English
新闻公告
More
化学进展 DOI: 10.7536/PC121211 前一篇   后一篇

• 综述与评论 •

双核过渡金属络合物引发氮分子活化研究

马雪璐, 雷鸣*   

  1. 化工资源有效利用国家重点实验室 北京化工大学理学院 现代药物研究所 北京 100029
  • 收稿日期:2012-12-01 修回日期:2013-01-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 雷鸣 E-mail:leim@mail.buct.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21072018)资助

Dinitrogen Fixation Activated by Binuclear Transition-Metal Complexes

Ma Xuelu, Lei Ming*   

  1. State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2012-12-01 Revised:2013-01-01 Online:2013-08-25 Published:2013-06-13

将自然界资源丰富但化学性质上极其惰性的氮气分子在温和条件下转化为氨及其他含氮化合物,具有非常重要的意义。过渡金属络合物引发氮分子的活化及官能化已成为现代工业固氮的一大研究热点。本文回顾了氮分子与双核过渡金属络合物结合的键型模式,总结了影响氮分子活化的诸多因素如配体调变效应、金属调变效应等,对双核过渡金属络合物引发的双氮裂解、双氮官能化及CO/CO2协助双氮活化官能化等反应的实验与理论研究现状和进展进行了简要综述,并对未来过渡金属络合物在氮分子固定的应用发展作了展望。

Dinitrogen fixation activated by organometallic complexes under mild conditions is one of hot fields in modern industry, which try to convert abound but quite inert dinitrogen into ammonia or other nitrogenous compounds. In this review, coordination modes of N2 molecule with transition-metal complexes are classified, and the main factors such as steric effect and electronic effect on the dinitrogen activation and functionalization promoted by dinuclear transition-metal complexes are surveyed. This review attempts to summarize recent experimental and theoretical studies concerning the reactivity patterns of dinitrogen with binuclear transition-metal complexes in the dinitrogen cleavage and functionalization as well as the CO/CO2 induced N2 activation. The prospects of dinitrogen fixation activated by transition-metal complexes is presented, which is hoped to assist chemists in guiding research in the future. Contents
1 Introduction
2 Bonding modes of dinitrogen with transition-metal complexes
3 Factors influencing dinitrogen activation
4 Reactivity of dinitrogen complexes
4.1 Dinitrogen cleavage
4.2 Dinitrogen functionalization
4.3 CO/CO2 induced dintrogen activation
5 Outlook

中图分类号: 

()
[1] Hinrichsen S, Broda H, Gradert C, Soncksen L, Tuczek F. Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem., 2012, 108: 17-47
[2] Allen A D, Senoff C V. Chem. Commun., 1965, (24): 621-622
[3] MacKay B A, Fryzuk M D. Chem. Rev., 2004, 104 (2): 385-401
[4] Fryzuk M D, Johnson S A. Coord. Chem. Rev., 2000, 379-409
[5] Martinez S, Morokuma K, Musaev D G. Organometallics, 2007, 26 (24): 5978-5986
[6] Goldberg K I, Hoffman D M, Hoffmann R. Inorg. Chem., 1982, 21 (11): 3863-3868
[7] Zhang W, Tang Y, Lei M, Morokuma K, Musaev D G. Inorg. Chem., 2011, 50 (19): 9481-9490
[8] MacLachlan E A, Fryzuk M D. Organometallics, 2006, 25 (7): 1530-1543
[9] Evans W J, Ulibarri T A, Ziller J W. J. Am. Chem. Soc., 1988, 110 (20): 6877-6879
[10] Fryzuk M D, Johnson S A, Patrick B O, Albinati A, Mason S A, Koetzle T F. J. Am. Chem. Soc., 2001, 123 (17): 3960-3973
[11] Studt F, Morello L, Lehnert N, Fryzuk M D, Tuczek F. Chem. Eur. J., 2003, 9 (2): 520-530
[12] Graham D C, Beran G J, Head G M, Christian G, Stranger R, Yates B F. J. Phys. Chem. A, 2005, 109 (30): 6762-6772
[13] Bobadova P, Wang Q, Morokuma K, Musaev D G. Angew. Chem. Int. Ed., 2005, 44 (43): 7101-7103
[14] Yates B F, Basch H, Musaev D G, Morokuma K. J. Chem. Theory. Comput., 2006, 2 (5): 1298-1316
[15] Fryzuk M D, MacKay B A, Patrick B O. J. Am. Chem. Soc., 2003, 125 (11): 3234-3235
[16] Ohki Y, Fryzuk M D. Angew. Chem. Int. Ed., 2007, 46 (18): 3180-3183
[17] Holland P L. Dalton Trans., 2010, 39 (23): 5415-5425
[18] Fryzuk M D, Haddad T S, Mylvaganam M, McConville D H, Rettig S J. J. Am. Chem. Soc., 1993, 115 (7): 2782-2792
[19] Wolf J M, Blaauw R, Meetsma A, Teuben J H, Gyepes R, Varga V, Mach K, Veldman N, Spek A L. Organometallics, 1996, 15 (23): 4977-4983
[20] Peigné B, Cano J, Aullón G. Eur. J. Inorg. Chem., 2012, (5): 797-806
[21] Chirik P J. Dalton Trans., 2007, (1): 16-25
[22] Janas Z, Sobota P. Coord. Chem. Rev., 2005, 249 (21/22): 2144-2155
[23] Smythe N C, Schrock R R, Müller P, Weare W W. Inorg. Chem., 2006, 45 (23): 9197-9205
[24] Guha A K, Phukan A K. Inorg. Chem., 2011, 50 (18): 8826-8833
[25] Terrett R, Cavigliasso G, Stranger R, Yates B F. Dalton Trans., 2011, 40 (42): 11267-11275
[26] Caselli A, Solari E, Scopelliti R, Floriani C, Re N, Rizzoli C, Chiesi-Villa A. J. Am. Chem. Soc., 2000, 122 (15): 3652-3670
[27] Fryzuk M D, Johnson S A, Rettig S J. J. Am. Chem. Soc., 1998, 120 (42): 11024-11025
[28] Hirotsu M, Fontaine P, Epshteyn A, Zavalij Y, Sita R. J. Am. Chem. Soc., 2007, 129 (30): 9284-9285
[29] Cui Q, Musaev D G, Svensson M, Sieber S, Morokuma K. J. Am. Chem. Soc., 1995, 117 (49)): 12366-12367
[30] Bates V M E, Clentsmith G K B, Cloke F G N, Green J C, Jenkin H D L. Chem. Commun., 2000, (11): 927-928
[31] Fryzuk M D, Love J B, Rettig S J, Young V G. Science, 1997, 275 (5305): 1445-1447
[32] Pool J A, Lobkovsky E, Chirik P J. Nature, 2004, 427 (6974): 527-530
[33] Basch H, Musaev D G, Morokuma K. J. Am. Chem. Soc., 1999, 121 (24): 5754-5761
[34] Miyachi H, Shigeta Y, Hirao K. J. Phys. Chem. A, 2005, 109 (39): 8800-8808
[35] Martinez S, Morokuma K, Musaev D G. Organometallics, 2007, 26: 5978-5986
[36] Pun D, Bradley C A, Lobkovsky E, Keresztes I, Chirik P J. J. Am. Chem. Soc., 2008, 130 (43): 14046-14047
[37] Morello L, Love J B, Patrick B O, Fryzuk M D. J. Am. Chem. Soc., 2004, 126 (31): 9480-9481
[38] Studt F, MacKay B A, Fryzuk M D, Tuczek F. Dalton Trans., 2006, (9): 1137-1140
[39] Fryzuk M D. Acc. Chem. Res., 2009, 42 (1): 127-133
[40] Bernskoetter W H, Olmos A V. Pool J A, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2006, 128(33): 10696-10697
[41] Bernskoetter W H, Lohkovsky E, Chirik P J. Angew. Chem. Int. Ed., 2007, 46 (16): 2858-2861
[42] Knobloch D J, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2008, 120 (13): 4248-4249
[43] Knobloch D J, Lobkovsky E, Chirik P J. Nat. Chem., 2010, 2 (1): 30-35
[44] Knobloch D J, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2010, 132 (30): 10553-10564
[45] Ma X, Zhang X, Zhang W, Lei M. Phys. Chem. Chem. Phys., 2013, 15 (3): 901-910
[46] Knobloch D J, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2010, 132 (43): 15340-15350
[47] Knobloch D J, Semproni S P, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2012, 134 (7): 3377-3386
[48] Semproni S P, Margulieux G W, Chirik P J. Organometallics, 2012, 31 (17): 6278-6287
[49] Li Y, Wang B, Luo Y, Yang D, Tong P, Zhao J, Luo L, Zhou Y, Chen S, Cheng F, Qu J. Nat. Chem., 2013, 5: 320-326
[1] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[2] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[3] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[4] 肖瑶, 胡文娟, 任衍彪, 康旭, 刘健. 仿生光电催化固氮[J]. 化学进展, 2018, 30(4): 325-337.
[5] 李东翰, 齐士成, 张孝阿, 廖明义. 低分子量含氟聚合物的制备、官能化及特性[J]. 化学进展, 2016, 28(5): 673-685.
[6] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[7] 翁建全, 余志勤, 张国富. 非官能化芳烃与烯烃的直接氧化偶联反应[J]. 化学进展, 2012, 24(04): 523-544.
[8] 方玲 石岩 朱成建. 有机小分子催化的β-酮酯不对称α-官能化反应[J]. 化学进展, 2010, 22(09): 1679-1686.
[9] 孙文艳 王灯旭 来庆玲 张洁 冯圣玉. 官能化硅烷及其配位化合物的研究[J]. 化学进展, 2010, 22(0203): 400-405.
[10] 陈传杰,魏作君,李艳,任其龙. 铱-氮膦配体催化剂在非官能化烯烃不对称氢化中的研究*[J]. 化学进展, 2009, 21(05): 990-996.
[11] 王春,高勇军,张英群,王志,马晶军. 烯烃以糖衍生的手性酮为催化剂的有机催化不对称环氧化*[J]. 化学进展, 2006, 18(06): 761-767.
[12] 刘建华,陈静. 杂环化合物的羰基化反应[J]. 化学进展, 2004, 16(06): 989-.
[13] 孙伟,夏春谷. 手性金属Salen配合物在不对称催化中的应用*[J]. 化学进展, 2002, 14(01): 8-.
[14] 张纯喜,樊红军,刘秋田. 固氮酶活性中心FeMo-Cofactor对N2活化方式的探讨*[J]. 化学进展, 1997, 9(03): 265-.
[15] 张纯喜. 固氮酶的固氮机理和其人工模拟问题的探讨[J]. 化学进展, 1997, 9(02): 131-.