English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1445-1454 DOI: 10.7536/PC180424 前一篇   后一篇

所属专题: 锂离子电池

• 综述 •

基于高温化学转化的废旧锂离子电池资源化技术

林娇1,2, 刘春伟2, 曹宏斌2, 李丽1*, 陈人杰1, 孙峙2*   

  1. 1. 北京理工大学材料学院 北京 100081;
    2. 中国科学院过程工程研究所环境技术与工程研究部 绿色过程与工程重点实验室 北京市过程污染控制工程技术研究中心 北京 100190
  • 收稿日期:2018-04-12 修回日期:2018-05-26 出版日期:2018-09-15 发布日期:2018-06-28
  • 通讯作者: 李丽, 孙峙 E-mail:lily863@bit.edu.cn;sunzhi@ipe.ac.cn
  • 基金资助:
    中国科学院重点项目(No.KFZD-SW-315)和北京市科委项目(No.Z171100002217028)资助

Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion

Jiao Lin1,2, Chunwei Liu2, Hongbin Cao2, Li Li1*, Renjie Chen1, Zhi Sun2*   

  1. 1. School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2018-04-12 Revised:2018-05-26 Online:2018-09-15 Published:2018-06-28
  • Supported by:
    The work was supported by the Key Program of Chinese Academy of Sciences(No. KFZD-SW-315)and the Beijing Science and Technology Program (No. Z171100002217028).
鉴于废旧锂离子电池的环境危害性和资源化价值的双重属性,对其进行无害化处理并对其中的有价资源进行回收再利用具有十分重要的意义。目前电池资源化技术主要通过高温或常温条件下的化学转化实现。高温条件下,废旧锂离子电池中有价元素化学转化速率快、回收流程短、物料适应性强,易于实现工业应用,相关技术成为废旧锂离子电池资源化研究热点之一。本文基于物相化学转化方式的差异,系统分析了高温化学还原、熔盐化学焙烧以及短程材料再生等方法的物理化学机理、技术特征及研究现状,并对比了不同技术的优势和存在的问题。在此基础上,提出今后高温化学转化方法实现废旧锂离子电池资源化研究中需要考虑材料的短程清洁循环再生、深入研究其化学转化机理。基于绿色化学原理的工艺设计开发出低能耗、环境友好的资源化工艺路线,真正实现废旧锂离子电池的绿色处理和循环利用。
Given the environmental risk and valuable metal containing nature of spent lithium-ion batteries, it is of great significance to harmlessly dispose of spent lithium-ion batteries and recycle the valuable resources therein. At present, the spent lithium-ion batteries recycling technology is realized mainly through enhanced chemical conversion under high temperature or normal temperature conditions. High temperature boosts the chemical conversion rate of valuable elements in the spent lithium-ion battery, results in a short flow and releases material dependence. Therefore, high temperature chemical conversion is easy to implement in industry, and the related technologies have become one of the hotspots for the recycling of spent lithium-ion batteries. Based on the chemical conversion differences of various phases, this study systematically analyzes and evaluates the physicochemical mechanisms, technical characteristics, and research status of high temperature chemical reduction, roasting with molten salt, and direct regeneration. The advantages and problems of various technologies are compared. Based on this, it is advised that the future research needs in-depth study of its chemical conversion mechanism and takes into account the short flow clean regeneration of materials. It is necessary to develop a low energy-consuming and environmentally-friendly approach to enable the green treatment and recycling of spent lithium-ion batteries based on the principle of green chemistry.
Contents
1 Introduction
2 Pyrometallurgy recovery technology
2.1 High temperature reduction
2.2 Sulfation roasting
2.3 Direct regeneration
2.4 Discussion
3 Challenges and Prospects
4 Conclusion

中图分类号: 

()
[1] Zeng X L, Li J H, Narendra S. Crit. Rev. Env. Sci. Techno., 2014, 44(10):1129.
[2] Wang X, Gabrielle G, Callie W B, Kirti R. Resour. Conserv. Recy., 2014, 83(1):53.
[3] Yu L H, Miao J S, Jin Y, Lin J Y S. Front. Chem. Sci. Eng. 2017, 11(3):346.
[4] Zeng X L, Li J H, Ren Y S. Proc. IEEE, 2012, 1.
[5] Huang Y F, Han G H, Liu J T, Chai W C, Wang W J, Yang S Z, Su S P. J. Power Sources, 2016, 325:555.
[6] Zhao K C, Li Z H, Bian L. Front. Chem. Sci. Eng., 2016, 10:273.
[7] 朱凌云(Zhu L Y), 陈铭(Chen M). 汽车与配件(Automobile & Parts), 2014, 2014(33):41.
[8] Gratz E, Sa Q, Apelian D, Wang Y. J. Power Sources, 2014, 262(4):255.
[9] Germano D, Marcelo B M. J. Power Sources, 2007, 170(1):210.
[10] 王泽峰(Wang Z F). 清华大学硕士论文(Master Dissertation of Tsinghua University), 2008.
[11] 孙亮(Sun L). 中南大学硕士论文(Master Dissertation of Central South University), 2012
[12] Sun L, Qiu K Q. Waste Manage., 2012, 32(8):1575.
[13] Swain B. Sep. Purif. Technol. 2016, 172:388.
[14] Zhang P W, Yokoyama T, Itabashi O. Hydromet, 1998, 47(2/3):259.
[15] Yang L, Xi G X, Xi Y B. Ceram. Int., 2015, 41(9):11498.
[16] Li L, Dunn J B, Zhang X X, Gaines L, Chen R J, Wu F, Amine K. J. Power Sources, 2013, 233(233):180.
[17] Zeng X L, Li J H, Shen B Y. J. Hazard. Mater., 2015, 295:112.
[18] Ku H, Jung Y, Jo M, Park S, Kim S, Yang D, Rhee K, An E M, Sohn J, Kwon K. J. Hazard. Mater., 2016, 313:138.
[19] Sun Z, Cao H B, Prakash V, Jin W, Xiao Y P, Jilt S, Yang Y X. Front. Chem. Sci. Eng., 2017, 11(3):308.
[20] Xin B P, Zhang D, Zhang X, Xia Y T, Wu F, Chen S, Li L. Bioresour. Technol., 2009, 100(24):6163.
[21] Mishra D, Kim D J, Ralph D E, Ahn J G, Rhee Y H. Waste Manage., 2008, 28(2):333.
[22] Castillo S, Ansart F, Laberty-Robert C, Portal J. J. Power Sources, 2002, 112(1):247.
[23] Jian G, Guo J, Wang X, Sun C, Zhou Z, Yu L, Kong F H, Qiu J R. Pro. Env. Sci., 2012, 16:495.
[24] Zhang P W, Yokoyama T, Itabashi O, Suzuki T M, Inoue K. Hydromet, 1998, 50(1):61.
[25] Pranolo Y, Zhang W, Cheng C Y. Hydromet., 2010, 102(1/4):37.
[26] Freitas M, Penha T R, Sirtoli S. J. Power Sources, 2006, 163:1114
[27] Shu S, Lee J R, Zhang Q W, Saito F. Int. J. Miner. Process., 2004, 74(50):S373.
[28] Yang Y X, Zheng X H, Cao H B, Zhao C L, Lin X, Ning P G, Zhang Y, Jin W, Sun Z. Green Chem., 2017, 5(11):3121.
[29] Brajendra M, Sumedh G. Front. Chem. Sci. Eng., 2017, 11(3):483.
[30] Guo Y F, Xia Z D, Wang H B, Zhou H. Electronic Components & Materials, 2007, 26(12):5.
[31] Yuan E X, Ren X W, Wang L, Zhao W T. Front. Chem. Sci. Eng., 2017, 11:177.
[32] Al-Thyabat S, Nakamura T, Shibata E, Iizuka A. Miner. Eng., 2013, (45):4.
[33] Ordonez J, Gago E J, Girard A. Renewable and Sustainable Energy Reviews, 2016, 60:195.
[34] Zhao D J, Ma S Y. Chemical Engineer, 2011, 2:52.
[35] Tedjar F, Foudraz J C. US 7820317B2. 2010.
[36] Goonan T G. Lithium Use in Batteries:US Geological Survey Circular, 2012, 1371:14.
[37] Winslow K M, Laux S J, Townsend T G. Resources, Conservation & Recycling, 2017, 129:263.
[38] 欧秀琴(Ou X Q), 孙新华(Sun X H), 程耀丽(Cheng Y L). 中国资源综合回收利用(China Resource Recycling Association), 2002, 6(3):18.
[39] 陈新民(Chen X M). 火法冶金过程物理化学(Pyrometallurgical Process Physics and Chemistry). 北京:冶金工业出版社(Beijing:Metallurgical Industry Press), 1984. 293.
[40] 傅崇说(Fu C S).有色冶金原理(第二版)(Principle of Nonferrous Metallurgy,2nd). 北京:冶金工业出版社(Beijing:Metallurgical Industry Press), 1993. 174.
[41] Li J, Wang G X, Xu Z M. J. Hazard. Mater., 2016, 302:97.
[42] Xiao J F, Li J, Xu Z M. J. Hazard. Mater., 2017, 338:124.
[43] Xiao J F, Li J, Xu Z M. Environ. Sci. Technol., 2017, 51:11960.
[44] Yuan W H, Qiu D F, Wang C Y. Nonferrous Metals, 2007.
[45] Hu J T, Zhang J L, Li H X, Chen Y Q, Wang C Y. J. Power Sources, 2017, 351:192.
[46] 袁文辉(Yuan W H), 邱定蕃(Qiu D Y), 王成彦(Wang C Y). 有色金属(冶炼部分)(Transactions of Nonferrous Metals Society of China), 2007, (4):5.
[47] 王成彦(Wang C Y), 邱定蕃(Qiu D Y), 陈永强(Chen Y Q), 江培海(Jiang P H). 有色金属(冶炼部分)(Transactions of Nonferrous Metals Society of China), 2004, (5):39.
[48] Trager T, Friedrich B, Weyhe R. Proceedings of the 8th European Metallurgical Conference (EMC), 2015.
[49] Sukla L B, Panda S C, Jena P K. Hydrometalllurgy, 1986, 16(2):153.
[50] 杨仲平(Yang Z P), 靳晓珠(Jin X Z), 朱国才(Zhu G C). 中国锰业(China Manganese Industry), 2006, 24(3):12.
[51] 朱国才(Zhu G C), 李赋屏(Li F P), 肖明贵(Xiao M G). 桂林工学院学报(Journal of Guilin University of Technology),2005, 25(4):534.
[52] 无机化学(第三版)(Inorgamnc Chemistry, 3rd.). 北京:高等教育出版社(Beijing:Higher Education Press), 1991.362.
[53] 王利(Wang L). 兰州理工大学硕士论文(Master Dissertation of Lanzhou University of Science and Technology), 2013.
[54] 李敦钫(Li D F), 王成彦(Wang C Y), 尹飞(Yin F), 陈永强(Chen Y Q), 揭晓武(Jie X W), 杨永强(Yang Y Q), 王军(Wang J). 过程工程学报(The Chinese Journal of Process Engineering), 2009,(92):264.
[55] 揭晓武(Jie X W), 王成彦(Wang C Y), 李敦钫(Li D F), 尹飞(Yin F), 袁文辉(Yuan W H), 杨永强(Yang Y Q).湿法冶金(Hydrometallurgy), 2010, 29:114.
[56] 王大辉(Wang D H), 梁鸿雁(Liang H Y), 陈怀敬(Chen H J), 杨玉娇(Yang Y J), 孙建勇(Sun J Y), 王宏伟(Wang H W). 有色金属(冶炼部分)(Transactions of Nonferrous Metals Society of China), 2017, (4):1.
[57] 李丽(Li L), 葛静(Ge J), 陈人杰(Chen R J), 吴锋(Wu F). 化工进展(Chemical Industry and Engineering Progress), 2010, 29(4):757.
[58] Poyraz A S, Huang J P, Cheng S B, Bock D C, Wu L J, Zhu Y M, Marschilok A C, Takeuchi K J, Takeuchi E S. Green Chem., 2016, 18(11):3414.
[59] Nie H H, Xu L, Song D W, Song J S, Shi X X, Wang X Q, Zhang L Q, Yuan Z H. Green Chem., 2015, 17(2):1276.
[60] Song D W, Wang X Q, Nie H H, Shi H, Wang W G, Guo F X, Shi X X, Zhang L Q. J. Power Sources, 2014, 249:137.
[61] Chen J P, Li Q W, Song J S, Song D W, Zhang L Q, Shi X X. Green Chem., 2016, 18:2500.
[62] 王卫江(Wang W J). CN 101582526 A.
[63] Song X, Hu T, Liang C, Long H L, Zhou L, Song W, You L, Wu Z S, Liu J W. RSC Adv., 2017, 7(4783):4783.
[64] Veluchamy A, Doh C H, Kim D H, Lee J H, Shin H M, Jin B S. J. Power Sources, 2009, 189(1):855.
[65] He Y B, Tang Z Y, Song Q S, Xie H, Xu Q, Liu Y G, Ling G W. Thermochim. Acta, 2008, 480(1/2):15.
[66] Sita L E, Silva S, Silva P, Scarminio J. Mater. Chem. Phys., 2017, 15(194):97.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.