English
新闻公告
More
化学进展 2019, Vol. 31 Issue (4): 505-515 DOI: 10.7536/PC180820 前一篇   后一篇

• •

可见光催化C(sp 3)-C(sp 3)键的构筑

易享炎1, 黄菲1,**(), JonathanB.Baell1, 黄和1, 于杨2,**()   

  1. 1. 南京工业大学药学院 南京 211816
    2. 南京工业大学环境科学与工程学院 南京 211816
  • 收稿日期:2018-08-27 出版日期:2019-01-15 发布日期:2019-01-14
  • 通讯作者: 黄菲, 于杨
  • 基金资助:
    江苏省先进生物制造创新中心(XTE1850); 江苏省先进生物制造创新中心(XTC1810); 江苏高校优秀科技创新团队计划(苏教科[2015]4号文)资助()

The Formation of C(sp3)-C(sp3) by Visible-Light Photocatalysis

Xiangyan Yi1, Fei Huang1,**(), Jonathan B. Baell1, He Huang1, Yang Yu2,**()   

  1. 1. School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
    2. School of Environmental and Engineering, Nanjing Tech University, Nanjing 211816, China
  • Received:2018-08-27 Online:2019-01-15 Published:2019-01-14
  • Contact: Fei Huang, Yang Yu
  • About author:
    ** E-mail: (Fei Huang);
    ** E-mail: (Yang Yu)
  • Supported by:
    The work was supported by the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTE1850); The work was supported by the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTC1810); Program for Innovative Research Team in Universities of Jiangsu Province(2015).()

本文对近年来可见光催化构筑C(sp 3)-C(sp 3)键的国内外最新研究成果进行概述,着重阐述了各类催化的催化体系、反应机理及在合成生物活性分子或药物分子方面的应用。在可见光催化的反应体系中引入过渡金属或手性催化剂,构建新颖的协同催化体系,可以实现在温和的条件下对C—C键构筑的精确控制,对于手性药物的设计、开发具有重要的意义。最后,对未来可见光催化构筑C—C键的发展进行展望。

We summarize the latest results of C(sp 3)-C(sp 3) coupling by visible-light photoredox catalysis in recent years and focus on the catalytic systems, reaction mechanisms and practical applications in synthesizing bioactivity molecules or drug molecules. Indeed, introducing transition metals or chiral catalysts in the visible light-catalyzed reaction system and the constructing of a novel synergistic catalysis system can make the precise formation of the C(sp 3)-C(sp 3) bond under mild conditions become a reality, which will have important implications for the design and development of chiral drugs. Finally, the future development of visible-light photoredox catalysis is prospected.

()
图式1 几种有代表性的光催化剂
Scheme. 1 Representative photocatalysts
表1 常见的几种光催化剂光物理性质[5,6,17]
Table 1 The photophysical properties of photocatalysts[5,6,17]
图1 光催化剂、反应底物及氧化或还原剂三者关系
Fig. 1 The relationship between photocatalysts, substrates and oxidant and reductant
图式2 单电子穿梭与淬灭过程[2]
Scheme. 2 Shuttle and quenching of single electron[2]
图式3 可见光诱导脱羧实现Michael加成反应[32]
Scheme. 3 Decarboxylative medicated by visible-light for Michael addition reaction[32]
图式4 在光致氧化还原反应中草酸盐用于醇的活化实现Michael加成反应[33]
Scheme. 4 Oxalates as activating groups for alcohols in visible light photoredox catalysis[33]
图式5 羧酸与卤代烷烃间C(sp3)-C(sp3)键的构筑[34]
Scheme. 5 The formation of C(sp3)-C(sp3) bonds using carboxylic acids and alkyl halides[34]
图式6 脱羧偶联构筑C(sp3)-C(sp3)可能的反应机制[34]
Scheme. 6 Proposed mechanism of decarboxylation coupling to generate C(sp3)-C(sp3) bonds[34]
图式7 盐酸替罗非班的合成
Scheme. 7 The synthesis of the antiplatelet drug tirofiban
图式8 多肽脱羧环化可能的反应机理[37]
Scheme. 8 Proposed mechanism for the decarboxylative peptide macrocyclization[37]
图式9 可见光诱导的脱羧烯丙基化反应及寡糖分子烯丙基化应用实例[38]
Scheme. 9 Decarboxylative allylation by photoredox catalysis and application in oligosaccharide[38]
图式10 苄基醚和Schiff碱的偶联反应[39]
Scheme. 10 A coupling reaction between benzylic ethers and Schiff bases[39]
图式11 自由基-自由基交叉偶联合成γ-氨基酮类化合物[40]
Scheme. 11 Radical-radical cross-couplings to synthesize γ-aminoketones[40]
图式12 DABCO对反应区域选择性的控制
Scheme. 12 The effect of DABCO on the regioselectivity in coupling reaction
图式13 自旋中心迁移机制
Scheme. 13 The mechanism of spin-center shift
图式14 反应体系及底物拓展[44]
Scheme. 14 Reaction system and substrate scopes[44]
图式15 转运蛋白选择性配体PK-14067的对映选择性合成[45]
Scheme. 15 Enantioselective synthesis of stereoselective translocator protein(18 kDa) ligand PK-14067[45]
图式16 光催化剂与Lewis酸协同催化实现α-氨基自由基对映选择性共轭加成[46]
Scheme. 16 Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis[46]
图式17 可见光催化不对称合成反应机理[47]
Scheme. 17 Putative mechanism for the visible-light-activated catalytic asymmetric process[47]
图式18 吡啶环上N原子位置的重要性
Scheme. 18 The importance of nitrogen atom in pyridine
图式19 克级规模下实现复杂分子的烯丙基化修饰[53]
Scheme. 19 Allylation modification of complexed molecules in gram scale[53]
图式20 可见光催化醛、酮、亚胺与Hantzsch酯的烯丙基化反应及分子间Michael加成[54]
Scheme. 20 Visible-light-induced allylation and intermolecular Michael addition reaction of aldehydes, ketones and imines[54]
图式21 利用手性金属铱催化剂实现2-酰基咪唑对映选择性烷基化[55]
Scheme. 21 The chiral iridium complex provides asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles[55]
图式22 不对称合成反应机理[56]
Scheme. 22 Putative mechanism for the visible-light activated catalytic asymmetric process[56]
图式23 金属钌-铑协同催化手性1,2-氨基醇的合成[57]
Scheme. 23 Ruthenium/rhodium synergetic catalysis to synthesize chiral 1,2-aminoalcohols[57]
图式24 可见光介导α,β-不饱和酮中碳碳双键的高效对映选择性加成[58]
Scheme. 24 Enantioselective additions to α,β-unsaturated ketones mediated by visible-light photoredox catalysis[58]
图式25 可见光介导的自由基易位和烯烃对映选择性加成[59]
Scheme. 25 Radical translocation and stereocontrolled alkene addition mediated by visible-light photoredox catalysis[59]
图式26 可见光介导的α-卤代酰胺与烯烃分子间的反马氏加成反应[60]
Scheme. 26 Visible light photoredox catalysed intermolecular radical addition of α-halo amides to olefins[60]
图式27 可见光介导的Giese反应[61]
Scheme. 27 Visible-light photoredox catalyzed Giese reaction[61]
图式28 合成1,2-二胺可能的光氧化还原循环路线[65]
Scheme. 28 Proposed photoredox catalytic cycle for the synthesis of 1,2-diamines[65]
图式29 可见光催化α-氨基自由基、羰基自由基与胺类化合物合成邻二胺和氨基醇[65]
Scheme. 29 Direct access to vicinal diamines and amino alcohols via α-amino radicals and ketyl radicals[65]
图式30 可见光诱导C—S键活化实现1,4-二羰基化合物的合成[66]
Scheme. 30 The synthesis of 1,4-diketones by means of a visible light-induced C—S bond activation process[66]
图式32 可见光促进钯催化的C—H键自由基烷基化反应[67]
Scheme. 32 Two-step construction of heterocycles[66]
图式33 一步合成多烷基取代醛可能的反应机理[69]
Scheme. 33 Putative mechanism for the direct synthesis of polysubstituted aldehydes[69]
图式34 可见光催化一步合成多烷基取代醛[69]
Scheme. 34 Direct synthesis of polysubstituted aldehydes via visible-light catalysis[69]
图式35 光催化和传统加热两种反应体系[70, 71]
Scheme. 35 Photochemical domain and thermal domain[70, 71]
图式36 通过可见光激发亚胺离子实现对映选择性α,β-不饱和醛β位的烷基化[70, 71]
Scheme. 36 Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals[70, 71]
[1]
Lewis N S . Science, 2007,315:789.
[2]
Romero N A ,Nicewicz D A . Chem. Rev, 2016,116:10075.
[3]
Karkas M D, Porco J A ,Stephenson C R Chem. Rev., 2016,116:9683. https://www.ncbi.nlm.nih.gov/pubmed/27120289

doi: 10.1021/acs.chemrev.5b00760     URL     pmid: 27120289
[4]
Xie J, Jin H ,Ask H . Chem. Soc. Rev, 2017,46:5193.
[5]
Prier C K, Rankic D A MacMillan D W C . Chem. Rev., 2013,113:5322.
[6]
Shaw M H, Twilton J MacMillan D W C . Org. Chem., 2016,81:6898. https://www.ncbi.nlm.nih.gov/pubmed/27477076

doi: 10.1021/acs.joc.6b01449     URL     pmid: 27477076
[7]
Zhao Y, Chen J R ,Xiao W J . Org Lett, 2018,20:224.
[8]
Yu X Y, Zhou Q Q, Wang P Z, Liao C M, Chen J R ,Xiao W J . Org. Lett, 2017,20:421.
[9]
Liu J, Ding W, Zhou Q Q, Liu D, Lu L Q, Xiao W J . Org Lett, 2017,20:461.
[10]
Corcoran E B, Pirnot M T, Lin S, Dreher S D DiRocco D A, Davies I W, Buchwald S L, MacMillan D W C . Science, 2016,353:279.
[11]
Welin E R, Le C ,Arias-Rotondo D M, McCusker J K, MacMillan D W C . Science, 2017,355:380.
[12]
Murphy J J, Melchiorre P . Nature, 2015,524:297.
[13]
Hu X, Zhang G, Bu F, Lei A. ACS Catal ., 2017,7:1432.
[14]
Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko N V, Lemmetyinen H . Am. Chem. Soc., 2004,126:1600. https://www.ncbi.nlm.nih.gov/pubmed/14871068

doi: 10.1021/ja038656q     URL     pmid: 14871068
[15]
Margrey K A, Levens A ,Nicewicz D A . Angew. Chem. Int Ed., 2017,56:15644.
[16]
Roth H, Romero N, Nicewicz D . Synlett, 2015,27:714.
[17]
Joshipangu A, Lévesque F, Roth H G, Oliver S F, Campeau L C, Nicewicz D, DiRocco D A Org. Chem., 2016,81:7244. https://www.ncbi.nlm.nih.gov/pubmed/27454776

doi: 10.1021/acs.joc.6b01240     URL     pmid: 27454776
[18]
Fischer H . Chem.Rev., 2001,101:3581.
[19]
Studer A . Chem. Soc. Rev., 2004,33:267.
[20]
Xuan J, Zeng T T, Chen J R, Lu L Q ,Xiao W J . Chem. Eur. J, 2015,21:4962.
[21]
Zhou A X, Mao L L, Wang G W ,Yang S D . Chem. Commun, 2014,50:8529.
[22]
He R, Huang Z T, Zheng Q Y ,Wang C . Angew. Chem. Int Ed., 2014,53:4950.
[23]
Hu X, Zhang G, Bu F ,Lei A . Angew. Chem. Int Ed., 2017,57:1286.
[24]
Margrey K A McManus J B, Bonazzi S, Zecri F, Nicewicz D A. , Am. Chem. Soc., 2017,139:11288. https://www.ncbi.nlm.nih.gov/pubmed/28718642

doi: 10.1021/jacs.7b06715     URL     pmid: 28718642
[25]
Terrett J A, Cuthbertson J D, Shurtleff V W, MacMillan D W C . Nature, 2015,524:330.
[26]
Ventre S, Petronijevic F R, MacMillan D W C . Am. Chem. Soc., 2015,137:5654. https://www.ncbi.nlm.nih.gov/pubmed/25881929

doi: 10.1021/jacs.5b02244     URL     pmid: 25881929
[27]
Yue H, Zhu C ,Rueping M . Angew. Chem. Int Ed., 2018,57:1371.
[28]
Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J X, Wu L Z, Lei A . Am. Chem. Soc., 2015,137:9273. https://www.ncbi.nlm.nih.gov/pubmed/26158688

doi: 10.1021/jacs.5b05665     URL     pmid: 26158688
[29]
Du J, Skubi K L, Schultz D M, Yoon T P . Science, 2014,344:392.
[30]
Cismesia M A ,Yoon T P . Chem. Sci, 2015,6:5426.
[31]
Yu X Y, Chen J R, Wang P Z, Yang M N, Liang D ,Xiao W J . Angew. Chem. Int Ed., 2018,57:738.
[32]
Chu L, Ohta C, Zuo Z, MacMillan D W C ., Am. Chem. Soc., 2014,136:10886. https://www.ncbi.nlm.nih.gov/pubmed/25032785

doi: 10.1021/ja505964r     URL     pmid: 25032785
[33]
Nawrat C C, Jamison C R, Slutskyy Y, MacMillan D W C, Overman L E . Am. Chem. Soc., 2015,137:11270. https://www.ncbi.nlm.nih.gov/pubmed/26322524

doi: 10.1021/jacs.5b07678     URL     pmid: 26322524
[34]
Johnston C P, Smith R T, Allmendinger S MacMillan D W C . Nature, 2016,536:322.
[35]
Terao J, Watanabe H, Ikumi A, Kuniyasu H, Kambe N . Am. Chem. Soc., 2002,12:4222.
[36]
Saito B, Fu G C . Am. Chem. Soc., 2007,38:9602.
[37]
McCarver S J, Qiao J X, Carpenter J, Borzilleri R M, Poss M A, Eastgate M D, Miller M M, MacMillan D W C . Angew. Chem. Int. Ed., 2017,56:728.
[38]
Hu C C ,Chen Y . Org. Chem. Front, 2015,2:1352.
[39]
Hager D, MacMillan D W C . Am. Chem. Soc., 2014,136:16986. https://www.ncbi.nlm.nih.gov/pubmed/25457231

doi: 10.1021/ja5102695     URL     pmid: 25457231
[40]
Jeffrey J L, Petronijevi F R, MacMillan D W C . Am. Chem. Soc., 2015,137:8404. https://www.ncbi.nlm.nih.gov/pubmed/26075347

doi: 10.1021/jacs.5b05376     URL     pmid: 26075347
[41]
Eklund H, Uhlin U, Färnegårdh M, Logan D T ,Nordlund P . Prog. Biophys. Mol Biol., 2001,77:177.
[42]
Wessig P ,Muehling O . Eur. J. Org Chem., 2007,2007:2219.
[43]
Dryzhakov M, Richmond E, Moran J . Synthesis, 2016,48:935.
[44]
Nacsa E D, MacMillan D W C . Am. Chem. Soc., 2018,140:3322. https://www.ncbi.nlm.nih.gov/pubmed/29400958

doi: 10.1021/jacs.7b12768     URL     pmid: 29400958
[45]
Dubroeucq M C, Bénavidès J, Doble A, Guilloux F, Allam D, Vaucher N, Bertrand P, Guérémy C, Renault C, Uzan A ,Le Fur G . Eur. J. Pharmacol, 1986,128:269.
[46]
Espelt L R McPherson I S, Wiensch E M, Yoon T P. Am. Chem. Soc., 2015,137:2452. https://www.ncbi.nlm.nih.gov/pubmed/25668687

doi: 10.1021/ja512746q     URL     pmid: 25668687
[47]
Hepburn H B, Melchiorre P . Chem. Commun 2016,52:3520.
[48]
Bergonzini G ,Melchiorre P . Angew. Chem. Int Ed., 2012,51:971.
[49]
Tian X, Liu Y ,Melchiorre P . Angew. Chem. Int Ed., 2012,51:6439.
[50]
Moran A, Hamilton A, Bo C P, Melchiorre P . Am. Chem. Soc., 2013,135:9091. https://www.ncbi.nlm.nih.gov/pubmed/23746220

doi: 10.1021/ja404784t     URL     pmid: 23746220
[51]
Silvi M, Chatterjee I, Liu Y ,Melchiorre P . Angew. Chem. Int Ed., 2013,52:10780.
[52]
Ahrendt K A, Borths C J, MacMillan D W C. Am. Chem. Soc., 2000,122:4243.
[53]
Zhang J, Li Y, Zhang F, Hu C ,Chen Y\n . Angew. Chem. Int Ed., 2016,55:1872.
[54]
Qi L ,Chen Y . Angew. Chem. Int Ed., 2016,55:13312.
[55]
Huo H, Shen X, Wang C, Zhang L, Röse P, Chen L A, Harms K, Marsch M, Hilt G, Meggers E . Nature, 2014,515:100.
[56]
Wang C, Qin J, Shen X, Riedel R, Harms K, Meggers E . Angew. Chem. Int Ed., 2016,55:685.
[57]
Ma J, Harms K, Meggers E . Chem. Commun 2016,52:10183.
[58]
Huo H, Harms K, Meggers E . Am. Chem. Soc., 2016,138:6936. https://www.ncbi.nlm.nih.gov/pubmed/27218134

doi: 10.1021/jacs.6b03399     URL     pmid: 27218134
[59]
Wang C, Harms K ,Meggers E . Angew. Chem. Int Ed., 2016,55:13495.
[60]
Nakajima M, Lefebvre Q, Rueping M . Chem. Commun 2014,50:3619.
[61]
Millet A, Lefebvre Q ,Rueping M . Chem. Eur. J, 2016,22:13464.
[62]
Cardona F, Goti A . Nat. Chem 2009,1:269.
[63]
Liu X, Gao A, Ding L, Xu J, Zhao B . Org. Lett 2014,16:2118.
[64]
Olson D E, Su J Y, Roberts D A, Du Bois J . Am. Chem. Soc., 2014,136:13506. https://www.ncbi.nlm.nih.gov/pubmed/25233140

doi: 10.1021/ja506532h     URL     pmid: 25233140
[65]
Fava E, Millet A, Nakajima M, Loescher B S ,Rueping P . Angew. Chem. Int Ed., 2016,55:6776.
[66]
Xuan J, Feng Z J, Chen J R, Lu L Q ,Xiao W J . Chem. Eur. J, 2014,20:3045.
[67]
Zhou W J, Cao G M, Shen G, Zhu X Y, Gui Y Y, Ye H, Sun L, Liao L L, Li J ,Yu D G . Angew. Chem. Int Ed., 2017,56:15683.
[68]
Evans D A, Weber A E . Am. Chem. Soc., 1986,108:6757.
[69]
Wu F, Wang L, Chen J, Nicewicz D A ,Huang Y . Angew. Chem. Int Ed., 2018,57:2174.
[70]
Silvi M, Verrier C, Rey Y P, Buzzetti L, Melchiorre P . Nat. Chem 2017,9:868.
[71]
Bahamonde A, Melchiorre P . Am. Chem. Soc., 2016,138:8019. https://www.ncbi.nlm.nih.gov/pubmed/27267587

doi: 10.1021/jacs.6b04871     URL     pmid: 27267587
[1] 田景晨, 吴功德, 刘雁军, 万杰, 王晓丽, 邓琳. 负载型廉价金属催化剂在低温催化氧化甲醛中的应用[J]. 化学进展, 2021, 33(11): 2069-2084.
[2] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[3] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[4] 安俊健, 王梦玲, 黄梦璇, 王鹏, 张光彦. 纳米铁酸铋及其改性物的环境催化性能[J]. 化学进展, 2018, 30(9): 1298-1307.
[5] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[6] 张宇, 刘小华, 林丽丽, 冯小明*. 催化不对称傅-克反应研究进展[J]. 化学进展, 2018, 30(5): 491-504.
[7] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[8] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
[9] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[10] 张永丽, 张瑞, 常宏宏, 魏文珑, 李兴. 手性催化剂在不对称羰基ene反应中的应用[J]. 化学进展, 2014, 26(09): 1492-1505.
[11] 靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华. 超分子凝胶的手性功能应用:手性分子识别与不对称催化[J]. 化学进展, 2014, 26(06): 919-930.
[12] 喻理德, 崔汉峰*, 樊浩, 任淑慧, 林艳. 手性季鏻盐相转移催化剂在不对称反应中的应用[J]. 化学进展, 2013, 25(05): 744-751.
[13] 李高伟, 王晓娟, 赵文献, 鲁刘杰, 刘冠军, 王敏灿. Trost氮杂半冠醚手性配体在不对称催化反应中的应用[J]. 化学进展, 2012, 24(0203): 348-360.
[14] 林丽丽 刘小华 冯小明. 手性三齿席夫碱金属络合物催化的不对称反应*[J]. 化学进展, 2010, 22(07): 1353-1361.
[15] 徐立进 易兵 党丽敏 汤卫军. 离子液体中的不对称催化反应*[J]. 化学进展, 2010, 22(07): 1254-1273.
阅读次数
全文


摘要