English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 963-976 DOI: 10.7536/PC141230 前一篇   

• 综述与评论 •

对流层大气NO3与N2O5的实地测量

王海潮1, 陈军2, 陆克定*1   

  1. 1. 北京大学环境科学与工程学院 环境模拟与污染控制国家重点联合实验室 北京 100871;
    2. 上海理工大学能源与动力工程学院 上海市动力工程多相流动与传热重点实验室 上海 200093
  • 收稿日期:2014-12-01 修回日期:2015-02-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 陆克定 E-mail:k.lu@pku.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 41375124, 21190052, 41121004),中国科学院先导专项(No. XDB05010500)与国家重点实验室自由探索基金课题(No. 13Z02ESPCP)资助

Measurement of NO3 and N2O5 in the Troposphere

Wang Haichao1, Chen Jun2, Lu Keding*1   

  1. 1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China;
    2. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2014-12-01 Revised:2015-02-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.41375124,21190052,41121004), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB05010500), and the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 13Z02ESPCP).
大气硝基(NO3)自由基和五氧化二氮(N2O5)是对流层大气化学反应的核心物种,对于理解大气氧化性、二次有机气溶胶生成、活性卤素化学和全球硫素循环等对流层大气化学研究的关键问题具有重要意义。大气NO3自由基和N2O反应活性高、大气寿命短、浓度低,其定量分析非常具有挑战性。本文总结了大气NO3自由基与N2O5的实地测量方法,并对差分光学吸收光谱(DOAS)、腔衰荡光谱(CRDS)、腔增强光谱(CEAS)、激光诱导荧光光谱(LIF)、电子顺磁共振谱(MIESR)和化学离子化质谱(CIMS)等六类技术方法的准确度、精确度、时间分辨率、测量干扰、标定方法和系统稳定性等方面进行了系统比较。综合分析认为吸收光谱法是对流层NO3自由基与N2O5测量技术的发展方向,其中近期发展起来的腔技术(CRDS和CEAS)显示出较好的应用潜力。但是我国实际大气环境中普遍存在高浓度的颗粒物污染,如何在高颗粒物条件下实现NO3自由基与N2O5的精密准确测量具有挑战性。本文进一步归纳了NO3自由基与N2O5在城市、森林、自由大气和海洋海岸等典型大气环境条件下的浓度水平和主要科学发现,探讨了一些亟待解决的问题和可能的重点研究方向。
Nitrate radical (NO3) and dinitrogen pentoxide (N2O5) are key species of the tropospheric chemistry, that play a central role in the tropospheric chemical issues such as atmospheric self cleansing capacity, secondary aerosol formations, reactive halogen chemistry, global sulfur cycles, etc. Nevertheless, the accurate and precise determination of both NO3 and N2O5 is still a challenging task due to their low ambient concentrations, high reactivity and short life time. In this paper, we summarize all kinds of measurement techniques used in the field observations of NO3 and N2O5, including differential optical absorption spectroscopy(DOAS), cavity ring-down spectroscopy (CRDS), cavity enhance absorption spectroscopy (CEAS), laser-induced fluorescence(LIF), matrix isolation electron spin resonance spectroscopy(MIESR), and chemical ionization mass spectrometry(CIMS). The advantages and disadvantages of those techniques are reviewed on the aspects of measurement accuracy, precision, time resolution, interference, calibration and operation stability. The absorption spectroscopy is the best technical approach, especially the subcategories——CRDS and CEAS developed in the last decade are the techniques with high potential of good performance in field applications. However, because high aerosol loadings are always presented in the atmosphere of the mega-city regions in China, the aerosol extinction could be a significant barrier to come over for the techniques based on absorption spectroscopy. Moreover, the observed NO3 and N2O5 concentrations and the major scientific findings of corresponding measurement campaigns conducted in typical tropospheric conditions as urban, forest, free troposphere and marine environments, etc. are outlined. Finally, we discuss the unresolved issues of the NO3 and N2O5 chemistry and possible new directions for future studies in chemically complex environments.

Contents
1 Introduction
2 Measurement techniques of tropospheric nitrate radical (NO3) and dinitrogen pentoxide (N2O5)
2.1 Absorption spectroscopy
2.2 Fluorescence methods
2.3 Mass spectrometric methods
2.4 Paramagnetic resonance spectroscopy
2.5 Calibrations
3 Field measurement of nitrate radical and dinitrogen pentoxide
4 Conclusion and outlook

中图分类号: 

()
[1] Levy H. Science, 1971, 173: 141.
[2] Ehhalt D H. Phys. Chem. Chem. Phys., 1999, 1: 5401.
[3] Finlayson-Pitts B J, James N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications. Calif: Academic Press, 2000.
[4] Heard D E, Pilling M J. Chem. Rev., 2003, 103: 5163.
[5] 陆克定(Lu K D), 张远航(Zhang Y H). 化学进展(Progress in Chemistry), 2010, 22(2/3): 500.
[6] 李晓倩(Li X Q), 陆克定(Lu K D), 魏永杰(Wei Y J), 唐孝炎(Tang X Y). 化学进展(Progress in Chemistry), 2014, 26(4): 682.
[7] Wayne R P, Barnes I, Biggs P, Burrows J P, Canosamas C E, Hjorth J, Lebras G, Moortgat G K, Perner D, Poulet G, Restelli G, Sidebottom H. Atmos. Environ. A-Gen., 1991, 25: 1.
[8] Platt U, Alicke B, Dubois R, Geyer A, Hofzumahaus A, Holland F, Martinez M, Mihelcic D, Klupfel T, Lohrmann B, Patz W, Perner D, Rohrer F, Schafer J, Stutz J. J. Atmos. Chem., 2002, 42: 359.
[9] 贾龙(Jia L), 葛茂发(Ge M F), 庄国顺(Zhuang G S), 姚立(Yao L),王殿勋(Wang D X). 化学进展(Progress in Chemistry), 2006, 18(7/8): 1034.
[10] Mihelcic D, Klemp D, Musgen P, Patz H W, Volzthomas A. J. Atmos. Chem., 1993, 16: 313.
[11] Brown S S, Stark H, Ryerson T B, Williams E J, Nicks D K, Trainer M, Fehsenfeld F C, Ravishankara A R. J. Geophys. Res-Atmos., 2003, 108: ACH18.
[12] Geyer A, Alicke B, Ackermann R, Martinez M, Harder H, Brune W, di Carlo P, Williams E, Jobson T, Hall S, Shetter R, Stutz J. J. Geophys. Res-Atmos., 2003, 108: ACH7.
[13] Brown S S, Ryerson T B, Wollny A G, Brock C A, Peltier R, Sullivan A P, Weber R J, Dube W P, Trainer M, Meagher J F, Fehsenfeld F C, Ravishankara A R. Science, 2006, 311: 67.
[14] Kanaya Y, Sadanaga Y, Matsumoto J, Sharma U K, Hirokawa J, Kajii Y, Akimoto H. Geophys. Res. Lett., 1999, 26: 2179.
[15] Kanaya Y, Nakamura K, Kato S, Matsumoto J, Tanimoto H, Akimoto H. Atmos. Environ., 2002, 36: 4929.
[16] Faloona I, Tan D, Brune W, Hurst J, Barket D, Couch T L, Shepson P, Apel E, Riemer D, Thornberry T, Carroll M A, Sillman S, Keeler G J, Sagady J, Hooper D, Paterson K. J. Geophys. Res-Atmos., 2001, 106: 24315.
[17] Martinez M, Harder H, Kovacs T A, Simpas J B, Bassis J, Lesher R, Brune W H, Frost G J, Williams E J, Stroud C A, Jobson B T, Roberts J M, Hall S R, Shetter R E, Wert B, Fried A, Alicke B, Stutz J, Young V L, White A B, Zamora R J. J. Geophys. Res-Atmos., 2003, 108: ACH8.
[18] Ren X R, Harder H, Martinez M, Lesher R L, Oliger A, Shirley T, Adams J, Simpas J B, Brune W H. Atmos. Environ., 2003, 37: 3627.
[19] Ren X R, Brune W H, Oliger A, Metcalf A R, Simpas J B, Shirley T, Schwab J J, Bai C H, Roychowdhury U, Li Y Q, Cai C X, Demerjian K L, He Y, Zhou X L, Gao H L, Hou J. J. Geophys. Res-Atmos., 2006, 111: S03.
[20] Mao J, Jacob D J, Evans M J, Olson J R, Ren X, Brune W H, St Clair J M, Crounse J D, Spencer K M, Beaver M R, Wennberg P O, Cubison M J, Jimenez J L, Fried A, Weibring P, Walega J G, Hall S R, Weinheimer A J, Cohen R C, Chen G, Crawford J H, McNaughton C, Clarke A D, Jaegle L, Fisher J A, Yantosca R M, Le Sager P, Carouge C. Atmos. Chem. Phys., 2010, 10: 5823.
[21] Richter A, Burrows J P, Nuss H, Granier C, Niemeier U. Nature, 2005, 437: 129.
[22] Fu T M, Jacob D J, Wittrock F, Burrows J P, Vrekoussis M, Henze D K. J. Geophys. Res-Atmos., 2008, 113: D15303.
[23] Vrekoussis M, Wittrock F, Richter A, Burrows J P. Atmos. Chem. Phys., 2009, 9: 4485.
[24] Shao M, Tang X Y, Zhang Y H, Li W J. Front. Ecol. Environ., 2006, 4: 353.
[25] Zhang Y H, Hu M, Zhong L J, Wiedensohler A, Liu S C, Andreae M O, Wang W, Fan S J. Atmos. Environ., 2008, 42: 6157.
[26] Chan C K, Yao X. Atmos. Environ., 2008, 42: 1.
[27] Zhu T, Shang J, Zhao D F. Sci. China Chem., 2011, 54: 145.
[28] Hofzumahaus A, Rohrer F, Lu K D, Bohn B, Brauers T, Chang C C, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou S R, Shao M, Zeng L M, Wahner A, Zhang Y H. Science, 2009, 324: 1702.
[29] Lu K D, Rohrer F, Holland F, Fuchs H, Bohn B, Brauers T, Chang C C, Haseler R, Hu M, Kita K, Kondo Y, Li X, Lou S R, Nehr S, Shao M, Zeng L M, Wahner A, Zhang Y H, Hofzumahaus A. Atmos. Chem. Phys., 2012, 12: 1541.
[30] Lu K D, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Haseler R, Kita K, Kondo Y, Li X, Lou S R, Oebel A, Shao M, Zeng L M, Wahner A, Zhu T, Zhang Y H, Rohrer F. Atmos. Chem. Phys., 2013, 13: 1057.
[31] Rohrer F, Lu K D, Hofzumahaus A, Bohn B, Brauers T, Chang C C, Fuchs H, Haseler R, Holland F, Hu M, Kita K, Kondo Y, Li X, Lou S R, Oebel A, Shao M, Zeng L M, Zhu T, Zhang Y H, Wahner A. Nat. Geosci., 2014, 7: 559.
[32] Yokelson R J, Burkholder J B, Fox R W, Talukdar R K, Ravishankara A R. J. Phys. Chem., 1994, 98: 13144.
[33] Voigt S, Orphal J, Burrows J P. J. Photoch. Photobio. A, 2002, 149: 1.
[34] Platt U, Perner D, Patz H W. J. Geophys. Res., 1979, 84: 6329.
[35] Stutz J, Platt U. Appl. Optics, 1996, 35: 6041.
[36] Geyer A. Doctoral Dissertation of Institut of Umweltphysik, University Heidelberg. 2000.
[37] Noxon J F, Norton R B, Henderson W R. Geophys. Res. Lett., 1978, 5: 675.
[38] Platt U, Perner D, Winer A M, Harris G W, Pitts J N. Geophys. Res. Lett., 1980, 7: 89.
[39] White J U. J. Opt. Soc. Am., 1942, 32: 285.
[40] Herriott D S, Harry. Appl. Optics, 1965, 4(8): 883.
[41] Ball S M, Jones R L. Chem. Rev., 2003, 103: 5239.
[42] Brown S S. Chem. Rev., 2003, 103: 5219.
[43] Fuchs H, Simpson W R, Apodaca R L, Brauers T, Cohen R C, Crowley J N, Dorn H P, Dube W P, Fry J L, Haseler R, Kajii Y, Kiendler-Scharr A, Labazan I, Matsumoto J, Mentel T F, Nakashima Y, Rohrer F, Rollins A W, Schuster G, Tillmann R, Wahner A, Wooldridge P J, Brown S S. Atmos. Meas. Tech., 2012, 5: 2763.
[44] Fuchs H, Dube W P, Cicioira S J, Brown S S. Anal. Chem., 2008, 80: 6010.
[45] Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A. Environ. Sci. Technol., 2006, 40: 6758.
[46] Chen J, Venables D S. Atmos. Meas. Tech., 2011, 4: 425.
[47] Varma R M, Venables D S, Ruth A A, Heitmann U, Schlosser E, Dixneuf S. Appl. Optics, 2009, 48: B159.
[48] Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L. Atmos. Meas. Tech., 2011, 4: 1759.
[49] Brown S S, Stark H, Ciciora S J, Ravishankara A R. Geophys. Res. Lett., 2001, 28: 3227.
[50] Dube W P, Brown S S, Osthoff H D, Nunley M R, Ciciora S J, Paris M W, McLaughlin R J, Ravishankara A R. Rev. Sci. Instrum., 2006, 77: 034101.
[51] Wagner N L, Dube W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B, Brown S S. Atmos. Meas. Tech., 2011, 4: 1227.
[52] Ball S M, Langridge J M, Jones R L. Chem. Phys. Lett., 2004, 398: 68.
[53] Langridge J M, Laurila T, Watt R S, Jones R L, Kaminski C F, Hult J. Opt. Express, 2008, 16: 10178.
[54] Wood E C, Wooldridge P J, Freese J H, Albrecht T, Cohen R C. Environ. Sci. Technol., 2003, 37: 5732.
[55] Matsumoto J, Imai H, Kosugi N, Kajii Y. Chem. Lett., 2005, 34: 1214.
[56] Berresheim H, Elste T, Plass-Dulmer C, Eisele F L, Tanner D J. Int. J. Mass Spectrom., 2000, 202: 91.
[57] Ren X, Mao J, Brune W H, Cantrell C A, Mauldin R L, Hornbrook R S, Kosciuch E, Olson J R, Crawford J H, Chen G, Singh H B. Atmos. Meas. Tech., 2012, 5: 2025.
[58] Slusher D L, Huey L G, Tanner D J, Flocke F M, Roberts J M. J. Geophys Res-Atmos., 2004, 109: D19315.
[59] Kercher J P, Riedel T P, Thornton J A. Atmos. Meas. Tech., 2009, 2: 193.
[60] Lindinger W. Gaseous Ion Chemistry and Mass Spectrometry. New York, 1986.
[61] Brown S S, Stutz J. Chem. Soc. Rev., 2012, 41: 6405.
[62] Wang X, Wang T, Yan C, Tham Y J, Xue L, Xu Z, Zha Q. Atmos. Meas. Tech., 2014, 7: 1.
[63] Mihelcic D, Volz-Thomas A, Pätz H W, Kley D. J. Atmos. Chem., 1990, 11(3): 271.
[64] Mihelcic D, Klemp D, Musgen P, Patz H W, Volzthomas A. J. Atmos. Chem., 1993, 16(4): 313.
[65] Matsumoto J, Kosugi N, Imai H, Kajii Y. Rev. Sci. Instrum., 2005, 76: 064101.
[66] Bertram T H, Thornton J A, Riedel T P. Atmos. Meas. Tech., 2009, 2: 231.
[67] Fiedler S E, Hese A, Ruth A A. Chem. Phys. Lett., 2003, 371: 284.
[68] Wu T, Coeur-Tourneur C, Dhont G, Cassez A, Fertein E, He X D, Chen W D. J. Quant. Spectrosc. Ra., 2014, 133: 199.
[69] Benton A K, Langridge J M, Ball S M, Bloss W J, Dall'Osto M, Nemitz E, Harrison R M, Jones R L. Atmos. Chem. Phys., 2010, 10: 9781.
[70] Stutz J, Wong K W, Lawrence L, Ziemba L, Flynn J H, Rappengluck B, Lefer B. Atmos. Environ., 2010, 44: 4099.
[71] Geyer A, Alicke B, Mihelcic D, Stutz J, Platt U. J. Geophys. Res-Atmos., 1999, 104: 26097.
[72] Dorn H P, Apodaca R L, Ball S M, Brauers T, Brown S S, Crowley J N, Dube W P, Fuchs H, Haseler R, Heitmann U, Jones R L, Kiendler-Scharr A, Labazan I, Langridge J M, Meinen J, Mentel T F, Platt U, Pohler D, Rohrer F, Ruth A A, Schlosser E, Schuster G, Shillings A J L, Simpson W R, Thieser J, Tillmann R, Varma R, Venables D S, Wahner A. Atmos. Meas. Tech., 2013, 6: 1111.
[73] Brown S S, Dube W P, Osthoff H D, Stutz J, Ryerson T B, Wollny A G, Brock C A, Warneke C, De Gouw J A, Atlas E, Neuman J A, Holloway J S, Lerner B M, Williams E J, Kuster W C, Goldan P D, Angevine W M, Trainer M, Fehsenfeld F C, Ravishankara A R. J. Geophys. Res-Atmos., 2007, 112: D22304.
[74] Brown S S, Dube W P, Osthoff H D, Wolfe D E, Angevine W M, Ravishankara A R. Atmos. Chem. Phys., 2007, 7: 139.
[75] Wang S S, Shi C Z, Zhou B, Zhao H, Wang Z R, Yang S N, Chen L M. Atmos. Environ., 2013, 70: 401.
[76] Asaf D, Pedersen D, Matveev V, Peleg M, Kern C, Zingler J, Platt U, Luria M. Environ. Sci. Technol., 2009, 43: 9117.
[77] Stutz J, Alicke B, Ackermann R, Geyer A, White A, Williams E. J. Geophys. Res-Atmos., 2004, 109: D12306.
[78] Matsumoto J, Imai H, Kosugi N, Kaji Y. Atmos. Environ., 2005, 39: 6802.
[79] Nakayama T, Ide T, Taketani F, Kawai M, Takahashi K, Matsumi Y. Atmos. Environ., 2008, 42: 1995.
[80] Li S W, Liu W Q, Xie P H, Qin M, Yang Y J. Terr. Atmos. Ocean Sci., 2012, 23: 39.
[81] Heintz F, Platt U, Flentje H, Dubois R. J. Geophys. Res-Atmos., 1996, 101: 22891.
[82] Allan B J, Carslaw N, Coe H, Burgess R A, Plane J M C. J. Atmos. Chem., 1999, 33: 129.
[83] Crowley J N, Schuster G, Pouvesle N, Parchatka U, Fischer H, Bonn B, Bingemer H, Lelieveld J. Atmos. Chem. Phys., 2010, 10: 2795.
[84] Ayers J D, Simpson W R. J. Geophys. Res-Atmos., 2006, 111: D14309.
[85] Apodaca R L, Huff D M, Simpson W R. Atmos. Chem. Phys., 2008, 8: 7451.
[86] Vrekoussis M, Kanakidou M, Mihalopoulos N, Crutzen P J, Lelieveld J, Perner D, Berresheim H, Baboukas E. Atmos. Chem. Phys., 2004, 4: 169.
[87] Vrekoussis M, Mihalopoulos N, Gerasopoulos E, Kanakidou M, Crutzen P J, Lelieveld J. Atmos. Chem. Phys., 2007, 7: 315.
[88] Matsumoto J, Imagawa K, Imai H, Kosugi N, Ideguchi M, Kato S, Kajii Y. Atmos. Environ., 2006, 40: 6294.
[89] Salisbury G, Rickard A R, Monks P S, Allan B J, Bauguitte S, Penkett S A, Carslaw N, Lewis A C, Creasey D J, Heard D E, Jacobs P J, Lee J D. J. Geophys. Res-Atmos., 2001, 106: 12669.
[90] Saiz-Lopez A, Shillito J A, Coe H, Plane J M C. Atmos. Chem. Phys., 2006, 6: 1513.
[91] Ambrose J L, Mao H, Mayne H R, Stutz J, Talbot R, Sive B C. J. Geophys. Res-Atmos., 2007, 112: D21302.
[92] McLaren R, Wojtal P, Majonis D, McCourt J, Halla J D, Brook J. Atmos. Chem. Phys., 2010, 10: 4187.
[93] Aldener M, Brown S S, Stark H, Williams E J, Lerner B M, Kuster W C, Goldan P D, Quinn P K, Bates T S, Fehsenfeld F C, Ravishankara A R. J. Geophys. Res-Atmos., 2006, 111: D23S73.
[94] Osthoff H D, Bates T S, Johnson J E, Kuster W C, Goldan P, Sommariva R, Williams E J, Lerner B M, Warneke C, de Gouw J A, Pettersson A, Baynard T, Meagher J F, Fehsenfeld F C, Ravishankara A R, Brown S S. J. Geophys. Res-Atmos., 2009, 114: D07301.
[95] Osthoff H D, Sommariva R, Baynard T, Pettersson A, Williams E J, Lerner B M, Roberts J M, Stark H, Goldan P D, Kuster W C, Bates T S, Coffman D, Ravishankara A R, Brown S S. J. Geophys. Res-Atmos., 2006, 111: D23S14.
[96] 胡任志(Hu R Z), 王丹(Wang D), 谢品华(Xie P H), 凌六一(Ling L Y), 秦敏(Qin M), 李传新(Li C X), 刘建国(Liu J G). 物理学报(Acta Phys. Sin.), 2014, 63: 110707.
[1] 唐荣志, 王辉, 刘莹, 郭松. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
[2] 林娇, 刘春伟, 曹宏斌, 李丽, 陈人杰, 孙峙. 基于高温化学转化的废旧锂离子电池资源化技术[J]. 化学进展, 2018, 30(9): 1445-1454.
[3] 王海潮, 陆克定. 五氧化二氮(N2O5)非均相摄取系数的定量和参数化[J]. 化学进展, 2016, 28(6): 917-933.
[4] 潘伦, 邓强, 鄂秀天凤, 聂根阔, 张香文, 邹吉军. 高密度航空航天燃料合成化学[J]. 化学进展, 2015, 27(11): 1531-1541.
[5] 李晓倩, 陆克定, 魏永杰, 唐孝炎. 对流层大气过氧自由基实地测量的技术进展及其在化学机理研究中的应用[J]. 化学进展, 2014, 26(04): 682-694.
[6] 蔡宝昌, 秦昆明, 吴皓, 蔡皓, 陆兔林, 张兴德. 中药炮制过程化学机理研究[J]. 化学进展, 2012, 24(04): 637-649.
[7] 童星, 肖小华, 邓建朝, 王家玥, 李攻科. 低温微波技术在化学研究中的应用[J]. 化学进展, 2010, 22(12): 2462-2468.
[8] 陆克定 张远航. HOx自由基的实地测量及其化学机制解析*[J]. 化学进展, 2010, 22(0203): 500-514.
[9] 贾龙,葛茂发,庄国顺,姚立,王殿勋. 对流层夜间化学研究*[J]. 化学进展, 2006, 18(0708): 1034-1040.
阅读次数
全文


摘要

对流层大气NO3与N2O5的实地测量