English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 555-562 DOI: 10.7536/PC121056 前一篇   后一篇

• 金属与核酸 •

细胞研究中的金属配合物-核酸相互作用

杨婵丽, 董雄伟, 江南, 章丹, 刘长林*   

  1. 华中师范大学化学学院农药与化学生物学教育部重点实验室 武汉 430079
  • 收稿日期:2012-10-01 修回日期:2012-11-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 刘长林 E-mail:liuchl@mail.ccnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20971049,21072074)资助

Introduction of Metal Complex-Nucleic Acid Interactions into Cells

Yang Chanli, Dong Xiongwei, Jiang Nan, Zhang Dan, Liu Changlin*   

  1. Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
  • Received:2012-10-01 Revised:2012-11-01 Online:2013-04-24 Published:2013-04-09

金属配合物与核酸相互作用的探讨对新型抗癌金属药物的设计、核酸结构的特异识别和核酸水解断裂的研究一直起着巨大的推动作用。不仅如此,配合物与核酸的相互作用已被引入细胞生物学研究中。本文利用一些典型的研究结果,对配合物与核酸相互作用应用于胞内DNA定位成像,对胞内信号转导和表观遗传的影响,以及金属配合物作为非病毒基因载体进行了总结。

The exploration on metal complex-nucleic acid interactions plays key roles not only in rational design of both new metal-based anticancer drugs and effective hydrolytic cleaving agents of nucleic acids, but also in development of specific recognition probes of nucleic acid structures. Currently, the metal complex-nucleic acid interactions are being introduced into cell biological studies. For example, the intracellular localization imaging methods of nuclear and mitochondrial DNAs are being developed based on the DNA binding of ruthenium(Ⅱ) complexes. The effects of metal complex binding to nucleic acids on intracellular signal transduction and epigenetic inheritance have attracted a good deal of attention. The metal complexes that may act as nonviral nucleic acid carriers are being designed on the basis of their ability to condense nucleic acids. We review the important advances in investigation on the intracellular metal complex-nucleic acid interactions by utilization of typical cases.

Contents
1 Introduction
2 Metal complexes used as localization imaging agents of nuclear and mitochondrial DNAs
3 Effects of nucleic acid-metal complex interactions on intracellular signal transduction
4 Nucleic acid-metal complex interactions and epigenetic inheritance
5 Metal complexes used as nonviral nucleic acid carriers
6 Outlook

中图分类号: 

()

[1] 王晓勇(Wang X Y), 郭子建(Guo Z J). 化学进展(Progress in Chemistry), 2009, 21: 836-845
[2] 耿杰(Geng J), 于海佳(Yu H J), 张海元(Zhang H Y), 徐海霞(Xu H X), 曲晓刚(Qu X G). 化学进展(Progress in Chemistry), 2009, 5: 68-74
[3] Liu C L, Yu S W, Li D F, Liao Z R, Sun X H, Xu H B. Inorg. Chem., 2002, 41: 913-922
[4] Liu C L, Wang M, Zhang T, Sun H Z. Coord. Chem. Rev., 2004, 248: 147-168
[5] Liu C L, Wang L. Dalton Trans., 2009, 38: 227-239
[6] Zeglis B M, Pierre V C, Barton J K. Chem. Commun., 2007, 44: 4565-4579
[7] Erkkila K E, Odom D T, Barton J K. Chem. Rev., 1999, 99: 2777-2795
[8] Song H, Kaiser J T, Barton J K. Nat. Chem., 2012, 4: 615-620
[9] Niyazi H, Hall J P, O’Sullivan K, Winter G, Sorensen T, Kelly J M, Cardin C J. Nat. Chem., 2012, 4: 621-628
[10] Hall J P, O’Sullivan K, Naseer A, Smith J A, Kelly J M, Cardin C J. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 17610-17614
[11] Martin R G, Jim A T. Chem. Soc. Rev., 2012, 41: 3179-3192
[12] Fernandez-Moreira V, Thorp-Grreenwood F L, Coggan M P. Chem. Commun., 2010, 46: 186-202
[13] Puckett C A, Barton J K. J. Am. Chem. Soc., 2007, 129: 46-47
[14] Gill M R, Garcia-Lara J, Foster S J, Smythe C, Battaglia G, Thomas J A. Nat. Chem., 2009, 1: 662-667
[15] Tian X, Gill M R, Cantón I, Thomas J A, Battaglia G. ChemBioChem., 2011, 12: 548-551
[16] Matson M, Svensson F R, Norden B, Lincoln P. J. Phys. Chem. B, 2011, 115: 1706-1711
[17] Svensson F R, Abrahamsson M, Stromberg N, Ewing A G, Lincoln P J. Phys. Chem. Lett., 2011, 2: 397-401
[18] Musatkina E, Amouri H, Lamoureux M, Chepurnykh T, Cordier C. J. Inorg. Biochem., 2007, 101: 1086-1089
[19] Siddik Z H. Oncogene, 2003, 22: 7265-7279
[20] Kartalou M, Essigmann J M. Mutat. Res., 2001, 478: 1-21
[21] Donahue B A, Augot M, Bellon S F, Treiber D K, Toney J H, Lippard S J, Essigmann J M. Biochemistry, 1990, 29: 5872-5880
[22] Fink D, Aebi S, Howell S B. Clin. Cancer Res., 1998, 4: 1-6
[23] Chaney S G, Vaisman A J. Inorg. Biochem., 1999, 77: 71-81
[24] Jung Y, Lippard S J. Chem. Rev., 2007, 107: 1387-1407
[25] Bergamo A, Sava G. Dalton Trans., 2007, 13: 1267-1272
[26] Shi S, Zhao J, Geng X T, Yao T M, Huang H L, Liu T L, Zheng L F, Li Z H, Yang D J, Ji L N. Dalton Trans., 2010, 39: 2490-2493
[27] Malonne H, Atassi G. Anti-Cancer Drugs, 1997, 8: 811-822
[28] Vashisht G Y N, Jayaraju D, Kondapi A K. Biochemistry, 1999, 38: 4382-4388
[29] Vashisht G Y N, Kondapi A K. J. Biosci., 2001, 26: 271-276
[30] Gao F, Chao H, Zhou F, Chen X, Wei Y F, Ji L N. J. Inorg. Biochem., 2008, 102: 1050-1059
[31] 王夔(Wang K), 杨晓改(Yang X G). 化学进展(Progress in Chemistry), 2009, 21(5): 803-818
[32] 杨晓改(Yang X G), 王琴(Wang Q), 刘竟成(Liu J C), 王夔(Wang K). 化学进展(Progress in Chemistry), 2009, 21(5): 890-895
[33] Baylin S B, Jones P A. Nat. Rev. Cancer, 2011, 11: 726-734
[34] Mark A D, Tony K. Cell, 2012, 150: 12-27
[35] Arita A, Costa M. Metallomics, 2009, 1: 222-228
[36] Govindarajan B, Klafter R, Miller M, Mansur C, Mizesko M, Bai X, LaMotagne K, Arbiser J. Mol. Med., 2002, 8: 1-8
[37] Huang D, Zhang Y, Qi Y, Chen C. Toxicol. Lett., 2008, 179: 43-47
[38] Takiguchi M, Achanzar W E, Qu W. Exp. Cell Res., 2003, 286: 355-365
[39] Wu R B, Wang S L, Zhou N J, Cao Z X, Zhang Y K. J. Am. Chem. Soc., 2010, 132: 9471-9479
[40] Kruidenier L, Chung C W, Cheng Z J, Liddle J, Che K H, Joberty G, Bantscheff M. Nature, 2012, 488: 404-408
[41] Sebova K, Fridrichova I. Anti-Cancer Drugs, 2010, 21: 565-577
[42] Widom J, Baldwin R L. J. Mol. Biol., 1980, 144: 431-453
[43] Sun B, Guan J X, Xu L, Yu B L, Jiang L, Kou J F, Wang L, Ding X D, Chao H, Ji L N. Inorg. Chem., 2009, 48: 4637-4639
[44] Dong X D, Wang X Y, He Y F, Yu Z, Lin M X, Zhang C L, Wang J, Song Y J, Zhang Y M, Liu Z P, Li Y Z, Guo Z J. Chem. Eur. J., 2010, 16: 14181-14189
[45] Conwell C C, Vilfan I D, Hud N V. Proc. Natl. Acad. Sci. USA, 2003, 100: 9296-9301
[46] Segura J G, Prieto M J, Bardia M F, Solans X, Moreno V. Inorg. Chem., 2006, 45: 10031-10033
[47] Sharma S, Singh S K, Chandra M, Pandey D S. J. Inorg. Biochem., 2005, 99: 458-466
[48] Singh S K, Joshi S, Singh A R, Saxena J K, Pandey D S. Inorg. Chem., 2007, 46: 10869-10876
[49] Meng X G, Liu L, Zhou C S, Wang L, Liu C L. Inorg. Chem., 2008, 47: 6572-6574
[50] Liu L, Zhang H, Meng X G, Yin J, Li D F, Liu C L. Biomaterials, 2010, 31: 1380-1391
[51] Jiang R W, Yin J, Hu S, Meng X G, Liu C L. Curr. Drug Deliv., 2013, 10: 122-133
[52] Yin J, Meng X G, Zhang S B, Zhang D, Wang L, Liu C L. Biomaterials, 2012, 33: 7884-7894
[53] Meng X G, Liu L, Zhang H, Luo Y, Liu C. Dalton Trans., 2011, 33: 12846-12855
[54] 殷俊(Yin J). 华中师范大学博士论文(Doctoral Dissertation of Central China Normal University ), 2011
[55] Li J, Zhu Y, Hazeldine S T, Firestine S M, Oupick Dy' D, Biomacromolecules, 2012, 13: 3220-3227
[56] Liu G, Choi K Y, Bhirde A, Swierczewska M, Yin J, Lee S W, Park J H, Hong J I, Xie J, Niu G, Kiesewetter D O, Lee S, Chen X Y. Angew. Chem. Int. Ed., 2012, 51: 445-449

[1] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[2] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[3] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[4] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[5] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[6] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[7] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[8] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[9] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[10] 邱康强, 朱宏翊, 计亮年, 巢晖. 金属配合物用于细胞内动态实时荧光示踪研究[J]. 化学进展, 2018, 30(10): 1524-1533.
[11] 孙悦文, 金素星, 王晓勇, 郭子建. 金属配合物在肿瘤化学免疫治疗中的应用前景[J]. 化学进展, 2018, 30(10): 1573-1583.
[12] 叶德楷, 左小磊, 樊春海. 基于DNA纳米结构的传感界面调控及生物检测应用[J]. 化学进展, 2017, 29(1): 36-46.
[13] 邓云盼, 杨波, 余刚, 卓琼芳, 邓述波, 张鸿. 金属配合物催化氢解脱卤研究[J]. 化学进展, 2016, 28(4): 564-576.
[14] 陈峰, 白赢, 厉嘉云, 肖文军, 彭家建. 氮配位过渡金属配合物在硅氢加成反应中的应用研究[J]. 化学进展, 2015, 27(7): 806-817.
[15] 王家敏, 史蕾, 刘海洋. 咔咯及其金属配合物与DNA的作用和抗肿瘤活性[J]. 化学进展, 2015, 27(6): 755-762.