English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 908-916 DOI: 10.7536/PC151115 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

扫描电化学显微镜在光电能源研究领域的应用

何辉超1,2,3, Sean P. Berglund2, Buddie Mullins2*, 周勇1,4, 柯改利1, 董发勤1*   

  1. 1. 西南科技大学材料科学与工程学院 四川省非金属复合与功能材料重点实验室-省部共建国家重点实验室培育基地 固体废物处理与资源化教育部重点实验室 绵阳 621010;
    2. 美国德克萨斯大学奥斯汀分校 化学化工系 奥斯汀 78712;
    3. 广东矿物物理与材料研究开发重点实验室 广州 510460;
    4. 南京大学物理学院 南京 211102
  • 收稿日期:2015-11-01 修回日期:2016-02-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: Buddie Mullins, 董发勤 E-mail:mullins@che.utexas.edu;fqdong@swust.edu.cn
  • 基金资助:
    国家重点基础研究规划项目(973)项目(No.2014CB846003),西南科技大学科研基金项目(No. 15zx7104,15zx7123)和广东矿物物理与材料研究开发重点实验室合作研究基金(No.GLMPM-019)资助

Scanning Electrochemical Microscopy for Photoelectrochemical Energy Research

He Huichao1,2,3, Sean P. Berglund2, Buddie Mullins2*, Zhou Yong1,4, Ke Gaili1, Dong Faqin1*   

  1. 1. State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
    2. McKetta Department of Chemical Engineering and Department of Chemistry, University of Texas at Austin, Austin 78712, USA;
    3. Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510460, China;
    4. School of Physics, Nanjing University, Nanjing 211102, China
  • Received:2015-11-01 Revised:2016-02-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the National Basic Research Program of China (973 Program)(No.2014CB846003), the Research Fund of Southwest University of Science and Technology (No. 15zx7104, 15zx7123) and the Cooperative Research Fund of Guangdong Provincial Key Laboratory of Mineral Physics and Materials (No.GLMPM-019).
作为一种扫描探针技术,扫描电化学显微镜(SECM)在金属防腐、材料表征、生物医学和新能源技术等领域的研究中扮演着重要角色。本文简要介绍了SECM的基本工作原理和常用的两种工作模式:反馈模式和收集/产生模式;综述了SECM在太阳能电池和太阳光解水制氢两个光电能源研究领域的应用进展,同时结合课题组的工作基础,特别是近期利用SECM筛选合适金属离子掺杂改性WO3光阳极的工作,对SECM在筛选半导体电极材料方面的应用特点进行了实例展示介绍,最后简要总结了SECM在光电能源研究领域的发展及方向。
Since introduced by Allen J. Bard and co-workers in 1986, scanning electrochemical microscopy (SECM) has been used as a powerful scanning probe technique in wide variety of fields, such as metal anti-corrosion, material characterization, biomedicine and new energy technology. In recent years, SECM plays a more and more important role in the field of photoelectrochemical energy research. In this paper, we introduce the basic principle as well as feedback and generation-collection operation-modes of SECM and highlight some of the recent advances on SECM applied to studies of solar cell and solar water splitting. SECM coupling with light source used as an effective tool for investigating interfacial charge transfer process and the regeneration kinetics of dyes in dye-sensitized solar cell are described. Additionally, SECM used as a powerful screening technique for developing efficient photocatalysts is discussed. Furthermore, we provide a brief research example that related SECM used as a combinatorial screening technique to investigate Ⅲ A, Ⅳ A and ⅤA group metal ions as dopants for WO3 for photoelectrochemical water oxidation. This work has been conducted in our group recently, and it is reported for the first time. The details of this work are presented, including preparing doped WO3 arrays on FTO glass substrate, setting up SECM testing system, photoelectrochemical scanning doped WO3 arrays, screening scan results and proving scan results on scaled-up films. The SECM screening results show that 2%~4% In3+ doped WO3, 2%~4% Sn4+ doped WO3 and 4%~6% Sb5+ doped WO3 have higher photoelectrochemical activity than un-doped WO3. On the basis of research results, it is concluded that SECM is a convenient and efficient screening technique, has a promising application prospect in the development of photocatalysts. Finally, we briefly describe and forecast the development trend of SECM in the field of photoelectrochemical energy research.

Contents
1 Introduction
2 SECM operation modes
2.1 Feedback mode
2.2 Generation-collection mode
3 SECM used as tool for photoelectrochemical energy research
4 SECM used as screening technique for developing metal ion doped WO3 photocatalysts
5 Conclusion and outlook

中图分类号: 

()
[1] Engstrom R C, Weber M, Wunder D J, Burgess R, Winquist S. Anal. Chem., 1986, 58: 844.
[2] Liu H Y, Fan F R F, Lin C W, Bard A J. J. Am. Chem. Soc., 1986, 108: 3838.
[3] Bard A J, Fan F R F, Kwak J, Lev O. Anal.Chem., 1989, 61: 132.
[4] Amemiya S, Bard A J, Fan F R F, Mirkin M V, Unwin P R. Annu. Rev. Anal. Chem., 2008, 1: 95.
[5] Bard A J, Fan F R F, Pierce D T, Unwin P R, Wipf D O, Zhou F. Science, 1991, 254: 68.
[6] Bard A J, Mirkin M V. Scanning Electrochemical Microscopy. 2nd ed. NY: CRC Press, 2012. 670.
[7] 邵元华(Shao Y H). 分析化学(Chinese Journal of Analytical Chemistry), 1999, 11: 1348.
[8] 卢小泉(Lu X Q), 王晓强(Wang X Q), 胡丽娜(Hu L N). 化学通报(Chemistry), 2004, 67: 673.
[9] 杨晓辉(Yang X H), 赵瑜(Zhao Y), 谢青季(Xie Q J), 姚守拙(Yao S Z). 分析科学学报(Journal of Analytical Science), 2004, 2: 210.
[10] 李保华(Ma B H), 马燕(Ma Y), 黄蕾(Huang L). 化学通报(Chemistry), 2013, 76: 124.
[11] 曹发和(Cao F H), 夏妍(Xia Y), 刘文娟(Liu W J), 常林荣(Chang L R), 张鉴清(Zhang J Q). 电化学(Electrochemistry), 2013, 5: 393.
[12] 张赟(Zhang,Y), 吴晓梅(Wu X M), 曾小勤(Zeng X Q), 丁文江(Ding W J). 电源技术(Chinese Journal of Power Sources), 2015, 5:1129.
[13] Wain A J. Electrochem. Commun., 2014, 46: 9.
[14] Sun P, Laforge F O, Mirkin M V. Phys. Chem. Chem. Phys., 2007, 9: 802.
[15] Rodriguez L J, Alpuche A M A, Bard A J. J. Am. Chem. Soc., 2008, 130: 16985.
[16] Unwin P R, Bard A J. J. Phys. Chem., 1992, 96:5035.
[17] Bozic B, Figgemeier E. Chem. Comm., 2006, 21: 2268.
[18] Figgemeier E, Kylberg W H, Bozic B. Photonics for Solar Energy Systems, Strasbourg: SPIE, 2006. 6197.
[19] Shen Y, Nonomura K, Schlettwein D, Zhao C, Wittstock G. Chem. Eur. J., 2006, 12: 5832.
[20] Shen Y, Nonomura K, Schlettwein D, Zhao C, Wittstock G. Chemistry, 2006, 12: 5832.
[21] Shen Y, Tefashe U M, Nonomura K, Loewenstein T, Schlettwein D, Wittstock G. Electrochim. Acta, 2009, 55: 458.
[22] Tefashe U M, Loewenstein T, Miura H, Schlettwein D, Wittstock G. J. Electroanal. Chem., 2010, 650: 24.
[23] Tefashe U M, Rudolph M, Miura H, Schlettwein D, Wittstock G. Phys. Chem. Chem.Phys., 2012, 14: 7533.
[24] Tefashe U M, Nonomura K, Vlachopoulos N, Hagfeldt A, Wittstock G. J. Phys. Chem. C, 2012, 116: 4316.
[25] Martin C J, Bozic-Weber B, Constable E C, Glatzel T, Housecroft C E, Wright I A. Electrochim. Acta, 2014, 119: 86.
[26] Alemu G, Cui J, Cao K, Li J, Shen Y, Wang M. RSC Adv., 2014, 4: 51374.
[27] Alemu G, Zhang B, Li J, Xu X, Cui J, Shen Y, Wang M. Nano, 2014, 9: 1793.
[28] Zhang B, Yuan H, Zhang X, Huang D, Li S, Wang M, Shen Y. ACS Appl. Mater. Interfaces, 2014, 6: 20913.
[29] Zhang B, Xu X, Zhang X, Huang D, Li S, Zhang Y, Zhan F, Deng M, He Y, Chen W, Shen Y, Wang M. ChemPhysChem, 2014, 15: 1182.
[30] Alemu G, Li J P, Cui J, Xu X B, Zhang B Y, Cao K, Shen Y, Cheng Y B, Wang M K. J. Mater. Chem. A, 2015, 3: 9216.
[31] Berglund S P, Hoang S, Minter R L, Fullon R, Mullins C B. J. Phys. Chem. C, 2013, 117: 25248.
[32] Lee J W, Ye H C, Pan S L, Bard A J. Anal. Chem., 2008, 80: 7445.
[33] Liu G, Liu C, Bard A J. J. Phys. Chem. C, 2010, 114: 20997.
[34] Liu W, Ye H, Bard A J. J. Phys. Chem. C, 2010, 114: 1201.
[35] Ye H, Lee J, Jang J S, Bard A J. J. Phys. Chem. C, 2010, 114: 13322.
[36] Jang J S, Lee J, Ye H, Fan F R F, Bard A J. J. Phys. Chem. C, 2009, 113: 6719.
[37] Zhang F, Roznyatoyskiy V, Fan F R F, Lynch V, Sessler J L, Bard A.J. J. Phys. Chem. C, 2011, 115: 2592.
[38] Bhattacharya C, Lee H C, Bard A J. J. Phys. Chem. C, 2013, 117: 9633.
[39] Park H S, Kweon K E, Ye H, Paek E, Hwang G S, Bard A J. J. Phys.Chem. C, 2011, 115: 17870.
[40] Berglund S P, Lee H C, Nunez P D, Bard A J, Mullins C B. Phys. Chem. Chem. Phys., 2013, 15: 4554.
[41] Weng Y C, Chou Y D, Chang C J, Chan C C, Chen K Y, Su Y F. Electrochim. Acta, 2014, 125: 354.
[42] Weng Y C, Chou Y D. Electrochim. Acta, 2015, 153: 416.
[43] Yu C W, Kuan T H. Int. J. Hydrogen Energy, 2015, 40: 3238.
[44] Ahn H S, Bard A J. J. Am. Chem. Soc., 2015, 137: 612.
[45] Zigah D, Rodriguez L J, Bard A J. Phys. Chem. Chem. Phys., 2012, 14: 12764.
[46] Park H S, Leonard K C, Bard A J. J. Phys. Chem. C, 2013, 117: 12093.
[47] Zhang B, Zhang X, Xiao X, Shen Y. ACS Appl. Mater. Interfaces, 2016, 8: 1606.
[48] Xu Y, Schoonen M A A. Am. Mineral., 2000, 85: 543.
[49] Butler M A. J. Appl. Phys., 1977, 48: 1914.
[50] Pesci F M, Cowan A J, Alexander B D, Durrant J R, Klug D R. J. Phys. Chem. Lett., 2011, 2: 1900.
[51] Chakrapani V, Thangala J, Sunkara M K. Int. J. Hydrogen Energy, 2009, 34: 9050.
[52] Augustynski J, Solarska R, Hagemann H, Santato C. Solar Hydrogen and Nanotechnology. San Diego: SPIE, 2006. 6340.
[53] Hameed A, Gondal M A, Yamani Z H. Catal.Comm., 2004, 5: 715.
[54] Miseki Y, Kusama H, Sugihara H, Sayama K. J. Phys. Chem. Lett., 2010, 1: 1196.
[55] Gui M S, Zhang W D, Chang Y Q, Yu Y X. Chem. Eng. J., 2012, 197: 283.
[56] He G H, He G L, Li A J, Li X, Wang X J, Fang Y P, Xu Y H. J. Mol. Catal. A: Chem., 2014, 385: 106.
[57] Zhu Z, Yan Y, Li J. Micro Nano Lett., 2015, 10: 460
[58] Peng Y, Chen Q G, Wang D, Zhou H Y, Xu A W. CrystEngComm., 2015, 17: 569.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[4] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[7] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[12] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[13] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.
[14] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[15] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.