English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

均相催化氧化中的活性中间体多样性

汪玉娟1, 徐杰2, 尹国川1*   

  1. 1. 华中科技大学化学与化工学院 武汉 430074;
    2. 中国科学院大连化学物理研究所 大连 116023
  • 收稿日期:2011-07-01 修回日期:2011-10-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 尹国川 E-mail:gyin@hust.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20973069)资助

Diversity of Active Intermediates in Homogeneous Catalytic Oxidations

Wang Yujuan1, Xu Jie2, Yin Guochuan1*   

  1. 1. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received:2011-07-01 Revised:2011-10-01 Online:2012-03-24 Published:2011-11-25
过渡金属离子在各种化学及生物氧化中扮演着极为重要的作用, 现有的研究表明参与催化氧化的关键活性物种已不再局限于金属氧物种(Mn+ O), 金属氢氧物种(Mn+—OH)与金属过氧物种(Mn+—OOH)均被发现能够参与各种氧化反应。有些有机化合物也能直接催化有机物的氧化反应, 同时,相似的有机物如NADH和辅酶Q一直在生物代谢中发挥着重要作用。但是,现有的研究结果还难以清楚解释生物体系中各种氧化酶在不同的氧化反应中选择特定活性物种的内在原因。因此,了解这些活性物种之间的氧化性能异同性将非常有助于了解酶对它们的选择,进而理解酶的催化氧化机理,为药物设计提供理论基础,同时也有助于设计新的氧化催化剂。本文对在各种均相催化氧化及生物氧化反应中出现的主要活性中间体种类、各中间体的反应性能、反应机理进行了总结,并就现有的实验数据对过渡金属氧物种与氢氧物种的氧化性能相似性及相异性进行了初步评述。
Transition metal ions play significant roles in versatile biological and chemical oxidations. In addition to the generally believed metal oxo functional groups(Mn+ O), the metal hydroxo (Mn+-OH)and hydroperoxide functional groups (Mn+-OOH) have also been proposed to serve as the key active intermediates in versatile oxidation processes. However, the reasons why natural redox metalloenzymes make use of a metal oxo or hydroxo group to serve as their active intermediates in specific cases are not fully understood. In addition, certain organic compounds such as benzoquinone and organic N-oxide have also been reported to serve as catalyst in many chemical oxidation reactions, meanwhile, similar organic compounds like NADH and Coenzyme Q have been long believed to play the key roles in versatile biological metabolisms. Apparently, clarifying the oxidative relationships of these active intermediates would help to understand the enzymes' selections on them, thus promote understanding of their mechanisms and help the rational design of medicines, also it would benefit the design of selective oxidation catalysts. Herein, these active intermediates occurring in biological and chemical oxidation events are summarized in this paper. Their oxidative properties and related mechanisms have been discussed in text. Meanwhile, based on the available publications, the oxidative similarities and differences of the metal oxo with its corresponding hydroxo functional groups have also been briefly discussed. Contents
1 Introduction
2 Traditional theories in catalytic oxidations
3 New discoveries for the active metal intermediates in oxidations
4 The redox active organic intermediates in oxidations
5 The reactivity relationships of the metal oxo and its corresponding hydroxo moieties
6 Perspective

中图分类号: 

()
[1] Katsuki T, Sharpless K B. J. Am. Chem. Soc., 1980, 102: 5974-5976
[2] Groves J T. J. Chem. Edu., 1985, 62: 928-931
[3] Zhang W, Loebach J L, Wilson S R, Jacobsen E N. J. Am. Chem. Soc., 1990, 112: 2801-2803
[4] Groves J T, Lee J, Marla S S. J. Am. Chem. Soc., 1997, 119: 6269-6273
[5] Periana R A, Taube D J, Gamble S, Taube H, Satoh T, Fujii H. Science, 1998, 2800: 560-564
[6] Hay A S, Balnchard H S. Can. J. Chem., 1965, 43: 1306-1317
[7] Meunier B, de Visser S P, Shaik S. Chem. Rev., 2004, 104: 3947-3980
[8] Stone K L, Behan R K, Green M T. Proc. Nat. Acad. Sci. USA, 2006, 103: 12307-12310
[9] Solomon E I, Zhou J, Neese F, Pave1 E G. Chem. Biol., 1997, 4: 795-808
[10] Hamberg M, Oliw H, Su C. J. Biol. Chem., 1998, 273: 13080-13088
[11] Stockert A L, Shinde S S, Anderson R F, Hill R. J. Am. Chem. Soc., 2002, 124: 14554-14555
[12] Goldsmith C R, Stack T D P. Inorg. Chem., 2006, 45: 6048-6055
[13] Goldsmith C R, Cole A P, Stack T D P. J. Am. Chem. Soc., 2005, 127: 9904-9912
[14] Yin G, Danby A M, Kitko D, Carter J D, Scheper W M, Busch D H. J. Am. Chem. Soc., 2007, 129: 1512-1513
[15] Yin G, Danby A M, Kitko D, Carter J D, Scheper W M, Busch D H. J. Am. Chem. Soc., 2008, 130: 16245-16253
[16] Fiedler A T, Que L. Inorg. Chem., 2009, 48: 11038-11047
[17] Toy P H, Newcomb M, Coon M J, Vaz A D N. J. Am. Chem. Soc., 1998, 120: 9718-9718
[18] Nam W, Ho R, Valentine J S. J. Am. Chem. Soc., 1991, 113: 7052-7054
[19] Payeras A M, Ho R Y N, Fujita M, Que L. Chem. Eur. J., 2004, 10: 4944-4953
[20] Namuswe F, Kasper G D, Sarjeant A A N, Hayashi T, Krest C M, Green M T, Monne-Loccoz P, Goldberg D P. J. Am. Chem. Soc., 2008, 130: 14189-14200
[21] Jiang Y, Telser J, Goldberg D P. Chem. Commun., 2009, 6828-6830
[22] Yin G, Buchalova M, Danby A M, Perkins C M, Kitko D, Carter J D, Scheper W M, Busch D H. J. Am. Chem. Soc., 2005, 127: 17170-17171
[23] Yin G, Buchalova M, Danby A M, Perkins C M, Kitko D, Carter J D, Scheper W M, Busch D H. Inorg. Chem., 2006, 45: 3467-3474
[24] Yin G, Danby A M, Kitko D, Carter J, Scheper W, Busch D. Inorg. Chem., 2007, 46: 2173-2180
[25] Haras A, Ziegler T. Can. J. Chem., 2009, 87: 33-38
[26] Lee S H, Xu L, Park B K, Mironov Y V, Kim S H, Song Y J, Kim C, Kim Y, Kim S K. Chem. A Euro. J., 2010, 16: 4678-4685
[27] De Boer J W, Browne W R, Brinksma J, Alsters P L, Hage R, Feringa B L. Inorg. Chem., 2007, 46: 6353-6372
[28] Ottenbacher R V, Bryliakov K P, Talsi E P. Inorg. Chem., 2010, 49: 8620-8628
[29] Leeladee P, Goldberg D P. Inorg. Chem., 2010, 49: 3083-3085
[30] Xu A, Xiong H, Yin G. J. Phys. Chem. A, 2009, 113: 12243-12248
[31] Stryer L. Biochemistry, 3rd ed. New York: W H Freeman, 1988. Chapter 17
[32] Mikael T, Jerker O, Gustav D. Biochimica et Biophysica Acta, 2004, 1660: 171-199
[33] Tu Y, Wang Z, Shi Y. J. Am. Chem. Soc., 1996, 118: 9806-9807
[34] Dijksman A, Marino-Gonzalez A, Mairata P A, Arends I W C E, Sheldon R A. J. Am. Chem. Soc., 2001, 123: 6826-6833
[35] Liu R, Liang X, Dong C, Hu X. J. Am. Chem. Soc., 2004, 126: 4112-4113
[36] Yang G, Ma Y, Xu J. J. Am. Chem. Soc., 2004, 126: 10542-10543
[37] Yang G, Zhang Q, Miao H, Tong X, Xu J. Org. Lett., 2005, 7: 263-266
[38] Tong X, Xu J, Miao H. Adv. Syn. Cata., 2005, 347: 1953-1957
[39] Tong X, Xu J, Miao H, Gao J. Tetrahedron Lett., 2006, 47: 1763-1766
[40] Zhang W, Ma H, Zhou L, Sun Z, Du Z, Miao H, Xu J. Molecules, 2008, 13: 3236-3245
[41] Sheldon R A, Arends I W C E, Brink G T, Dijksman A. Green Acc. Chem. Res., 2002, 35: 774-781
[42] Anelli P L, Biffi C, Montanari F, Quici S. J. Org. Chem., 1987, 52: 2559-2562
[43] Yin G, Danby A M, Kitko D, Carter J D, Scheper W M, Busch D H. J. Am. Chem. Soc., 2007, 129: 1512-1513
[44] Yin G, Danby A M, Kitko D, Carter J D, Scheper W M, Busch D H. J. Am. Chem. Soc., 2008, 130: 16245-16253
[45] Kurahashi T, Kikuchi A, Tosha T, Shiro Y, Kitagawa T, Fujii H. Inorg. Chem., 2008, 47: 1674-1686
[46] Kurahash T, Kikuchi A, Shiro Y, Hada M, Fujii H. Inorg. Chem., 2010, 49: 6664-6672
[47] Fiedler A T, Que L. Inorg. Chem., 2009, 48: 11038-11047
[48] Xu A, Xiong H, Yin G. Chem. Eur. J., 2009, 15: 11478-11481
[49] Shi S, Wang Y, Xu A, Zhu D, Roy S B, Jackson T A, Busch D H, Yin G. Angew. Chem. Int. Ed., 2011, 50: 7321-7324
[50] Ortiz de Montellano P R Ed. Cytochrome P450: Structure, Mechanism, and Biochemistry. New York: Plenum Press, 1986
[51] Hersleth H, Ryde U, Rydberg P, Görbitz C H, Andersson K K. J. Inorg. Biochem., 2006, 100: 460-476
[52] Behan R K, Green M T. J. Inorg. Biochem., 2006, 100: 448-459
[53] De Boer J W, Brinksma J, Browne W R, Meetsma A, Alsters P L, Hage R, Feringa B L. J. Am. Chem. Soc., 2005, 127: 7990-7991
[1] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[2] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[3] 刘喆, 张晓岚, 蔡婷, 袁静, 赵昆峰, 何丹农. 用于甲醛催化氧化的锰基催化剂及协同效应的影响[J]. 化学进展, 2019, 31(2/3): 311-321.
[4] 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭. 催化氧化技术在可挥发性有机物处理的研究[J]. 化学进展, 2016, 28(12): 1847-1859.
[5] 王伟涛, 姚敏, 马养民, 张金. 氧气直接氧化苯制备苯酚[J]. 化学进展, 2014, 26(10): 1665-1672.
[6] 王猛, 惠永海, 张雪华, 魏雅娜, 史岷山, 王吉德*. 四氢呋喃的氧化[J]. 化学进展, 2013, 25(07): 1158-1165.
[7] 任芳芳, 蒋丰兴, 周卫强, 杜玉扣*, 徐景坤*. 导电聚合物/贵金属复合材料应用于C1小分子电催化氧化[J]. 化学进展, 2012, (9): 1818-1836.
[8] 张俊, 陈婧, 黄新松, 李广社*. CO催化氧化用纳米材料及其最新研究成果[J]. 化学进展, 2012, 24(07): 1245-1251.
[9] 张国富, 温馨, 王涌, 莫卫民, 丁成荣. 氧化脱肟研究新进展[J]. 化学进展, 2012, 24(0203): 361-369.
[10] 刘静 王梓萌 沈建东 张士成 陈建民. 挥发性有机污染物光催化氧化动力学中的L-H模型*[J]. 化学进展, 2009, 21(10): 2037-2043.
[11] 王树军,彭玉苓. 手性金属卟啉配合物的性能研究* [J]. 化学进展, 2009, 21(0708): 1515-1522.
[12] 任水英,解正峰,谢晓鹏,秦高飞,王吉德. 催化氧化合成己二酸的清洁方法*[J]. 化学进展, 2009, 21(04): 663-671.
[13] 李明燕,周春晖,Jorge N Beltramini,俞卫华,范永仙. 甘油的催化选择氧化*[J]. 化学进展, 2008, 20(10): 1474-1486.
[14] 许海峰,唐瑞仁,龚年华,刘长辉,周亚平. N-羟基邻苯二甲酰亚胺及其类似物催化下的分子氧氧化反应[J]. 化学进展, 2007, 19(11): 1736-1745.
[15] 王荣民,赵明,何玉凤,郝二霞,申国瑞. 聚类卟啉金属配合物*[J]. 化学进展, 2007, 19(11): 1783-1790.