English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 697-710 DOI: 10.7536/PC151118 前一篇   后一篇

• 综述与评论 •

微悬臂生物传感器

戴莹萍1, 嵇正平1, 王赪胤1*, 胡效亚1*, 汪国秀2   

  1. 1. 扬州大学化学化工学院 扬州 225002;
    2. 悉尼科技大学数学与物理科学学院 NSW 2007 澳大利亚
  • 收稿日期:2015-11-01 修回日期:2016-01-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 王赪胤, 胡效亚 E-mail:wangcy@yzu.edu.cn;xyhu@yzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21375116)、国家高技术研究发展计划(863)项目(No.2009AA03Z331)和江苏省大型科学仪器设备共享服务平台分析测试技术及方法研究课题(BZ201409)资助

Microcantilever Biosensors

Dai Yingping1, Ji Zhengping1, Wang Chengyin1*, Hu Xiaoya1*, Wang Guoxiu2   

  1. 1. College of Chemistry and Engineering, Yangzhou University, Yangzhou 225002;
    2. School of Mathematical and Physical Sciences, University of Technology Sydney, NSW 2007, Australia
  • Received:2015-11-01 Revised:2016-01-01 Online:2016-05-15 Published:2016-03-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21375116), the National High Teehnology Research and Development Program of China (No.2009AA03Z331) and the Research Program on Analytical Methods and Techniques on the Shared Platform of Large-Scale Instruments and Equipment in Jiangsu Province(BZ201409).
微悬臂生物传感器是基于原子力显微镜和生物传感器发展而来,具有无需标记、快速、实时、灵敏度高等优点,已广泛运用于生物医学、环境监测、医药、食品及军事等多个领域。微悬臂生物传感器已成为当前研究热点。本文对近年来微悬臂生物传感器的研究工作进行了综述,总结了微悬臂传感器中微悬臂梁的结构、工作模式、激励方法和检测方法。国内有关微悬臂传感器的综述多是着重于介绍微悬臂传感器的应用进展,而缺少对微悬臂传感器的检测方法或读出方式做全面而系统的介绍,本文不仅全面且系统地对微悬臂传感器的8种检测方法进行了详细的介绍和分析,还介绍了微悬臂梁的多种典型尺寸、外观和微悬臂传感器工作模式中的"热模式"。针对微悬臂传感器实现特定检测及提高灵敏度的目的,本文总结了微悬臂传感器的表面修饰方法,不仅介绍了国内外微悬臂生物传感器最新的应用动态,还介绍了一种具有自驱动自传感功能的新型微悬臂传感器,并对微悬臂生物传感器的应用前景作了探讨。
Microcantilever biosensors based on atomic force microscope have the advantages of label-free, rapid, real-time, and high sensitivity detection features. Therefore, microcantilever biosensors can be applied in the fields of biomedicine, environmental monitoring, food production and military defenses. Microcantilever biosensors have become the focus of scientific research. In this paper, we review the working principle, excitation method and detection mechanism of microcantilever biosensors. Preview reviews about the microcantilever biosensors mainly focuse on the progress of applications, but lack of comprehensive and systematic introduction on detection methods. Herein, we not only systematically analyze eight detection methods, but also introduce several typical sizes, appearance and "heat mode" of microcantilever biosensors. So far, these have not been reported in literatures. In order to realize specific detection and improve sensitivity of microcantilever sensors, we summarize the surface modification methods of microcantilever sensors and review the latest applications of microcantilever biosensors. Furthermore, we introduce a new kind of self-actuating and self-sensing microcantilever biosensors. The prospective of microcantilever biosensors is also discussed in this paper.

Contents
1 Introduction
2 Microcantilever biosensors
3 The brief introduction of microcantilever beam
4 Microcantilever working mode
4.1 Dynamic working mode
4.2 Static working mode
4.3 Heat mode
5 Excitation methods of the microcantilever biosensors
6 Detection methods of the microcantilever biosensors
6.1 Optical lever
6.2 Optical interferometry
6.3 Piezoresistive method
6.4 Piezoelectric method
6.5 Capacitance method
6.6 Electron tunneling method
6.7 Other methods
7 Surface biofunctionalization
8 Application of the microcantilever biosensors
8.1 DNA hybridization detection
8.2 Pathogens detection
8.3 Protein detection
8.4 Small-molecular and drug testing
8.5 Biological warfare agent detection
8.6 Self-actuating and self-sensing microcantilever biosensors
9 Conclusion and outlook

中图分类号: 

()
[1] Binnig G, Quate C F, Gerber C. Phys. Rev. Lett., 1986, 56 (9): 930.
[2] Muller D J, Dufrene Y F. Trends Cell Biol., 2011, 21(8): 461.
[3] Dufrene Y F, Martinez-Martin D, Medalsy I, Alsteens D, Muller D J. Nat. Methods, 2013, 10 (9): 847.
[4] Ando T. Curr. Opin. Struct. Biol., 2014, 28: 63.
[5] Kirmse R, Otto H, Ludwig T. J. Cell Sci., 2011, 124 (11): 1857.
[6] Wildling L, Rankl C, Haselgrubler T, Gruber H J, Holy M, Newman A H, Zou M F, Zhu R, Freissmuth M, Sitte H H, Hinterdorfer P. J. Biol. Chem., 2012, 287 (1): 105.
[7] 李密 (Li M), 刘连庆 (Liu L Q), 席宁 (Xi N), 王越超(Wang Y C).生物化学与物理进展 (Progress in Biochemistry and Biophysics), 2015, 42 (8): 697.
[8] Milhiet P E, Dosset P, Godefro C, Grimellec C L, Guigner J M, Larquet E, Ronz F, Manin C. Biochim., 2011, 93: 254.
[9] Lyubchenko Y L, Shlyakhtenko L S, Ando T. Methods, 2011, 54 (2): 274.
[10] Kumano S, Murakoshi M, Iida K, Hamana H, Wada H. FEBS. Lett., 2010, 584: 2872.
[11] Eita M. Soft Matt., 2011, 7 (2): 709.
[12] Bodenhofer K, Hierlemann A, Noetzel G, Weimar U, Gopel W. Anal. Chem., 1996, 68 (13): 2210.
[13] Liao C D, Chao K H, Tsai J C. IEEE J. Quantum Elect., 2010, 46 (9): 1268.
[14] Chen Y, Xu P C, Liu M, Li X X. Microelectron. Eng., 2010, 87 (12): 2468.
[15] Garcia-Romeo D, Pellejero I, Urbiztondo M A, Sese J, Pina M P, Martinez P A, Calvo B, Medrano N. Sensor Actuat. B-Chem., 2014, 200: 31.
[16] Alvarez M, Lechuga L M. Analyst, 2010, 135 (5) : 827.
[17] Cai B J, Wang S T, Huang L, Ning Y, Zhang Z Y, Zhang G J. ACS Nano, 2014, 8 (3): 2632.
[18] 伍周玲 (Wu Z L), 燕冰宇 (Yan B Y), 梁东军 (Liang D J), 郭明(Guo M), 张新鸽 (Zhang X G). 中国食品学报 (Journal of Chinese Institute of Food Science and Technology), 2015, 15 (3) : 166.
[19] 蔡冰洁 (Cai B J), 张国军 (Zhang G J). 检验医学 (Laboratory Medicine), 2015, 30 (6): 650.
[20] Vo-Dinh T, Cullum B. Fresenius J. Anal. Chem., 2000, 366 (6): 540.
[21] Clark L, Lyons C. Ann NY Acad. Sci., 1962, 102: 29.
[22] Updike S J, Hicks G P. Nature, 1967, 214 (5092): 986.
[23] Hwang K S, Jeon H K, Lee S M, Kim S K, Kim T S. J. Appl. Phys., 2009, 105 (10): 102017.
[24] Ghosh S, Mishra S, Mukhopadhyay R. J. Mater. Chem. B, 2014, 2 (8): 960.
[25] Liu F, Zhang Y, Ou-Yang Z C. Biosens. Bioelectron., 2003, 18 (6): 655.
[26] Goeders K M, Colton J S, Bottomley L A. Chem. Rev., 2008, 108 (2): 522.
[27] Wang J H, Morton M J, Elliott C T, Karoonuthaisiri N, Segatori L, Biswal S L. Anal. Chem., 2014, 86 (3): 1671.
[28] Patil S J, Adhikari A, Baghini M S, Rao V R. Sensor Actuat. B-Chem., 2014, 203: 165.
[29] Carrascosa L G, Moreno M, Alvarez M, Lechuga L M. Trac-Trend Anal. Chem., 2006, 25 (3): 196.
[30] Ramos D, Calleja M, Mertens J, Zaballos A, Tamayo J. Sensors, 2007, 7 (9) : 1834.
[31] 侯慧 (Hou H). 南昌大学硕士学位论文(Master Dissertation of Nanchang University), 2013.
[32] 周雄图 (Zhou X T), 张永爱 (Zhang Y A), 郭太良 (Guo T L). 光电子 ·激光 (Journal of Optoelectronics·Laser), 2013, 24 (11): 2055.
[33] 唐洁 (Tang J).天津大学硕士学位论文(Master Dissertation of Tianjin University), 2005.
[34] Nordstrom M, Keller S, Lillemose M, Johansson A, Dohn S, Haefliger D, Blagoi G, Havsteen-Jakobsen M, Boisen A. Sensors, 2008, 8(3) : 1595.
[35] 霍寅龙 (Huo Y L), 王宇新 (Wang Y X), 徐英明 (Xu Y M), 丁健(Ding J). 医学研究与教育 (Medical Research and Education), 2012, 29 (1): 61.
[36] 李其昌 (Li Q C), 王广龙 (Wang G L), 高凤岐 (Gao F Q), 卢江雷(Lu J L), 张姗姗 (Zhang S S), 王磊 (Wang L). 传感器与微系统 (Transducer and Microsystem Technologies), 2013, 32 (1): 95.
[37] Kosaka P M, Pini V, Ruz J J, da Silva R A, Gonzalez M U, Ramos D, Calleja M, Tamayo J. Nat. Nanotechnol., 2015, 9 (12): 1047.
[38] Arlett J L, Myers E B, Roukes M L. Nat. Nanotechnol., 2011, 6 (4): 203.
[39] McCaig H C, Myers E, Lewis N S, Roukes M L. Nano. Lett., 2014, 14 (7): 3728.
[40] Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bathtold A. Nat. Nanotechnol., 2012, 7 (5): 300.
[41] 张奇 (Zhang Q), 任权 (Ren Q), 靳鹏云 (Jin P Y),韩立 (Han L). 现代科学仪器 (Modern Scientific Instruments), 2010, 4 (2) : 180.
[42] Brantley W A. J. Appl. Phys., 1973, 44 (1): 534.
[43] Dareing D W, Thundant T. J. Appl. Phys., 2005, 97 (4): 043526.
[44] Yang S M, Chang C. Sensors and Actuators B., 2010, 145: 405.
[45] 张柏林 (Zhang B L), 潘宏青 (Pan H Q). 黑龙江大学自然科学学报 (Journal of Natural Science of Heilongjiang University), 2011, 28 (5): 676.
[46] Singamaneni S, Lemienux M C, Lang H P, Gerber C, Lam Y, Zauscher S, Datskos P G, Lavrik N V, Jiang H, Naik R R. Adv. Mater., 2008, 20 (4): 653.
[47] 邬林 (Wu L), 吴定强 (Wu D Q), 张青川 (Zhang Q C). 实验力学 (Journal of Experimental Mechanics), 2012, 27 (6): 696.
[48] Kae S K,Swamy K B M,Mukherjee B.Microsystem Technologies,2013, 19 (1) : 79.
[49] Pustan M, Rochus V, Golinval J C. Microsyst. Technol., 2012, 18 (3): 247.
[50] Kim B H, Kim B I, Lee J C, Shin S J, Kim S J. Sensor Actuat A-Phys., 2012, 173 (1): 244.
[51] 佘东生 (She D S), 杨一柳 (Yang Y L), 魏泽飞 (Wei Z F), 王晓东 (Wang X D), 王立鼎 (Wang L D). 仪器仪表学报 (Chinese Journal of Scientific Instrument), 2015, 36 (8): 1892.
[52] Meyer G., Amer N M. Appl. Phys. Lett., 1988, 53(12): 1045.
[53] Morita K, Sugimoto Y, Sasagawa Y, Abe M, Morita S. Nanotechnology, 2010, 21 (30): 305704.
[54] 文丰 (Wen F). 北京理工大学博士学位论文(Doctoral Dissertation of Beijing Institute of Technology), 2014.
[55] Cooper E S, Post E R, Griffith S, Levitan J, Manalis S R, Schmidt M A, Quate C F. Appl. Phys. Lett., 2000, 76 (22): 3316.
[56] Loui A, Goericke F T, Ratto T V, Lee J, Hart B R, King W P. Sensor Actuat A-Phys., 2008, 147(2): 516.
[57] 黄渊 (Huang Y). 中国科学技术大学博士学位论文(Doctoral Dissertation of Universtity of Science and Technology of China), 2009.
[58] Sang S B, Zhao Y, Zhang W D, Li P W, Hu J, Li G. Biosens. Bioelectron., 2014, 51: 124.
[59] Thuau D, Ayela C, Poulin P, Dufour I. Sensor Actuat. A-Phys., 2014, 209: 161.
[60] Binnig G, Rohrer H, Gerber C. Weibel E. Appl. Phys. Lett., 1982, 40: 178.
[61] Kenny T W, Kaiser W J, Podosck J A, Rockstad H K, Reynolds J K, Vote E C. J. Vac. Sci. Technol. A, 1993, 11(4): 797.
[62] 舒启清 (Shu Q Q). 电子隧穿原理 ( Instrument Science and Technology). 北京:科学出版社(Beijing:China Science Publishing & Media Ltd.), 1998. 1.
[63] Dravid V P, Shekawat G, Tark S H. Science, 2006, 311 (5767): 1592.
[64] Kim B H, Mader O, Weimar U, Brock R, Kern D P. J. Vac. Sci. Technol. B, 2003, 21 (4): 1472.
[65] Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M. Chem. Rev., 2005, 105 (4): 1103.
[66] Oh S J, Cho S J, Kim C O, Park J W. Langmuir, 2002, 18 (5): 1764.
[67] Herne T M, Tarlov M J. J. Am. Chem. Soc., 1997, 119 (38): 8916.
[68] 李辉彦 (Li H Y), 白效静 (Bai X J), 王风红 (Wang F H), 李静 (Li J),唐纪琳 (Tang J L). 应用化学 (Chinese Journal of Applied Chemistry), 2015, 32 (3): 362.
[69] Velanki S, Kelly S, Thundat T, Blake D A, Ji H F. Ultramicroscopy, 2007, 107: 1123.
[70] Tokuhisa H, Liu J A, Omori A, Kanesato M, Hiratani K, Baker L A. Langmuir, 2009, 25(3): 1633.
[71] Bietsch A, Zhang J Y, Hegner M, Lang H P, Gerber C. Nanotechnology, 2004, 15 (8): 873.
[72] Bietsch A, Hegner M, Lang H P, Gerber C. Langmuir, 2004,20 (12): 5119.
[73] Fritz J, Baller M K, Lang H P, Rothuizen H, Vettiger P, Meyer E, Guntherodt H J, Gerber C, Gimzewski J K. Science, 2000, 288 (5464): 316.
[74] Yang S M, Chang C, Yin T I, Kuo P L. Sensor Actuat. B-Chem., 2008, 130 (2): 674.
[75] Zheng S, Choi J H, Lee S M, Hwang K S, Kim S K, Kim T S. Lab Chip, 2011, 11 (1): 63.
[76] Sungkanak U, Sappat A, Wisitsoraat A, Promptmas C, Tuantranont A. Biosens. Bioelectron., 2010, 26 (2): 784.
[77] Numfon K, Wijit W, Assawapong S, Kata J, Adisorrn T, Chamras P. Biosens. Bioelectron., 2015, 63: 347.
[78] 韩乐 (Han L), 高志贤 (Gao Z X), 宁保安 (Ning B A). 哈尔滨医科大学学报 (Journal of Harbin Medical University), 2013, 47 (5): 425.
[79] Tzeng T Cheng Y, Saeidpourazar R, Aphale S, Jalili N. J. Heat Trans-T Asme., 2011, 133 (1): 011012.1.
[80] Wang J H, Morton M J, Elliott C T, Karoonuthaisiri N, Segatori L, Biswal S L. Anal. Chem., 2014, 86 (3) : 1671.
[81] Moulin A M, O'Shea S J, Badley R A, Doyle P, Welland M E. Langmuir, 1999, 15 (26): 8776.
[82] Liu Y J, Li X X, Zhang Z X, Zuo G M, Cheng Z X, Yu H T. Biomed. Microdevices, 2009, 11 (1): 183.
[83] 王赬胤(Wang C Y), 王德艳(Wang D Y), 汪国秀(Wang G X), 胡效亚(Hu X Y). 分析化学(Chinese J. Anal. Chem.), 2010, 38 (12): 1771.
[84] Hou H, Bai X J, Xing C Y, Lu B P, Hao J H, Ke X, Gu N Y, Zhang B L, Tang J L, Talanta, 2013, 109: 173.
[85] 董晓东 (Dong X D), 于朝云 (Yu C Y), 杨慧 (Yang H), 安朴英 (An P Y). 医学研究与教育 (Medical Research and Education), 2011, 28 (2): 6.
[86] Huang Y, Xue C G, Zhang Q C, Tan W M, Wang B M. J. Med. Biomechan., 2009, 24: 89.
[87] Tan W M, Huang Y, Nan T G, Xue C G, Li Z H, Zhang Q C, Wang B M. Anal. Chem., 2010, 82 (2): 615.
[88] Wu S Q, Nan T G, Xue C G, Cheng T, Liu H, Wang B M, Zhang Q C, Wu X P. Biosens. Bioelectron., 2013, 48: 67.
[89] Wei Y L,Chen Y X, Li H H, Shuang S M, Dong C, Wang G F. Biosens. Bioelectron., 2015, 63: 311.
[90] Zhao H W, Xue C G, Nan T G, Tan G Y, Li Z H, Li Q X, Zhang Q C, Wang B M. Anal. Chim. Acta, 2010, 676 : 81.
[91] Xue C G, Zhao H W, Liu H, Chen Y Y, Wang B M, Zhang Q C, Wu X P. Sensor Actuat. B-Chem., 2011, 156 (2) : 863.
[92] Suye S I, Tandel S, Mulchandani A. Anal. Chem., 1997, 69: 3633.
[93] 陈雁云 (Chen Y Y), 薛长国 (Xue C G), 黄渊 (Huang Y), 张青川(Zhang Q C), 刘红 (Liu H), 王保民 (Wang B M), 伍小平 (Wu X P). 实验力学 (Journal of Experimental Mechanics), 2010, 25 (5): 529.
[94] 刘志伟 (Liu Z W), 童朝阳 (Tong Z Y), 穆晞惠 (Mu X H), 刘冰 (Liu B), 郝兰群 (Hao L Q),张金平 (Zhang J P). 传感器与微系统( Transducer and Microsystem Technologies), 2014, 33 (3): 8.
[95] 刘志伟(Liu Z W), 童朝阳 (Tong Z Y), 郝兰群 (Hao L Q), 穆晞惠(Mu X H), 张金平 (Zhang J P), 高川 (Gao C). 分析化学研究报告 (Chinese Journal of Analytical Chemistry), 2014, 42 (8) : 1143.
[96] Chen X J, Bai X J, Li H Y, Zhang B L. RSC Advance, 2015, 5 (45): 35448.
[97] Campbell G A, Mutharasan R. Biosens. Bioelectron., 2005, 21 (3): 462.
[98] Lu J, Ikehara T, Zhang Y, Mihara T, Itoh T, Maeda R. JPN J. Appl. Phys., 2007,46(12): 7643.
[99] Cha B H, Lee S M, Park J C, Hwang K S, Kim S K, Lee Y S, Ju B K, Kim T S. Biosens. Bioelectron., 2009, 25 (1): 130.
[100] Johnson B N, Mutharasan R. Analyst, 2014, 139 (5): 1112.
[101] Ricciardi C, Canavese G, Castagna R, Ferrante I, Ricci A, Marasso S, L, Napione L, Bussolino F. Biosens. Bioelectron., 2010, 26 (4): 1565.
[102] Fu L L, Zhang K W, Li S Q, Wang Y H, Huang T S, Anxue Zhang A X, Cheng Z Y. Sensor Actuat B-Chem., 2010, 150 (1): 220.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[5] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[6] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[7] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[8] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[9] 颜廷义, 张光耀, 喻琨, 李梦洁, 曲丽君, 张学记. 基于智能手机的即时检测[J]. 化学进展, 2022, 34(4): 884-897.
[10] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[11] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[12] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[13] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[14] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[15] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
阅读次数
全文


摘要

微悬臂生物传感器