English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1166-1174 前一篇   后一篇

• 量子化学专辑 •

Non-Condon电子转移速率理论与含时波包方法

张伟伟, 钟欣欣, 司玉冰, 赵仪*   

  1. 厦门大学化学化工学院 固体表面物理化学国家重点实验室和福建省理论与计算化学重点实验室 厦门 361005
  • 收稿日期:2011-11-01 修回日期:2012-02-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 赵仪 E-mail:yizhao@xmu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20833004)和(No.21073146)资助

Non-Condon Effect and Time-Dependent Wave-Packet Method on Electron Transfer

Zhang Weiwei, Zhong Xinxin, Si Yubing, Zhao Yi   

  1. State Key Laboratory for Physical Chemistry of Solid Surfaces and Fujian Provincial Key Lab of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received:2011-11-01 Revised:2012-02-01 Online:2012-06-24 Published:2012-05-11
随着电子转移理论在化学、材料科学、生物医学等领域的广泛应用,人们针对不同体系提出了多种电子转移理论模型。本文主要总结了近年来我们在non-Condon电子转移理论以及含时波包方法等方面的相关工作。首先阐述包含non-Condon效应的电子转移速率理论并用于二噻吩四硫富瓦烯有机半导体迁移率的计算。而后介绍了包含量子相干效应的含时波包方法,并初步用于研究二聚芴分子三三态能量转移过程。另外,本文还阐述了如何采用量子化学计算获得电子转移速率的结构参数。
Due to the importance of electron transfer in chemistry, material, biology and etc., a variety of theoretical models has been proposed to investigate electron transfer. In the present paper, we summarize the approaches for electron transfer proposed by us, which include the non-Condon electron transfer rate theory based on the Fermi's golden rule and time-dependent wave-packet method for the consideration of the coherence motion of electron. Their potential applications, combining with quantum chemical calculations for the reorganization energy and electronic coupling, have been demonstrated with use of two examples. One is the mobility of the organic semiconductor dithiophene-tetrathiafulvalene (DT-TTF), and the other is the triplet-triplet energy transfer (TTET) in the fluorene dimer. Contents
1 Introduction
2 Methodologies
2.1 Non-Condon electron transfer rate theory
2.2 Time-dependent wave-packet approach
2.3 Computational approaches for reorganization energy and electronic coupling
3 Numerical tests and applications
3.1 Numerical tests of non-Condon electron transfer rate theory and time-dependent wave-packet approach
3.2 Mobility of the organic semiconductor dithiophene-tetrathiafulvalene (DT-TTF)
3.3 Triplet-triplet energy transfer (TTET) in fluorene dimer
4 Conclusion

中图分类号: 

()
[1] Marcus R A. J. Chem. Phys., 1956, 24: 966-978
[2] Marcus R A. Biochim. Biophys. Acta, 1985, 811: 265-322
[3] Marcus R A. Rev. Mod. Phys., 1993, 65: 599-610
[4] Hush N S. Coord. Chem. Rev., 1985, 64: 135-157
[5] Zhao Y, Milnikov G, Nakamura H. J. Chem. Phys., 2004, 121: 8854-8860
[6] Zhao Y, Liang W Z. Phys. Rev. A, 2006, 74: art. no. 032706
[7] Zhu W J, Han M M, Zhao Y. Chinese J. Chem. Phys., 2007, 20: 217-223
[8] Zhu W J, Zhao Y. J. Chem. Phys., 2007, 126: art. no. 184105
[9] Zhang W W, Zhu W J, Liang W Z, Zhao Y, Nelsen S F. J. Phys. Chem. B, 2008, 112: 11079-11086
[10] Zhu W J, Zhao Y. J. Chem. Phys., 2008, 129: art. no. 184111
[11] Nelsen S F, Konradsson A E, Weaver M N, Stephenson R M, Lockard J V, Zink J I, Zhao Y. J. Phys. Chem. B, 2007, 111: 6776-6781
[12] Telo J P, Nelsen S F, Zhao Y. J. Phys. Chem. A, 2009, 113: 7730-7736
[13] Nan G J, Wang L J, Yang X D, Shuai Z G, Zhao Y. J. Chem. Phys., 2009, 130: 024704
[14] Horowitz G, Fichou D, Peng X, Xu Z, Garnier F. Solid State. Commun., 1989, 72: 381-384
[15] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347: 539-541
[16] Zhao Y, Liang W Z. J. Chem. Phys., 2009, 130: art. no. 034111
[17] Zhang W W, Liang W Z, Zhao Y. J. Chem. Phys., 2010, 133: art. no. 024501
[18] Zhang W W, Zhao Y, Liang W Z. Sci. China Chem., 2011, 54: 707-714
[19] Zhong X X, Zhao Y. J. Chem. Phys., 2011, 135: art. no. 134110
[20] Si Y B, Zhong X X, Zhang W W, Zhao Y. Chin. J. Chem. Phys., 2011, 24: 538-546
[21] Skourtis S S, Balabin A I, Kawatsu T, Beratan N D. Proc Natl. Acad. Sci. USA, 2005, 102: 3552-3557
[22] Troisi A, Orlandi G. Phys. Rev. Lett., 2006, 96: art. no. 086601
[23] Wang L J, Li Q K, Shuai Z G, Chen L P, Shi Q. Phys. Chem. Chem. Phys., 2010, 12: 3309-3314
[24] Daizadeh I, Medvedve E S, Stuchebrukhov A A. Proc. Natl. Acad. Sci. USA, 1997, 94: 3703-3708
[25] Medvedve E S, Stuchebrukhov A A. J. Chem. Phys., 1997, 107: 3821-3831
[26] Leufgen M, Rost O, Gould C, Schmidt G, Geurts J, Molenkamp L W, Oxtoby N S, Mas-Torrent M, Cricillers N, Veciana J, Rovira C. Org. Electron., 2008, 9: 1101-1106
[27] Schein L B, Duck C B, McGhie A R. Phys. Rev. Lett., 1978, 40: 197-200
[28] Hannewald K, Bobbert P A. Appl. Phys. Lett., 2004, 85: 1535-1537
[29] Ishizaki A, Tanimura Y. J. Phys. Soc. Jpn., 2005, 74: 3131-3134
[30] Wang D, Chen L, Zheng R, Wang L, Shi Q. J. Chem. Phys., 2010, 132: art. no. 081101
[31] Li X Q, Zhang W K, Cui P, Shao J S, Ma Z S, Yan Y J. Phys. Rev. A, 2004, 69: art. no. 085315
[32] Xu R X, Cui P, Li X Q, Mo Y, Yan Y J. J. Chem. Phys., 2005, 122: art. no. 041103
[33] Li X Q, Luo J Y, Yang Y G, Cui P, Yan Y J. Phys. Rev. B, 2005, 71: art. no. 205304
[34] Li J, Kondov I, Wang H, Thoss M. J. Phys. Chem. C, 2010, 114: 18481-18493
[35] Zhao Y. J. Theor. Comput. Chem., 2008, 7: 869-877
[36] Chu X M, Zhao Y. J. Theor. Comput. Chem., 2009, 8: 1295-1307
[37] Anderson P W, Weiss P R., Rev. Mod. Phys., 1953, 25: 269-276
[38] Kubo R. J. Phys. Soc. Jpn., 1954, 9: 935-944
[39] Haken H, Reineker P. Z. Phys., 1972, 249: 253-268
[40] Goychuk I, Hänggi P. Adv. Phys., 2005, 54: 525-584
[41] Cheng Y C, Silbey R J. Phys. Rev. A, 2004, 69: art. no. 052325
[42] Troisi A. Chem. Soc. Rev., 2011, 40: 2347-2358
[43] Kubo R. Rep. Prog. Phys., 1966, 29: 255-284
[44] Rice S O. Bell Syst. Tech. J., 1944, 23: 282-332
[45] Shinozuka M. J. Acoust. Soc. Am., 1971, 49: 357-368
[46] Billah K Y R, Shinozuka M. Phys. Rev. A, 1990, 42: 7492-7495
[47] Tal-Ezer H, Kosloff R. J. Chem. Phys., 1984, 81: 3967-3971
[48] Leforestier C, Bisseling R H, Cerjan C, Feit M D, Friesner R, Guldberg A, Hammerich A, Jolicard G, Karrlein W, Meyer H D, Lipkin N, Roncero O, Kosloff R. J. Comput. Phys., 1991, 94: 59-80.
[49] Matyushov D V. J. Chem. Phys., 2004, 120: 7532-7556
[50] Matyushov D V. Acc. Chem. Res., 2007, 40: 294-301
[51] Nelsen S F, Blackstock S C, Kim Y. J. Am. Chem. Soc., 1987, 109: 677-682
[52] Valeev E F, Coropceanu V, da Silva Filho D, Salman S, Bredas J L. J. Am. Chem. Soc., 2006, 128: 9882-9886
[53] Farazdel A, Dupuis M, Clementi E, Aviram A. J. Am. Chem. Soc., 1990, 112: 4206-4214
[54] Shi B, Gao F, Liang W Z. Chem. Phys., 2012, 394: 56-63
[55] Wu Q, Voorhis T V. J. Chem. Phys., 2006, 125: art. no. 164105
[56] Koopmans T. Physica, 1934, 1: 104-113
[57] Qin H M, Zhong X X, Si Y B, Zhang W W, Zhao Y. J. Phys. Chem. A, 2011, 115: 3116-3121
[58] You Z Q, Shao Y, Hsu C P. Chem. Phys. Lett., 2004, 390: 116-123
[59] You Z Q, Hsu C P, Fleming G R. J. Chem. Phys., 2006, 124: art. no. 044506
[60] Cave R J, Newton M D. Chem. Phys. Lett., 1996, 249: 15-19
[61] Voityuk A A, Rosch N J. J. Chem. Phys., 2002, 117: 5607-5616
[62] You Z Q, Hsu C P. J. Chem. Phys., 2010, 133: art. no. 074105
[63] Makri N, Makarov D E. J. Chem. Phys., 1995, 102: 4600-4610
[64] Wang H, Thoss M. New J. Phys., 2008, 10: art. no. 115005
[65] Weiss U, Wollensak M. Phys. Rev. B, 1988, 37: 2729-2732
[66] Weiss U, Sassetti M, Negele T, Wollensak M. Z. Phys. B, 1991, 84: 471-482
[67] Mak C H, Egger R. Phys. Rev. E, 1994, 49: 1997-2008
[68] Zhao Y, Liang W Z, Nakamura H. J. Phys. Chem. A, 2006, 110: 8204-8212
[69] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian03; Gaussian: Pittsburgh, PA, 2003
[70] Kresse G, Furthmuller J. Comput. Mater. Sci., 1996, 6: 15-50
[71] Zhao Y, Liang W Z. Chem. Soc. Rev., 2012, 41: 1075-1087
[72] Zhang W W, Zhong X X, Zhao Y. J. Phys. Chem. A, to be submitted
[73] Weis J V, Abdelwahed S H, Shukla R, Rathore R, Ratner M A, Wasielewski M R. Science, 2010, 328: 1547-1550
[74] Voityuk A A. J. Phys. Chem. C, 2010, 114: 20236-20239
[75] Egorov S A, Everitt K F, Skinner J L. J. Phys. Chem. A, 1999, 103: 9494-9499
[76] Thoss M, Wang H, Miller W H. J. Chem. Phys., 2001, 115: 2991-3005
[1] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[2] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[3] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[4] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[5] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[6] 马昀, 周妍, 杜文琦, 缪智辉, 祁争健. 基于共轭聚合物的核酸生物传感器的应用[J]. 化学进展, 2015, 27(12): 1799-1807.
[7] 范霄, 李艳艳, 刘迎亚, 曹昌盛, 李海涛. 单分子荧光技术在端粒和端粒酶研究中的应用[J]. 化学进展, 2014, 26(12): 1987-1996.
[8] 贾建峰, 武海顺*. Ⅲ-Ⅴ族多面体团簇的稳定性规律[J]. 化学进展, 2012, 24(06): 1008-1022.
[9] 刘亚军*. 计算光化学[J]. 化学进展, 2012, 24(06): 950-956.
[10] 马玉臣*, 刘成卜. 研究激发态的多体格林函数理论[J]. 化学进展, 2012, 24(06): 981-1000.
[11] 刘世洪 高放 高镱萌 侯莹 李红茹 张胜涛. 枝状体系中分子内光诱导能量转移*[J]. 化学进展, 2010, 22(10): 2033-2052.
[12] 杨新国 张登 唐瑞仁. 以卟啉为中心核的树枝状化合物[J]. 化学进展, 2009, 21(12): 2595-2604.
[13] 关毅,张鑫. 微生物燃料电池*[J]. 化学进展, 2007, 19(01): 74-79.
[14] 刘玲芝,刘志洪,何治柯,蔡汝秀. 量子点:FRET的新发展[J]. 化学进展, 2006, 18(0203): 337-343.
[15] 吴世康. 具有荧光发射能力有机化合物的光物理和光化学问题研究[J]. 化学进展, 2005, 17(01): 15-39.