. 化学进展, 2018, 30(10): 1487-1495.
[12] 丁蕊, 赵峰. 光催化耦合微生物同步降解污染物[J]. 化学进展, 2017, 29(9): 1154-1158.
[13] 郑柳春, 李春成*, 肖耀南, 张博, 王召栋. 可生物降解抗污材料[J]. 化学进展, 2017, 29(8): 824-832.
[14] 纪娜, 宋静静, 刁新勇, 宋春风, 刘庆岭*, 郑明远*. 硫化物催化木质素及其模型化合物转化制备高附加值化学品[J]. 化学进展, 2017, 29(5): 563-578.
[15] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.