English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1821-1829 DOI: 10.7536/PC130315 前一篇   后一篇

• 综述与评论 •

固体氧化物燃料电池的纳米阳极

刘张波, 刘蓓蓓, 夏长荣*   

  1. 中国科学技术大学材料科学与工程系 中国科学院能量转换材料重点实验室 合肥 230026
  • 收稿日期:2013-03-01 修回日期:2013-06-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 夏长荣 E-mail:xiacr@ustc.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2012CB215403)资助

Nano-Structured Anodes of Solid Oxide Fuel Cells

Liu Zhangbo, Liu Beibei, Xia Changrong*   

  1. CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science & Engineering, University of Science & Technology of China, Hefei 230026, China
  • Received:2013-03-01 Revised:2013-06-01 Online:2013-11-15 Published:2013-09-12

固体氧化物燃料电池技术的商业化进程需要发展在中低温操作时具有优良输出性能以及良好抗积炭与抗硫中毒能力的新型阳极材料,这主要通过对传统的镍基阳极进行修饰以及探索新型的金属或陶瓷材料来实现。研究发现,离子浸渍法是一种能够有效地对传统镍基阳极进行改性以及向多孔骨架中浸入新型阳极物种的手段。由于热处理的温度不高,所以浸渍粒子的尺寸通常控制在纳米量级,从而表现出卓越的电化学性能。本文结合本实验室的诸多研究成果以及文献中的一些经典报道,对这种纳米阳极的优越性和应用价值进行详细论述。

The commercialization of solid oxide fuel cell (SOFC) technologies requires the development of novel anode materials with high performance and good carbon and sulfur tolerance at intermediate-temperatures, either by modifying the state-of-the-art Ni based anodes, or through exploring alternative metal cermet or ceramic based materials. Wet impregnation is an effective approach for the optimization of traditional Ni-based anode and the incorporation of novel anode species into porous backbones. Due to the lower treatment temperature, the impregnated particles are usually nano-sized, thus exhibiting superior electrochemical performance. In this paper, the superiority and application of these nano-structured anodes are discussed in details, based on the obtained results in our laboratory, as well as some reports in the literatures.

Contents
1 Introduction
2 Theoretical TPB lengths of conventional anode and nano-structured anode
3 Effects of impregnation method and anode microstructure on the cell performance
3.1 Performance of nano-structured SOFC anodes
3.2 Effects of impregnation parameters on nano-structured SOFC anode performance
3.3 Effects of impregnation species on anode performance
4 Application of nano-structured impregnated anodes in hydrocarbon fuels SOFC
4.1 Nano-structured Ni-based impregnated anodes
4.2 Nano-structured Cu-based impregnated anodes
4.3 Nano-structured perovskite-based impregnated anodes
5 Sulfur tolerance of nano-structured impregnated anodes
6 Summary and outlook

中图分类号: 

()

[1] Minh N Q. Journal of the American Ceramic Society, 1993, 76(3): 563—588
[2] Steele B C H, Heinzel A. Nature, 2001, 414(6861): 345—352
[3] Simwonis D, Tietz F, Stover D. Solid State Ionics, 2000, 132(3/4): 241—251
[4] Gorte R J, Vohs J M. Journal of Catalysis, 2003, 216(1/2): 477—486
[5] Jiang S P. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006, 418(1/2): 199—210
[6] Zhu W, Ding D, Xia C. Electrochemical and Solid State Letters, 2008, 11(6): B83—B86
[7] Ding D, Zhu W, Gao J, Xia C. Journal of Power Sources, 2008, 179(1): 177—185
[8] Jiang S P, Duan Y Y, Love J G. Journal of the Electrochemical Society, 2002, 149(9): A1175—A1183
[9] Setoguchi T, Okamoto K, Eguchi K, Arai H. Journal of the Electrochemical Society, 1992, 139(10): 2875—2880
[10] Timurkutluk B, Timurkutluk C, Mat M D, Kaplan Y. International Journal of Energy Research, 2011, 35(12): 1048—1055
[11] Liu Z, Ding D, Liu B, Guo W, Wang W, Xia C. Journal of Power Sources, 2011, 196(20): 8561—8567
[12] Trovarelli A. Catalysis Reviews-Science and Engineering, 1996, 38(4): 439—520
[13] McIntosh S, Vohs J M, Gorte R J. Electrochimica Acta, 2002, 47(22/23): 3815—3821
[14] Armor J N. Applied Catalysis a-General, 1999, 176(2): 159—176
[15] Zhu W, Xia C, Fan J, Peng R, Meng G. Journal of Power Sources, 2006, 160(2): 897—902
[16] Ding D, Liu Z, Li L, Xia C. Electrochemistry Communications, 2008, 10(9): 1295—1298
[17] Liu B B, Liu Z B. Wang S, Xia C R. Xie M F, Chen Z J. Li Y Y. International Journal of Hydrogen Energy, 2012, 37(10): 8354—8359
[18] Yoon S, Kim Y, Kim S, Bae J. Journal of Solid State Electrochemistry, 2010, 14(10): 1793—1800
[19] Yoon S, Kang I, Bae J. Journal of Hydrogen Energy, 2008, 33(18): 4780—4788
[20] Rostrup-Nielsen J R, Christensen T S, Dybkjaer I. reforming of liquid hydrocarbons. in Recent Advances in Basic and Applied Aspects of Industriaql Catalysis. London: Elsevier Science, 1998: 81—95
[21] Chen Y, Chen F, Wang W, Ding D, Gao J. Journal of Power Sources, 2011, 196(11): 4987—4991
[22] Lu C, Worrel W L, Wang C, Park S, Kim S, Vohs J M, Gorte R J. Solid State Ionics, 2002, 152: 393—397
[23] McIntosh S, Gorte R J. Chemical Reviews, 2004, 104(10): 4845—4865
[24] Lee S I, Vohs J M, Gorte R J. Journal of the Electrochemical Society, 2004, 151(9): A1319—A1323
[25] Sfeir J, Buffat P A, Möckli P, Xanthopoulus N, Vasquez R, Mathieu H J, Van Herle J, Thampi K R. Journal of Catalysis, 2001, 202(2): 229—244
[26] Jiang S P, Ye Y, He T, Ho S B. Journal of Power Sources, 2008, 185(1): 179—182
[27] Zhu X, Lü Z, Wei B, Zhang Y, Huang X, Su W. Electrochemical and Solid State Letters, 2010, 13(8): B91—B94
[28] Kurokawa H, Sholklapper T Z, Jacobson C P, De Jonghe L C, Visco S J. Electrochemical and Solid State Letters, 2007, 10(9): B135—B138
[29] Yun J W, Yoon S P, Park S, Kim H S, Nam S W. International Journal of Hydrogen Energy, 2011, 36(1): 787—796
[30] Chen Y, Bunch J, Jin C, Yang C, Chen F. Journal of Power Sources, 2012, 204: 40—45
[31] Aoshima A, Wise H. Journal of Catalysis, 1974, 34(1): 145—151
[32] Chivers T, Hyne J B, Lau C. International Journal of Hydrogen Energy, 1980, 5(5): 499—506
[33] Niemann W, Clausen B S, Topsoe H. Catalysis Letters, 1990, 4(4/6): 355—363
[34] He H P, Gorte R J, Vohs J M. Electrochemical and Solid State Letters, 2005, 8(6): A279—A280
[35] Simner S P, Bonnett J F, Canfield N L, Meinhardt K D, Shelton J P, Sprenkle V L, Stevenson J W. Journal of Power Sources, 2003, 113(1): 1—10
[36] Uchida H, Suzuki S, Watanabe M. Electrochemical and Solid State Letters, 2003, 6(9): A174—A177

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[4] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[5] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[6] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[7] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[8] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[9] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[10] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[11] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[12] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[13] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[14] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[15] 陈天有, 王子豪, 许子政, 徐祖顺, 曹峥. 基于树枝状聚合物的无机纳米颗粒的制备及应用[J]. 化学进展, 2020, 32(2/3): 249-261.
阅读次数
全文


摘要

固体氧化物燃料电池的纳米阳极