English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 961-974 DOI: 10.7536/PC150706 前一篇   

• 综述与评论 •

双钙钛矿型电极材料在中低温固体氧化物燃料电池中的应用

张文锐1, 张智慧1, 高立国2*, 马廷丽1,2*   

  1. 1. 日本国立九州工业大学大学院 生命体工学研究科 日本 北九州 808-0196;
    2. 大连理工大学盘锦校区石油与化学工程学院 盘锦 124221
  • 收稿日期:2015-07-01 修回日期:2016-03-01 出版日期:2016-06-15 发布日期:2015-12-21
  • 通讯作者: 高立国, 马廷丽 E-mail:liguo.gao@dlut.edu.cn;tinglima@life.kyutech.ac.jp

Double Perovskite Material as An Electrode for Intermediate-Temperature Solid Oxide Fuel Cells Application

Zhang Wenrui1, Zhang Zhihui1, Gao Liguo2*, Ma Tingli1,2*   

  1. 1. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan;
    2. School of Petroleum and Chemical Engineering, Dalian University of Technology-Panjin, Panjin 124221, China
  • Received:2015-07-01 Revised:2016-03-01 Online:2016-06-15 Published:2015-12-21
近年来固体氧化物燃料电池(SOFCs)由于高效率(高达80%)、环境友好和燃料适用广泛等优点得到了人们的广泛关注。但是,由于其通常需要1000 ℃以上的工作温度才能达到所需的性能,其商业化及产业化应用受到了严重制约。中低温固体氧化物燃料电池(IT-SOFCs)的研发是固体氧化物燃料电池进一步商业化的必然趋势。降低工作温度(从高温1000 ℃以上降低至中低温500~800 ℃)可提高燃料电池的稳定性、降低电池运行成本、增加系统材料可选性,而研发出中低温下性能优异的燃料电池电极材料是实现固体氧化物燃料电池中低温化的关键。作为混合离子-电子导体材料之一,双钙钛矿型氧化物材料可以成功地将燃料反应活性区域从传统的电极-电解质-反应气体三相界面扩展到整个电极的表面, 进而降低材料的极化电阻并大大提高电极在中低温条件下对氧的催化活性。由于双钙钛矿结构材料良好的氧离子传输能力、较低的热膨胀系数、优异的催化活性、较强的抗硫中毒和抗碳沉积能力,近年来成为非常有发展潜力的SOFCs电极材料。本文综述双钙钛矿型氧化物材料作为SOFCs电极材料的最新研究进展,指出目前双钙钛矿电极材料存在的主要问题,并提出SOFCs未来的主要研究发展方向。
Solid oxide fuel cells (SOFCs) have attracted considerable attention because of their high energy conversion efficiency (reach up to 80%), low emission of pollutants, and excellent fuel flexibility. Conventional SOFCs need to be operated at high temperature typically at ~1000 ℃ to obtain the required performance. This high operating temperature leads to the degradation of fuel cell performance, interfacial reactions among the components, and limited choice of materials. Therefore, intermediate temperature solid oxide fuel cell (IT-SOFCs) would be a development trend for the next generation of SOFCs which could be commercialized in the future. Lowing the operating temperature from traditional 1000 ℃ to 500~800 ℃ or even lower not only significantly prolongs the lifetime of materials and reduces the SOFCs system costs, but also provides a broader range for material selection. Therefore, it is necessary to develop a new electrode material with high electrochemical activity in intermediate temperature range to improve electrochemical performance. As one of the mixed ionic-electronic conductors (MIECs), the reaction sites of double perovskite materials extend the active sites from the three phase boundary to the entire exposed surface, which affords low polarization resistance and high performance at intermediate operating temperature. Meanwhile, due to the high ability of transporting oxygen ions, the low thermal expansion coefficient, good catalytic activity and high tolerance to sulfur poisoning and strong resistance against carbon deposition, the double-perovskite oxide becomes a promising electrode material for the IT-SOFCs. This review focuses on the structure stability, electronic and ionic conductivity as well as catalytic activity of perovskite materials. The main concerns about current double perovskite based electrode materials are summarized and the main future research directions are proposed.

Contents
1 Introduction
2 Solid oxide fuel cells
2.1 Introduction of SOFCs
2.2 Principle of SOFCs
2.3 Advantages of SOFCs
2.4 Problems of SOFCs
3 Cathode of SOFCs
3.1 LnBaCo2O6 layered double perovskite
3.2 Other Co-base double perovskite
3.3 Co-free double perovskite
4 Anode of SOFCs
5 Symmetric solid oxide fuel cells
6 Conclusion and outlook

中图分类号: 

()
[1] Kreuer K. Fuel Cells. 1st ed. NY: Springer-Verlag, 2013.
[2] Steele B C H, Heinzel A. Nature, 2001, 414(6861): 345.
[3] Park S D, Vohs J M, Gorte R J. Nature, 2000, 404(6775):265.
[4] 池田 宏之助. 燃料電池のすべて.東京:日本実業出版社. 2001.
[5] Tollefson J. Nature News, 2010, 464(7293): 1262.
[6] Singhal S C. Solid State Ionics, 2000,135(1): 305.
[7] Choudhury A, Chandra H, Arora A. Renewable Sustainable Energy Rev., 2013, 20: 430.
[8] Laguna-Bercero M A. J. Power Sources, 2012, 203: 4.
[9] Demirdöven N, Deutch J. Science, 2004, 305(5686): 974.
[10] 邵宗平(Shao Z P). 化学进展(Progress in Chemistry), 2011, 23(02/03): 418.
[11] Shao Z P, Zhou W, Zhu Z H. Prog. Mater. Sci., 2012, 57(4): 804.
[12] Wachsman E D, Lee K T. Science, 2011, 334(6058): 935.
[13] Nielsen J, Hjelm J. Electrochim. Acta, 2014, 115: 31.
[14] Wang D, Xin H L, Hovden R, Wang H, Yu Y, Muller D A, Abruña H D. Nat. Mater., 2013, 12(1): 81.
[15] Service R F. Science, 2007, 315(5809): 172
[16] Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Prog. Mater. Sci., 2015, 72: 141.
[17] 王晶晶(Wang J J), 魏棣(Wei D),旭昀(Xu Y). 广州化工(Guangzhou Chemical Industry), 2014, 42(2): 21.
[18] Kim J, Jun A, Shin J, Kim G. J. Am. Ceram. Soc., 2014, 97(2): 651.
[19] Patakangas J, Ma Y, Jing Y, Lund P. J. Power Sources, 2014.263: 315.
[20] Ali S M, Rosli R E, Muchtar A, Sulong A B, Somalu M R, Majlan E H. Ceram. Int., 2015, 41(1): 1323.
[21] Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. Science, 2011, 334(6061): 1383.
[22] Zhao S, Gao L, Lan C, Pandey S, Hayase S, Ma T. RSC Adv., 2016, DOI: 10.1039/C6RA02297A.
[23] Lee W, Han J W, Chen Y, Cai Z, Yildiz B. J. Am. Chem. Soc., 2013, 135(21): 7909.
[24] Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. J. Mater. Chem., 2007, 17(24): 2500.
[25] Taskin A A, Lavrov A N, Ando Y. Appl. Phys. Lett., 2005, 86(9): 091910.
[26] Grimaud A, May K J, Carlton C E, Lee Y L, Risch M, Hong W T, Shao-Horn Y. Nat. Commun., 2013, 4: 2439.
[27] Zhou Q, He T, Ji Y. J. Power Sources, 2008, 185(2): 754.
[28] Choi S, Park S, Kim J, Lim T H, Shin J, Kim G. Electrochem. Commun., 2013, 34: 5.
[29] Ahmad S, Bakar M S A, Rahman H A, Muchtar A. Applied Mechanics and Materials, 2014, 695: 3.
[30] Zhong H T, Ai D S, Lin X P. Key. Eng. Mat., 2014, 602: 862.
[31] Kim J, Choi S, Park S, Kim C, Shin J, Kim G. Electrochim. Acta, 2013, 112: 712.
[32] Choi S, Yoo S, Kim J, Park S, Jun A, Sengodan S, Kim J, Shin J, Jeong H, Choi Y, Kim G, Liu M. Sci. Rep., 2013, 3.
[33] Kim J, Jun A, Shin J, Kim G. J. Am. Ceram. Soc., 2014, 97(2): 651.
[34] Wang J, Meng F, Xia T, Shi Z, Lian J, Xu C, Grenier J C. Int. J. Hydrogen. Energ., 2014, 39(32): 18392.
[35] Jun A, Kim J, Shin J, Kim G. Int. J. Hydrogen. Energ., 2012, 37(23): 18381.
[36] Jun A, Lim T, Shin J, Kim G. Int. J. Hydrogen. Energ., 2014, 39(35): 20791.
[37] Wang B, Long G, Ji Y, Pang M, Meng X. J. Alloys. Compounds., 2014, 606: 92.
[38] Park S, Choi S, Shin J, Kim G. Electrochim. Acta, 2014, 125: 683.
[39] Jin F, Li L, He T. J. Power Sources, 2015, 273: 591.
[40] Kim C, Kim J, Shin J, Kim G. Int. J. Hydrogen. Energ., 2014, 39(35): 20812.
[41] Wei B, Lü Z, Jiang W, Zhu X, Su W. Electrochim. Acta, 2014, 134: 136.
[42] Yoo S, Choi S, Kim J, Shin J, Kim G. Electrochim. Acta., 2013, 100: 44.
[43] Yoo S, Jun A, Ju Y W, Odkhuu D, Hyodo J, Jeong H Y, Kim G. Angew. Chem. Int. Ed., 2014, 53(48): 13064.
[44] Richter J, Holtappels P, Graule T, Nakamura T, Gauckler L J. Monatsh. Chem., 2009, 140(9): 985.
[45] Xia T, Lin N, Zhao H, Huo L, Wang J, Grenier J C. J. Power Sources, 2009, 192(2): 291.
[46] Wang Y, Zhao X, Lü S, Meng X, Zhang Y, Yu B, Yang J H. Ceram. Int., 2014, 40(7): 11343.
[47] Lü S, Yu B, Meng X, Zhang Y, Ji Y, Fu C, Yang J. Ceram Int., 2014, 40(9): 14919.
[48] Li F, Zeng R, Jiang L, Wei T, Lin X, Xu Y, Huang Y. Journal of Materiomics, 2015, 1(1): 60.
[49] Pang S L, Jiang X N, Li X N, Wang Q, Su Z Y. J. Power Sources, 2012, 204: 53.
[50] Kovalev L V, Yarmolich M V, Petrova M L, Ustarroz J, Terryn H A, Kalanda N A, Zheludkevich M. ACS App. Mater. Inter., 2014, 6(21): 19201.
[51] Yu X, Long W, Jin F, He T. Electrochim. Acta, 2014, 123: 426.
[52] Mao X, Yu T, Ma G. J. Alloys. Compounds., 2015, 637: 286.
[53] Mao X, Wang W, Ma G. Ceram. Int., 2015. 41(8), 10276.
[54] Sun C, Stimming U. J. Power Sources, 2007, 171(2): 247.
[55] 郑尧(Zheng Y),周嵬(Zhou W),冉然(Ran R),邵宗平(Shao Z P).化学进展(Progress in Chemistry), 2008, 20(02/03): 413.
[56] Prakash B S, Kumar S S, Aruna S T. Renewable Sustainable Energy Rev., 2014, 36: 149.
[57] Rahman I E, Raza M A, Rahman M A. Adv. Mater. Res., 2012, 445: 497.
[58] Cheng Z, Wang J H, Choi Y, Yang L, Lin M C, Liu M. Energ. Environ. Sci., 2011, 4(11):4380.
[59] Chueh W C, Hao Y, Jung W, Haile S M. Nat. Mater., 2012, 11(2): 155.
[60] Huang Y H, Dass R I, Denyszyn J C, Goodenough J B. Electrochem. Soc., 2006, 153(7): A1266.
[61] Huang Y H, Dass R I, Xing Z L, Goodenough J B. Science, 2006, 312(5771): 254.
[62] Jiang L, Liang G, Han J, Huang Y. J. Power Sources, 2014, 270: 441.
[63] Thangadurai V, Shukla A K, Gopalakrishnan J. Solid State Ionics, 1997, 104(3): 277.
[64] Xia T, Liu X D, Li Q, Meng J, Cao X Q. J. Alloys Compounds, 2006, 422(1): 264.
[65] Ji Y, Huang Y H, Ying J R, Goodenough J B. Electrochem. Commun., 2007, 9: 1881.
[66] Wang W, Su C, Wu Y, Ran R, Shao Z. Chem. Rev., 2013, 113(10): 8104.
[67] Huang Y H, Liang G, Croft M, Lehtimaki M, Karppinen M, Goodenough J B. Chem. Mater., 2009, 21(11): 2319.
[68] Xie Z, Zhao H, Du Z, Chen T, Chen N. J. Phys. Chem. C, 2014, 118(33): 18853.
[69] 刘张波(Liu Z B), 刘倍倍(Liu B B), 夏长荣(Xia C R). 化学进展(Progress in Chemistry), 2013, 25(11): 1821.
[70] Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Kim G. Nat. Mater., 2015, 14(2), 205.
[71] Ruiz-Morales J C, Marrero-López D, Canales-Vázquez J, Irvine J T. RSC Adv., 2011, 1(8): 1403.
[72] Wei T, Zhang Q, Huang Y H, Goodenough J B. J. Mater. Chem., 2012. 22(1): 225.
[73] Ge B, Ai D S, Deng C S, Ma J T, Lin X P. Key. Eng. Mat., 2012, 512: 1584.
[74] Muñoz-García A B, Bugaris D E, Pavone M, Hodges J P, Huq A, Chen F, Carter E A.J. Am. Chem. Soc., 2012, 134(15): 6826.
[75] Tan W, Pan C, Yang S, Zhong Q. J. Power Sources, 2015, 277: 416.
[76] Huang Y H, Liang G, Croft M, Lehtimaki M, Karppinen M, Goodenough J B. Chem. Mater., 2009, 21(11): 2319.
[77] Yang Z B, Yang Y R, Chen Y, Liu Y H, Zhu T L, Han M F, Chen F L. J. Power Sources, 2015, 297: 271.
[78] Escudero M J, Parada I G, Fuerte A, Daza L. J. Power Sources, 2013, 243: 654.
[79] Wang F Y, Zhong G B, Luo S, Xia L, Fang L H, Song X, Yan G. Catal. Commun., 2015, 67: 108.
[80] Zheng K, ?wierczek K, Zajac W, Klimkowicz A. Solid State Ionics, 2014, 257: 9.
[81] Wei T, Ji Y, Meng X, Zhang Y. Electrochem. Commun., 2008, 10(9): 1369.
[82] Ding H P, Xue X J. Electrochim Acta, 2010, 55(11): 3812.
[83] Zhao F, Wang S, Brinkman K, Chen F. J. Power Sources, 2010, 195(17): 5468.
[84] Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Solid State Ionics, 2015, 274: 17.
[85] Choi S, Shin J, Kim G. J. Power Sources, 2012, 201: 10.
[86] Lü S, Yu B, Meng X, Zhang Y, Ji Y, Fu C, Yang J. Ceram. Int., 2014, 40(9): 14919.
[87] Kim J, Jun A, Shin J, Kim G. J. Am. Ceram. Soc., 2014, 97(2): 651.
[88] Martínez-Coronado R, Aguadero A, Alonso J, Fernández-Díaz M. Solid State Sci., 2013, 18: 64.
[89] Badwal S P S, Giddey S, Kulkarni A, Munnings C. Aust. Cer. Soc., 2014, 50: 23.
[90] Méndez-Vilas A. Materials and Processes for Energy: Communicating Current Research and Technological Developments. 1st ed. Extremadura: Formatex, 2013. 512.
[91] Garcia-Martinez J. Nanotechnology for the Energy Challenge. 1st ed. Great Britain: John Wiley & Sons, 2010.
[92] Nie Y, Li L, Wei Z. Chem. Soc. Rev., 2015, 44(8): 2168.
[93] Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J. Nat. Chem., 2011, 3(1): 79.
[94] Zhu K, Liu H, Zhu X, Liu Y, Yang W. Int. J. Hydrogen. Energ., 2015, 40(1): 501.
[95] López-Robledo M, Laguna Bercero M, Silva J, Orera V, Larrea A. Ceram. Int., 2015, 41(6): 7651.
[96] Gao Y, Chen D, Chen C, Shao Z, Ciucci F. J. Power Sources, 2015, 278: 623.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[3] 刘少名, 于波, 张文强, 朱建新, 翟玉春, 陈靖. 原子尺度研究固体氧化物池氧电极中氧迁移规律[J]. 化学进展, 2014, 26(09): 1570-1585.
[4] 刘张波, 刘蓓蓓, 夏长荣. 固体氧化物燃料电池的纳米阳极[J]. 化学进展, 2013, 25(11): 1821-1829.
[5] 邵宗平. 中低温固体氧化物燃料电池阴极材料[J]. 化学进展, 2011, 23(0203): 418-429.
[6] 章蕾, 夏长荣. 低温固体氧化物燃料电池[J]. 化学进展, 2011, 23(0203): 430-440.
[7] 吕喆, 魏波, 田彦婷, 王志红, 苏文辉. 单气室固体氧化物燃料电池关键材料与微堆系统[J]. 化学进展, 2011, 23(0203): 449-462.
[8] 陈建颖, 曾凡蓉, 王绍荣, 陈玮, 郑学斌. 固体氧化物燃料电池关键材料及电池堆技术[J]. 化学进展, 2011, 23(0203): 463-469.
[9] 刘泽, 雷泽, 宋世栋, 于立安, 韩敏芳. 低温制备掺杂氧化锆/氧化铈电解质[J]. 化学进展, 2011, 23(0203): 470-476.
[10] 阮北 闫柏军 张家芸. 新型氧离子导体La2Mo2O9*[J]. 化学进展, 2010, 22(01): 44-50.
[11] 辛显双,朱庆山. 固体氧化物燃料电池(SOFC)电池稳定性分析*[J]. 化学进展, 2009, 21(01): 227-234.
[12] 梁明德,于波,文明芬,陈靖,徐景明,翟玉春. YSZ电解质薄膜的制备方法*[J]. 化学进展, 2008, 20(0708): 1222-1232.
[13] 郑尧,周嵬,冉然,邵宗平. 钙钛矿型固体氧化物燃料电池阳极材料*[J]. 化学进展, 2008, 20(0203): 413-421.
[14] 朱晓东,孙克宁,周德瑞. 稳定的ZrO2基SOFC中CeO2夹层的制备方法和作用机制*[J]. 化学进展, 2007, 19(11): 1710-1717.
[15] 王康,邵宗平. 单室固体氧化物燃料电池*[J]. 化学进展, 2007, 19(0203): 267-275.