English
新闻公告
More
化学进展 DOI: 10.7536/PC121201 前一篇   后一篇

• 综述与评论 •

基于铁化合物的异相Fenton催化氧化技术

王彦斌1, 赵红颖*2, 赵国华*1,2, 王宇晶2, 杨修春1   

  1. 1. 同济大学材料科学与工程学院 上海 201804;
    2. 同济大学化学系 上海 200092
  • 收稿日期:2012-12-01 修回日期:2013-03-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 赵红颖,赵国华 E-mail:hyzhao@tongji.edu.cn;g.zhao@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21077077, 21207101)资助

Iron Compound-Based Heterogeneous Fenton Catalytic Oxidation Technology

Wang Yanbin1, Zhao Hongying*2, Zhao Guohua*1,2, Wang Yujing2, Yang Xiuchun1   

  1. 1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;
    2. Department of Chemistry, Tongji University, Shanghai 200092, China
  • Received:2012-12-01 Revised:2013-03-01 Online:2013-08-25 Published:2013-06-13

异相Fenton催化氧化技术是一种非常有效的处理难生物降解有机污染物的方法,它可以在温和的条件下实现反应。作为均相Fenton的发展,异相Fenton具有容易分离并再利用和更宽的适用范围等优点。该文主要综述了常见的含铁物质作为异相Fenton催化剂降解有机污染物的发展,这些催化剂包括零价铁、氧化铁、羟基氧化铁、水铁矿和其他铁化合物等。全面介绍了Fenton反应的不同机理,包括自由基机理和高价铁机理。重点讨论了提高异相Fenton催化剂活性的发展,并指出催化剂的效率受其表面氧化态、比表面积、过渡金属掺杂种类和晶相等许多因素的影响。概述了提高异相Fenton催化剂催化效率的不同方法,包括减小催化剂尺寸到纳米尺度、将催化剂负载于高比表面积载体上、引入过渡金属(如Ti、Co、Mn、Cr和V)到催化剂结构中。另外,一类新颖的异相Fenton催化剂铁氧体受到特别的关注,这是由于它高的催化活性和稳定性。最后,对异相Fenton催化氧化技术的发展进行了展望。我们认为理想的异相Fenton催化剂要具有高的催化活性和H2O2利用率、良好的稳定性、宽pH应用范围和易于回收利用等特点。

Heterogeneous Fenton catalytic oxidation technology is a powerful method for degradation of various kinds of non-biodegradable pollutants at moderate condition. Heterogeneous Fenton as the evolution of homogeneous Fenton reaction, offer the advantage of allowing easier separation from treated water and reuse, and wider field of application. This article mainly reviews the development of various iron-based materials, such as zero-valent iron, iron oxides, iron (hydr)oxides, ferrihydrite and other iron compounds, as heterogeneous catalysts for degrading organic pollutants. The mechanisms of Fenton reaction are comprehensively illustrated, including the free radical mechanism and the high-valent iron mechanism. Particularly, the emphasis is to summarize the catalytic activity of different heterogeneous Fenton catalysts, and point out that the catalytic efficiency of heterogeneous Fenton catalyst is strongly affected by the surface oxidation state, specific surface area, kinds of doped transition metal and the crystalline phase of catalysts. The different ways to improve the catalytic efficiency of heterogeneous Fenton catalysts are also concluded as: reducing the size of catalysts to nano-scales, loading the catalysts onto carriers with high specific surface area, introducing transition metal (such as Ti, Co, Mn, Cr and V) into the structure of iron oxide. In addition, some novel catalysts such as ferrites are especially paid attention due to their high catalytic activity and stability. Finally, the prospects of the development of the heterogeneous Fenton catalytic oxidation technology is given. We believe that an ideal heterogeneous Fenton catalyst should possess high catalytic efficiency and H2O2 utilization, good chemical stability, effectiveness at extend pH range and the ability of easy to be recycled. Contents
1 Introduction
1.1 Homogeneous Fenton catalytic oxidation technol-ogy
1.2 Heterogeneous Fenton catalytic oxidation techno-logy
2 Advantages, applications and developments of iron compound-based heterogeneous catalysts
2.1 Magnetite (Fe3O4)
2.2 Hematite (α-Fe2O3)
2.3 Maghemite (γ-Fe2O3)
2.4 Goethite (α-FeOOH)
2.5 Akaganeite (β-FeOOH)
2.6 Lepidocrocite (γ-FeOOH)
2.7 Feroxyhyte (δ-FeOOH)
2.8 Ferrihydrite (Fe5HO8·4H2O)
2.9 Other iron compounds
2.10 Zero valence iron (Fe0)
3 Conclusion and outlook

中图分类号: 

()
[1] 尹玉林(Yin Y L), 肖羽堂(Xiao Y T), 朱莹佳(Zhu Y J), 水处理技术(Technology of Water Treatment), 2009, 35: 5-9, 17
[2] 张乃东(Zhang N D), 郑威(Zheng W), 化工进展(Chemical Industry and Engineering Progress), 2001, 20: 1-3
[3] Hartmann M, Kullmann S, Keller H, J. Mater. Chem., 2010, 20: 9002-9017
[4] Pignatello J J, Oliveros E, MacKay A, Crit. Rev. Env. Sci. Technol., 2006, 36: 1-84
[5] Navalon S, Alvaro M, Garcia H. Appl. Catal. B-Environ., 2010, 99: 1-26
[6] Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H. ChemSusChem, 2012, 5: 46-64
[7] Fenton H J H. J. Chem. Soc., 1894, 65: 899-910
[8] Haber F, Weiss J. Proc. R. Soc. London, Ser. A, 1934, 147: 332-351
[9] Bray W C, Gorin M H. J. Am. Chem. Soc., 1932, 54: 2124-2125
[10] Ensing B, Buda F, Baerends E J. J. Phys. Chem. A, 2003, 107: 5722-5731
[11] Duarte F, Maldonado-Hodar F J, Perez-Cadenas A F, Madeira L M. Appl. Catal. B-Environ., 2009, 85: 139-147
[12] Yang S J, He H P, Wu D Q, Chen D, Liang X L, Qin Z H, Fan M D, Zhu J X, Yuan P. Appl. Catal. B-Environ., 2009, 89: 527-535
[13] Huang R X, Fang Z Q, Yan X M, Cheng W. Chem. Eng. J., 2012, 197: 242-249
[14] Yang S J, He H P, Wu D Q, Chen D, Ma Y H, Li X L, Zhu J X, Yuan P. Ind. Eng. Chem. Res., 2009, 48: 9915-9921
[15] Xue X F, Hanna K, Despas C, Wu F, Deng N S. J. Mol. Catal. A: Chem., 2009, 311: 29-35
[16] Luo W, Zhu L H, Wang N, Tang H Q, Cao M J, She Y B. Environ. Sci. Technol., 2010, 44: 1786-1791
[17] Xu L J, Wang J L. Appl. Catal. B-Environ., 2012, 123: 117-126
[18] Xu L, Wang J. Environ. Sci. Technol., 2012, 46: 10145-10153
[19] Lin S S, Gurol M D. Environ. Sci. Technol., 1998, 32: 1417-1423
[20] Hu X B, Liu B Z, Deng Y H, Chen H Z, Luo S, Sun C, Yang P, Yang S G. Appl. Catal. B-Environ., 2011, 107: 274-283
[21] Pham A L T, Lee C, Doyle F M, Sedlak D L. Environ. Sci. Technol., 2009, 43: 8930-8935
[22] Pignatello J J. Environ. Sci. Technol., 1992, 26: 944-951
[23] Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42: 6936-6941
[24] Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42: 1262-1267
[25] Lee C, Sedlak D L. Environ. Sci. Technol., 2008, 42: 8528-8533
[26] Bossmann S H, Oliveros E, Göb S, Siegwart S, Dahlen E P, Payawan L, Straub M, Wörner M, Braun A M. J. Phys. Chem. A, 1998, 102: 5542-5550
[27] Hug S J, Leupin O. Environ. Sci. Technol., 2003, 37: 2734-2742
[28] Katsoyiannis I A, Ruettimann T, Hug S J. Environ. Sci. Technol., 2008, 42: 7424-7430
[29] Pestovsky O, Stoian S, Bominaar E L, Shan X P, Munck E, Que L, Bakac A. Angew. Chem. Int. Ed., 2005, 44: 6871-6874
[30] Pang S Y, Jiang J, Ma J. Environ. Sci. Technol., 2011, 45: 307-312
[31] Pang S Y, Jiang J, Ma J. Environ. Sci. Technol., 2011, 45: 3179-3180
[32] Remucal C K, Lee C, Sedlak D L. Environ. Sci. Technol., 2011, 45: 3177-3178
[33] Sun S P, Lemley A T. J. Mol. Catal. A: Chem., 2011, 349: 71-79
[34] Wu H H, Dou X W, Deng D Y, Guan Y F, Zhang L G, He G P. Environ. Technol., 2012, 33: 1545-1552
[35] Pinto I S X, Pacheco P H V V, Coelho J V, Lorencon E, Ardisson J D, Fabris J D, de Souza P P, Krambrock K W H, Oliveira L C A, Pereira M C. Appl. Catal. B-Environ., 2012, 119: 175-182
[36] Choi K, Lee W. J. Hazard. Mater., 2012, 211: 146-153
[37] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N, Chem. Rev., 2008, 108: 2064-2110
[38] Parks G A. Chem. Rev., 1965, 65: 177-198
[39] Liang X L, Zhong Y H, Zhu S Y, Zhu J X, Yuan P, He H P, Zhang J. J. Hazard. Mater., 2010, 181: 112-120
[40] Du W P, Xu Y M, Wang Y S. Langmuir, 2008, 24: 175-181
[41] Huang H H, Lu M C, Chen J N. Water Res., 2001, 35: 2291-2299
[42] He J, Ma W H, He J J, Zhao J C, Yu J C. Appl. Catal. B-Environ., 2002, 39: 211-220
[43] Chou S S, Huang C P. Appl. Catal. A-Gen., 1999, 185: 237-245
[44] Liao Q, Sun J, Gao L. Colloids Surf. A, 2009, 345: 95-100
[45] Romero A, Santos A, Vicente F. J. Hazard. Mater., 2009, 162: 785-790
[46] Ramirez J H, Maldonado-Hodar F J, Perez-Cadenas A F, Moreno-Castilla C, Costa C A, Madeira L M. Appl. Catal. B-Environ., 2007, 75: 312-323
[47] Lam S W, Chiang K, Lim T M, Amal R, Low G K C. J. Catal., 2005, 234: 292-299
[48] Bai C P, Gong W Q, Feng D X, Xian M, Zhou Q, Chen S H, Ge Z X, Zhou Y S. Chem. Eng. J., 2012, 197: 306-313
[49] Costa R C C, Moura F C C, Ardisson J D, Fabris J D, Lago R M. Appl. Catal. B-Environ., 2008, 83: 131-139
[50] Hermanek M, Zboril R, Medrik N, Pechousek J, Gregor C. J. Am. Chem. Soc., 2007, 129: 10929-10936
[51] Prucek R, Hermanek M, Zboril R. Appl. Catal. A-Gen., 2009, 366: 325-332
[52] Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, Yan X. Nat. Nanotechnol., 2007, 2: 577-583
[53] Zhang J B, Zhuang J, Gao L Z, Zhang Y, Gu N, Feng J, Yang D L, Zhu J D, Yan X Y. Chemosphere, 2008, 73: 1524-1528
[54] Gregor C, Hermanek M, Jancik D, Pechousek J, Filip J, Hrbac J, Zboril R. Eur. J. Inorg. Chem., 2010, 2343-2351
[55] Guimaraes I R, Giroto A, Oliveira L C A, Guerreiro M C, Lima D Q, Fabris J D. Appl. Catal. B-Environ., 2009, 91: 581-586
[56] Wang W, Li T L, Liu Y, Zhou M H. Adv. Mater. Res. -Switz, 2011, 233/235: 487-490
[57] Zhang S X, Zhao X L, Niu H Y, Shi Y L, Cai Y Q, Jiang G B. J. Hazard. Mater., 2009, 167: 560-566
[58] Wang X M, Yang K G, Sun S F, Xu J, Li Y G, Liu F, Feng X H. Earth Science Frontiers, 2011, 18: 339-347
[59] Kwan W P, Voelker B M. Environ. Sci. Technol., 2003, 37: 1150-1158
[60] Lee S, Oh J, Park Y. Bull. Korean Chem. Soc., 2006, 27: 489-494
[61] Costa R C C, Lelis M F F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R R V A, Silva C N, Lago R M. J. Hazard. Mater., 2006, 129: 171-178
[62] Xue X F, Hanna K, Abdelmoula M, Deng N S. Appl. Catal. B-Environ., 2009, 89: 432-440
[63] Wang N, Zhu L H, Wang D L, Wang M Q, Lin Z F, Tang H Q, Ultrason. Sonochem., 2010, 17: 526-533
[64] Deng J, Wen X, Wang Q. Mater. Res. Bull., 2012, 47: 3369-3376
[65] Shin S, Yoon H, Jang J. Catal. Commun., 2008, 10: 178-182
[66] Niu H Y, Zhang D, Zhang S X, Zhang X L, Meng Z F, Cai Y Q. J. Hazard. Mater., 2011, 190: 559-565
[67] Niu H Y, Dizhang, Meng Z F, Cai Y Q. J. Hazard. Mater., 2012, 227: 195-203
[68] Lim H, Lee J, Jin S, Kim J, Yoon J, Hyeon T. Chem. Commun., 2006, 463-465
[69] Chun J, Lee H, Lee S H, Hong S W, Lee J, Lee C. Chemosphere, 2012, 89: 1230-1237
[70] Costa R C C, de Fatima M, Lelis F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R R V A, Silva C N, Lago R M. Catal. Commun., 2003, 4: 525-529
[71] Magalhaes F, Pereira M C, Botrel S E C, Fabris J D, Macedo W A, Mendonca R, Lago R M, Oliveira L C A. Appl. Catal. A-Gen., 2007, 332: 115-123
[72] Liang X L, Zhu S Y, Zhong Y H, Zhu J X, Yuan P, He H P, Zhang J. Appl. Catal. B-Environ., 2010, 97: 151-159
[73] Liang X L, Zhong Y H, Zhu S Y, Ma L Y, Yuan P, Zhu J X, He H P, Jiang Z. J. Hazard. Mater., 2012, 199: 247-254
[74] Nie Y L, Hu C, Qu J H, Zhao X. Appl. Catal. B-Environ., 2009, 87: 30-36
[75] Xing S T, Zhou Z C, Ma Z C, Wu Y S. Appl. Catal. B-Environ., 2011, 107: 386-392
[76] Heckert E G, Seal S, Self W T. Environ. Sci. Technol., 2008, 42: 5014-5019
[77] Feng J Y, Hu X J, Yue P L. Environ. Sci. Technol., 2004, 38: 5773-5778
[78] Dantas T L P, Mendonca V P, Jose H J, Rodrigues A E, Moreira R F P M. Chem. Eng. J., 2006, 118: 77-82
[79] Zhang G K, Gao Y Y, Zhang Y L, Guo Y D. Environ. Sci. Technol., 2010, 44: 6384-6389
[80] Silva A C, Cepera R M, Pereira M C, Lima D Q, Fabris J D, Oliveira L C A. Appl. Catal. B-Environ., 2011, 107: 237-244
[81] Guo L Q, Chen F, Fan X Q, Cai W D, Zhang J L. Appl. Catal. B-Environ., 2010, 96: 162-168
[82] Melero J A, Calleja G, Martinez F, Molina R. Catal. Commun., 2006, 7: 478-483
[83] Voinov M A, Pagan J O S, Morrison E, Smirnova T I, Smirnov A I. J. Am. Chem. Soc., 2011, 133: 35-41
[84] Xia M, Chen C, Long M C, Chen C, Cai W M, Zhou B X. Micropor. Mesopor. Mat., 2011, 145: 217-223
[85] Lu M C. Chemosphere, 2000, 40: 125-130
[86] Barreiro J C, Capelato M D, Martin-Neto L, Hansen H C B. Water Res., 2007, 41: 55-62
[87] He J, Tao X, Ma W H, Zhao J C. Chem. Lett., 2002, 86-87
[88] 杨波(Yang P), 胡晓斌(Hu X B), 陈泓哲(Chen H Z), 杨绍贵(Yang S G), 孙成(Sun C), 王磊(Wang L), 环境化学(Environmental Chemistry), 2012, 31: 1131-1136
[89] de la Plata G B O, Alfano O M, Cassano A E. Appl. Catal. B-Environ., 2010, 95: 14-25
[90] de la Plata G B O, Alfano O M, Cassano A E. Appl. Catal. B-Environ., 2010, 95: 1-13
[91] Andreozzi R, D'Apuzzo A, Marotta R. Water Res., 2002, 36: 4691-4698
[92] Souza W F, Guimaraes I R, Lima D Q, Silva C L T, Oliveira L C A. Energ. Fuel, 2009, 23: 4426-4430
[93] Liou M J, Lu M C. J. Hazard. Mater., 2008, 151: 540-546
[94] de Souza W F, Guimaraes I R, Oliveira L C A, Giroto A S, Guerreiro M C, Silva C L T. Appl. Catal. A-Gen., 2010, 381: 36-41
[95] Oliveira L C A, Goncalves M, Guerreiro M C, Ramalho T C, Fabris J D, Pereira M C, Sapag K. Appl. Catal. A-Gen., 2007, 316: 117-124
[96] Guimaraes I R, Oliveira L C A, Queiroz P F, Ramalho T C, Pereira M, Fabris J D, Ardisson J D. Appl. Catal. A-Gen., 2008, 347: 89-93
[97] Zhang G Q, Wang S, Yang F L. J. Phys. Chem. C, 2012, 116: 3623-3634
[98] Zhao Y P, Hu J Y, Chen H B. J. Photochem. Photobiol. A, 2010, 212: 94-100
[99] Anaissi F J, Villalba J C, Fujiwara S T, Cotica L F, de Souza C R L, Zamora-Peralta P. Quim. Nova, 2009, 32: 2006-U293
[100] Chou S S, Huang C P, Huang Y H. Environ. Sci. Technol., 2001, 35: 1247-1251
[101] Deng J H, Jiang J Y, Zhang Y Y, Lin X P, Du C M, Xiong Y. Appl. Catal. B-Environ., 2008, 84: 468-473
[102] Baldrian P, Merhautova V, Gabriel J, Nerud F, Stopka P, Hruby M, Benes M J. Appl. Catal. B-Environ., 2006, 66: 258-264
[103] Valdes-Solis T, Valle-Vigon P, Alvarez S, Marban G, Fuertes A B. Catal. Commun., 2007, 8: 2037-2042
[104] Thi D N, Ngoc H P, Manh H D, Kim T N. J. Hazard. Mater., 2011, 185: 653-661
[105] Valdes-Solis T, Valle-Vigon P, Sevilla M, Fuertes A B. J. Catal., 2007, 251: 239-243
[106] Barreto-Rodrigues M, Silva F T, Paiva T C B. J. Hazard. Mater., 2009, 165: 1224-1228
[107] Barreto-Rodrigues M, Silva F T, Paiva T C B. J. Hazard. Mater., 2009, 168: 1065-1069
[108] Kallel M, Belaid C, Boussahel R, Ksibi M, Montiel A, Elleuch B. J. Hazard. Mater., 2009, 163: 550-554
[109] Kallel M, Belaid C, Mechichi T, Ksibi M, Elleuch B. Chem. Eng. J., 2009, 150: 391-395
[110] Feitz A J, Joo S H, Guan J, Sun Q, Sedlak D L, Waite T D. Colloids Surf. A, 2005, 265: 88-94
[111] Liao C J, Chung T L, Chen W L, Kuo S L. J. Mol. Catal. A-Chem., 2007, 265: 189-194
[112] Zhou T, Li Y Z, Ji J, Wong F S, Lu X H. Sep. Purif. Technol., 2008, 62: 551-558
[113] Xu L J, Wang J L. J. Hazard. Mater., 2011, 186: 256-264
[114] Abdessalem A K, Oturan N, Bellakhal N, Dachraoui M, Oturan M A. J. Adv. Oxid. Technol., 2008, 11: 276-282
[115] Ai Z H, Lu L R, Li J P, Zhang L Z, Qiu J R, Wu M H. J. Phys. Chem. C, 2007, 111: 7430-7436
[116] Ai Z H, Lu L R, Li J P, Zhang L Z, Qiu J R, Wu M H. J. Phys. Chem. C, 2007, 111: 4087-4093
[117] Luo T, Ai Z H, Zhang L Z. J. Phys. Chem. C, 2008, 112: 8675-8681
[1] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[2] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[3] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[4] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[5] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理:基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
[6] 吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999.
[7] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[8] 张国富, 温馨, 王涌, 莫卫民, 丁成荣. 氧化脱肟研究新进展[J]. 化学进展, 2012, 24(0203): 361-369.
[9] 韩强, 杨世迎, 杨鑫, 邵雪停, 牛瑞, 王雷雷. 钴催化过一硫酸氢盐降解水中有机污染物:机理及应用研究[J]. 化学进展, 2012, 24(01): 144-156.
[10] 杨鑫 杨世迎 邵雪婷 王雷雷 牛瑞. 活性炭催化过氧化物高级氧化技术降解水中有机污染物*[J]. 化学进展, 2010, 22(10): 2071-2078.
[11] 李凤英,刘晔,王霞,贺小双,丁侠. 金属卟啉催化的过氧化氢选择氧化烃类反应机理研究[J]. 化学进展, 2008, 20(11): 1635-1641.
[12] 杨世迎,陈友媛,胥慧真,王萍,刘玉红,张卫,王茂东. 过硫酸盐活化高级氧化新技术*[J]. 化学进展, 2008, 20(09): 1433-1438.
[13] 郎贤军,路瑞玲,李臻,夏春谷. 多金属氧酸盐催化的液相氧化反应*[J]. 化学进展, 2008, 20(04): 469-482.
[14] 张雄福. 苯直接一步氧化合成苯酚*[J]. 化学进展, 2008, 20(0203): 386-395.
[15] 吴伟,贺全国,陈洪. 磁性铁氧化物纳米粒子表面功能化及其应用*[J]. 化学进展, 2008, 20(0203): 265-272.