English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2203-2214 DOI: 10.7536/PC201022 前一篇   后一篇

• 综述 •

催化氧化脱除二甲苯的催化剂

李肖静1,2,3, 李永红1,2,3,*(), 宇富航1,2,3, 祁伟岩1,2,3, 姜野1,2,3, 鲁倩文1,2,3   

  1. 1 天津大学化工学院 绿色合成与转化教育部重点实验室 天津 300072
    2 精馏技术国家工程研究中心 天津 300072
    3 天津化学化工协同创新中心 天津 300072
  • 收稿日期:2020-10-19 修回日期:2020-12-23 出版日期:2021-03-04 发布日期:2021-03-04
  • 通讯作者: 李永红

Catalysts for Removal of Xylene by Catalytic Oxidation

Xiaojing Li1,2,3, Yonghong Li1,2,3(), Fuhang Yu1,2,3, Weiyan Qi1,2,3, Ye Jiang1,2,3, Qianwen Lu1,2,3   

  1. 1 Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072, China
    2 National Engineering Research Center for Distillation Technology,Tianjin 300072, China
    3 Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),Tianjin 300072, China
  • Received:2020-10-19 Revised:2020-12-23 Online:2021-03-04 Published:2021-03-04
  • Contact: Yonghong Li

二甲苯是一种有毒挥发性有机化合物(Volatile organic compounds, VOCs),也是常见的工业污染物之一。催化氧化法可将二甲苯分解成CO2和H2O,有效防止有害气体排放到大气中。催化氧化法脱除二甲苯的关键是催化剂的低温活性和反应稳定性。本文从催化剂的制备方法、构效关系、活性组分之间及其与载体相互作用机制对催化性能的影响等方面,介绍了负载型贵金属催化剂、非贵金属氧化物和钙钛矿型氧化物催化剂用于二甲苯低温氧化的研究进展;比较分析了不同催化剂类型对二甲苯及其他种类VOCs的催化效果的偏向性;介绍了含二甲苯的混合VOCs的研究状况,并对未来催化剂研究的有关问题提出了建议。

Xylene is a toxic volatile organic compound (VOC) and one of the common industrial pollutants. Catalytic oxidation can decompose xylene into CO2 and H2O, effectively preventing harmful gases from being emitted into the atmosphere. The key to the removal of xylene by catalytic oxidation is the low temperature activity and reaction stability of the catalyst. This article introduces the research progress in low-temperature oxidation of xylene with effects of supported noble metal catalysts, non-noble metal oxides and perovskite-type oxide catalysts from the aspects of catalyst preparation methods, structure-activity relationship, interaction between active components and the interaction mechanism with the supports on the catalytic performance. In addition, the catalytic effects on xylene and other VOCs of different catalyst types are compared and analyzed. Finally, the research results of mixed VOCs containing xylene are introduced and suggestions are made on the related issues of future catalyst research.

Contents

1 Introduction

2 Supported noble metal catalyst

2.1 Catalysts with inert carriers

2.2 Catalysts with active carriers

2.3 Catalysts with zeolite carriers

3 Metal oxide catalyst

3.1 Manganese-based catalysts

3.2 Cerium-based catalysts

3.3 Cobalt-based catalysts

3.4 Mixed-metal catalysts

3.5 Perovskite catalysts

4 Catalytic oxidation of VOCs mixtures containing xylene

5 Conclusion and outlook

()
图1 邻二甲苯在不同催化剂作用下的转化率随温度的变化(PdO/MOx表示未被处理的催化剂,MOx-H2和MOx-NaBH4分别表示不同的预处理方式,实验在10 vol%水蒸气含量条件下进行)[31]
Fig.1 Conversions of o-xylene as a function of temperature over PdO/MOx.(Pd/MOx-H2 and Pd/MOx-NaBH4 catalysts in the condition of 10 vol% water vapor addition)[31]
表1 部分贵金属催化剂制备方法与催化氧化邻二甲苯活化能的对比
Table 1 Comparison of the preparation method of some metal oxide catalysts and the activation energy of catalytic oxidation to o-xylene
图2 meso-Mn2O3转变为meso-γ-MnO2的过程[42]
Fig.2 Schematic Illustration of Transformation Process from meso-Mn2O3 to meso-γ-MnO2[42]
图3 邻二甲苯氧化速率与O2浓度的关系曲线(反应速率在230 ℃下测量,O2的浓度在5 vol%~30 vol%,邻二甲苯的浓度为200 ppm,通过改变空速将邻二甲苯转化率调节至低于15%)[49]
Fig.3 Rates of o-xylene oxidation as a function of O2 overCeO2 nanocubes. (The reaction rates were measured at 230 ℃. The concentration of O2 was varied in the range of 5~30 vol% and the concentration of o-xylene was 200 ppm. The o-xylene conversion was adjusted to below 15% by varying the space velocity)[49]
图4 三种催化剂上的CO2收率随温度的变化曲线图(邻二甲苯浓度为500 ppm,20% O2/N2作平衡气,气体流速50 mL·min-1,W/F = 0.60 g·s·mL-1)[65]
Fig.4 CO2 yield over the catalysts. Reaction conditions: o-xylene 500 ppm, 20% O2/N2 balance, total flow rate 50 mL·min-1, W/F = 0.60 g· s· mL-1 [65]
表2 部分金属氧化物催化剂制备方法及催化氧化二甲苯活化能的对比
Table 2 Comparison of the preparation method of some metal oxide catalysts and the activation energy of catalytic oxidation to o-xylene
表3 部分金属氧化物对二甲苯的催化氧化研究对比
Table 3 Comparison of catalytic oxidation of some mixed metal oxides to xylene
表4 不同催化剂类型对二甲苯及其他VOCs的效果比较
Table 4 Comparison of catalytic oxidation effects of xylene and other VOCs on different catalyst types
[1]
Li Y. Chem. Enterp. Manag., 2015(22): 205. (李阳. 化工管理, 2015,(22): 205.)
[2]
Schottler M, Hottenroth H, Schlüter B, Schmidt M. Chem. Eng. Technol., 2010, 33(4): 638.
[3]
Chang C H, Urban P L. Anal. Chem., 2018, 90(23): 13848.

doi: 10.1021/acs.analchem.8b03511     URL    
[4]
Romanías M N, Ourrad H, ThÉvenet F, Riffault V. J. Phys. Chem. A, 2016, 120(8): 1197.

doi: 10.1021/acs.jpca.5b10323     pmid: 26846169
[5]
Liu L N, Zhang Z K, Das S, Kawi S. Appl. Catal. B: Environ., 2019, 250: 250.

doi: 10.1016/j.apcatb.2019.03.039     URL    
[6]
Zhang G P, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Appl. Catal. B-Environ., 2019, 250: 313.

doi: 10.1016/j.apcatb.2019.03.055     URL    
[7]
Liu X, Wang Y Q, Liu F, Zhao C C, Liu H X, Shi L. Progress in Chemistry, 2019, 31 (8): 1159.
( 刘昕, 王永强, 刘芳, 赵朝成, 刘华欣, 时林. 化学进展, 2019, 31 (8): 1159.)

doi: 10.7536/PC190122    
[8]
Feng Z T, Zhang M Y, Ren Q M, Mo S P, Peng R S, Yan D F, Fu M L, Chen L M, Wu J L, Ye D Q. Chem. Eng. J., 2019, 369: 18.

doi: 10.1016/j.cej.2019.03.051     URL    
[9]
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z P. Chem. Rev., 2019, 119(7): 4471.

doi: 10.1021/acs.chemrev.8b00408    
[10]
Liotta L F. Appl. Catal. B-Environ., 2010, 100(3/4): 403.11.

doi: 10.1016/j.apcatb.2010.08.023     URL    
[11]
Sang C K, Wang G S. Appl. Catal. B-Environ., 2009, 92(3/4): 429.

doi: 10.1016/j.apcatb.2009.09.001     URL    
[12]
Huang S Y, Zhang C B, He H. Catal. Today, 2008, 1391-2: 15.
[13]
He S, Guo F, Kang G J, Yu J, Ren X F, Xu G W. Chemical Industry and Engineering Society of China, 2019, 70(3): 937.
( 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 化工学报, 2019, 70(3): 937.)
[14]
Huang S Y, Zhang C B, He H. J. Environ. Sci., 2009, 21(7): 985.

doi: 10.1016/S1001-0742(08)62372-4     URL    
[15]
Joung H J, Kim J H, Oh J S, You D W, Park H O, Jung K W. Appl. Surf. Sci., 2014, 290: 267.

doi: 10.1016/j.apsusc.2013.11.066     URL    
[16]
Maldonado-HÓdar F J, Moreno-Castilla C, PÉrez-Cadenas A F. Appl. Catal. B: Environ., 2004, 54(4): 217.

doi: 10.1016/j.apcatb.2004.07.002     URL    
[17]
Kapteijn F, de Deugd R M, Moulijn J A. Catal. Today, 2005, 1053-4: 350.
[18]
PÉrez-Cadenas A F, Kapteijn F, Moulijn J A, Maldonado-HÓdar F J, Carrasco-Marín F, Moreno-Castilla C. Carbon, 2006, 44(12): 2463.

doi: 10.1016/j.carbon.2006.05.006     URL    
[19]
da Silva A G M, Fajardo H V, Balzer R, Probst L F D, LovÓn A S P, LovÓn-Quintana J J, Valença G P, Schreine W H, Robles-Dutenhefner P A. J. Power Sources, 2015, 285: 460.

doi: 10.1016/j.jpowsour.2015.03.066     URL    
[20]
da Silva A G M, Rodrigues T S, Taguchi L S K, Fajardo H V, Balzer R, Probst L F D, Camargo P H C. J. Mater. Sci., 2016, 51(1): 603.

doi: 10.1007/s10853-015-9315-3     URL    
[21]
Qiao N L, Zhang X, He C, Li Y, Zhang Z S, Cheng J, Hao Z P. Frontiers of Environmental Science & Engineering in China, 2016, 10(3): 458.
[22]
Kim S C, Nahm S W, Park Y K. J. Hazard. Mater., 2015, 300: 104.

doi: 10.1016/j.jhazmat.2015.06.059     URL    
[23]
Wang Y F, Zhang C B, Liu F D, He H. Appl. Catal. B: Environ., 2013, 142/143: 72.

doi: 10.1016/j.apcatb.2013.05.003     URL    
[24]
Shen F X, Li K, Zhao X T, Li X B, Chen T, Zhan R, Zhao T B, Lin H. Catal. Lett., 2021, 151(1): 67.

doi: 10.1007/s10562-020-03230-y     URL    
[25]
Xia Y, Wang Z W, Feng Y, Xie S H, Liu Y X, Dai H X, Deng J G. Catal. Today, 2020, 351: 30.

doi: 10.1016/j.cattod.2019.01.076     URL    
[26]
Jamalzadeh Z, Haghighi M, Asgari N. Front. Environ. Sci. Eng., 2013, 7(3): 365.

doi: 10.1007/s11783-013-0520-5     URL    
[27]
Abbasi Z, Haghighi M, Fatehifar E, Saedy S. J. Hazard. Mater., 2011, 1862-3: 1445.
[28]
Yue W B, Zhou W Z. Prog. Nat. Sci., 2008, 18(11): 1329.

doi: 10.1016/j.pnsc.2008.05.010     URL    
[29]
Liu Y X, Dai H X, Deng J G, Xie S H, Yang H G, Tan W, Han W, Jiang Y, Guo G S. J. Catal., 2014, 309: 408.

doi: 10.1016/j.jcat.2013.10.019     URL    
[30]
Xie S H, Liu Y X, Deng J G, Xie S H, Yang H G, Tan W, Han W, Jiang Y, Guo G S. Catal. Sci. Technol., 2018, 8(3): 806.

doi: 10.1039/C7CY02007D     URL    
[31]
Wang Y F, Zhang C B, He H. ChemCatChem, 2018, 10(5): 998.

doi: 10.1002/cctc.201701547     URL    
[32]
Wu Y S, Shi S, Yuan S S, Bai T, Xing S T. Appl. Surf. Sci., 2019, 479: 1262.

doi: 10.1016/j.apsusc.2019.01.134     URL    
[33]
Chen G, Zhao Y, Fu G, Duchesne P N, Gu L, Zheng Y, Weng X, Chen M, Zhang P, Pao C W, Lee J F, Zheng N. Science, 2014, 344(6183): 495.

doi: 10.1126/science.1252553     URL    
[34]
Xie S H, Liu Y X, Deng J G, Zhao X T, Yang J, Zhang K F, Han Z, Arandiyan H, Dai H X. Appl. Catal. B: Environ., 2017, 206: 221.
[35]
Chen M Q, Wang Y, Yang D Y, Wu H J, Guo L M. J. Inorg. Mater., 2019, 34(2): 173.

doi: 10.15541/jim20180146     URL    
( 陈孟秋, 王钰, 杨登尧, 邬红娟, 郭利民. 无机材料学报, 2019, 34(2): 173.)

doi: 10.15541/jim20180146    
[36]
Wang Y, Yang D Y, Li S Z, Chen M Q, Guo L M, Zhou J. Microporous Mesoporous Mater., 2018, 258: 17.

doi: 10.1016/j.micromeso.2017.08.052     URL    
[37]
Alifanti M, Florea M, Pârvulescu V I. Appl. Catal. B: Environ., 2007, 70(1/4): 400.

doi: 10.1016/j.apcatb.2005.10.037     URL    
[38]
Kitchaev D A, Dacek S T, Sun W H, Ceder G. J. Am. Chem. Soc., 2017, 139(7): 2672.

doi: 10.1021/jacs.6b11301     pmid: 28140575
[39]
Liu Z, Zhang X L, Cai T, Yuan J, Zhao K F, He D N. Progress in Chemistry, 2019, 31(2/3): 311.
( 刘喆, 张晓岚, 蔡婷, 袁静, 赵昆峰, 何丹农. 化学进展, 2019, 31(2/3): 311.
[40]
Zhang Q, Xiao Z D, Feng X H, Tan W F, Qiu G H, Liu F. Mater. Chem. Phys., 2011, 125(3): 678.

doi: 10.1016/j.matchemphys.2010.09.073     URL    
[41]
Wu Y S, Liu X X, Huang X Q, Xing S T, Ma Z C, Feng L. Mater. Lett., 2015, 139: 157.

doi: 10.1016/j.matlet.2014.10.059     URL    
[42]
Wu Y S, Lu Y, Song C J, Ma Z C, Xing S T, Gao Y Z. Catal. Today, 2013, 201: 32.

doi: 10.1016/j.cattod.2012.04.032     URL    
[43]
Zhou G L, Lan H, Wang H, Xie H M, Zhang G Z, Zheng X X. J. Mol. Catal. A: Chem., 2014, 393: 279.

doi: 10.1016/j.molcata.2014.06.028     URL    
[44]
Zeng X H, Cheng G, Liu Q, Yu W X, Yang R N, Wu H J, Li Y F, Sun M, Zhang C Y, Yu L. Ind. Eng. Chem. Res., 2019, 58(31): 13926.

doi: 10.1021/acs.iecr.9b02087     URL    
[45]
Jung S C, Park Y K, Jung H Y, Kang U I, Nah J W, Kim S C. Res. Chem. Intermed., 2016, 42(1): 185.

doi: 10.1007/s11164-015-2333-6     URL    
[46]
Trovarelli A, Llorca J. ACS Catal., 2017, 7(7): 4716.

doi: 10.1021/acscatal.7b01246     URL    
[47]
da Silva A G M, Fajardo H V, Balzer R, Probst L F D, Prado N T, Camargo P H C, Robles-Dutenhefner P A. Chem. Eng. J., 2016, 286: 369.

doi: 10.1016/j.cej.2015.10.097     URL    
[48]
Wang L, Wang Y F, Zhang Y, Yu Y B, He H, Qin X B, Wang B Y. Catal. Sci. Technol., 2016, 6(13): 4840.

doi: 10.1039/C6CY00180G     URL    
[49]
Wang L, Yu Y B, He H, Zhang Y, Qin X B, Wang B Y. Sci. Rep., 2017, 7(1): 1.

doi: 10.1038/s41598-016-0028-x     URL    
[50]
Paier J, Penschke C, Sauer J. Chem. Rev., 2013, 113(6): 3949.

doi: 10.1021/cr3004949     URL    
[51]
Chen K, Bai S L, Li H Y, Xue Y J, Zhang X Y, Liu M C, Jia J B. Appl. Catal. A: Gen., 2020, 599: 117614.

doi: 10.1016/j.apcata.2020.117614     URL    
[52]
Xia Y S, Dai H X, Jiang H Y, Zhang L. Catal. Commun., 2010, 11(15): 1171.

doi: 10.1016/j.catcom.2010.07.005     URL    
[53]
Liu S S, Luo D M, Yang X, Tong C X, Tao L G, Ding H P, Zhang J. Int. J. Environ. Sci. Technol., 2020, 17(5): 3055.

doi: 10.1007/s13762-020-02659-3     URL    
[54]
Xie S H, Liu Y X, Deng J G, Yang J, Zhao X T, Han Z, Zhang K F, Dai H X. J. Catal., 2017, 352: 282.

doi: 10.1016/j.jcat.2017.05.016     URL    
[55]
Xu W C, Xiao K B, Lai S F, Liang J Z, Jiang X D, Liu Z, Li F H, Zhang Y, Wu X L, Zhou X W. Catal. Commun., 2020, 140: 106005.

doi: 10.1016/j.catcom.2020.106005     URL    
[56]
Liu W, Liu R, Zhang X J. Appl. Surf. Sci., 2020, 507: 145174.

doi: 10.1016/j.apsusc.2019.145174     URL    
[57]
Ren Q M, Mo S P, Peng R S, Feng Z T, Zhang M Y, Chen L M, Fu M L, Wu J L, Ye D Q. J. Mater. Chem. A, 2018, 6(2): 498.

doi: 10.1039/C7TA09149D     URL    
[58]
Mo S P, Li S D, Li J Q, Deng Y Z, Peng S P, Chen J Y, Chen Y F. Nanoscale, 2016, 8(34): 15763.

doi: 10.1039/C6NR04902H     URL    
[59]
Wang Q Y, Li Z M, Bañares M A, Weng L T, Gu Q F, Price J, Han W, Yeung K L. Small, 2019, 15(42): 1903525.

doi: 10.1002/smll.v15.42     URL    
[60]
Carabineiro S A C, Chen X, Konsolakis M, Psarras A C, Tavares P B, Órfão J J M, Pereira M F R, Figueiredo J L. Catal. Today, 2015, 244: 161.

doi: 10.1016/j.cattod.2014.06.018     URL    
[61]
Konsolakis M, Carabineiro S A C, Marnellos G E, Asad M F, Soares O S G P, Pereira M F R, Órfão J J M, Figueiredo J L. J. Colloid Interface Sci., 2017, 496: 141.

doi: 10.1016/j.jcis.2017.02.014     URL    
[62]
Chen X, Carabineiro S A C, Bastos S S T, Tavares P B, Órfão J J M, Pereira M F R, Figueiredo J L. Appl. Catal. A: Gen., 2014, 472: 101.

doi: 10.1016/j.apcata.2013.11.043     URL    
[63]
Li Y X, Han W, Wang R X, Weng L T, Serrano-Lotina A, Bañares M A, Wang Q Y, Yeung K L. Appl. Catal. B: Environ., 2020, 275: 119121.

doi: 10.1016/j.apcatb.2020.119121     URL    
[64]
Chen J, Chen X, Chen X, Xu W J, Xu Z, Jia H P, Chen J,. Appl. Catal. B: Environ., 2018, 224: 825.

doi: 10.1016/j.apcatb.2017.11.036     URL    
[65]
Wu Y S, Yuan S S, Feng R, Ma Z C, Gao Y Z, Xing S T. Mol. Catal., 2017, 442: 164.
[66]
Han Z, Liu Y X, Deng J G, Xie S H, Zhao X T, Yang J, Zhang K F, Dai H X. Catal. Today, 2019, 327: 246.

doi: 10.1016/j.cattod.2018.04.042     URL    
[67]
Zhang X, Wu D F. Ceram. Int., 2016, 42: 16563.

doi: 10.1016/j.ceramint.2016.07.076     URL    
[68]
Wu Y S, Zhang Y X, Liu M, Ma Z C. Catal. Today, 2010, 1533-4: 170.
[69]
Wu Y S, Feng R, Song C J, Xing S T, Gao Y Z, Ma Z C. Catal. Today, 2017, 281: 500.

doi: 10.1016/j.cattod.2016.05.024     URL    
[70]
Xie H M, Du Q X, Li H, Zhou G L, Chen S M, Jiao Z J, Ren J M. Korean J. Chem. Eng., 2017, 34(7): 1944.

doi: 10.1007/s11814-017-0111-4     URL    
[71]
Rostami R, Jafari A J. J. Environ. Health Sci., 2014, 12(1): 89.
[72]
Zhang C H, Wang C, Hua W C, Guo Y L, Lu G Z, Gil S, Giroir-Fendler A. Appl. Catal. B: Environ., 2016, 186: 173.

doi: 10.1016/j.apcatb.2015.12.052     URL    
[73]
Li X W, Dai H X, Deng J G, Liu Y X, Zhao Z X, Wang Y, Yang H G, Au C T. Appl. Catal. A: Gen., 2013, 458: 11.

doi: 10.1016/j.apcata.2013.03.022     URL    
[74]
Zhao Q, Ge Y L, Ji N, Song C F, Ma D G, Liu Q L. Progress in Chemistry, 2016, 28(12): 1847.

doi: 10.7536/PC160402    
( 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭, 化学进展, 2016, 28(12): 1847.)

doi: 10.7536/PC160402    
[75]
Zhu X B, Tu X, Chen M H, Yang Y, Zheng C H, Zhou J S, Gao X. Catal. Commun., 2017, 92: 35.

doi: 10.1016/j.catcom.2016.12.013     URL    
[76]
Gholizadeh A. J. Mater. Res. Technol., 2019, 8(1): 457.

doi: 10.1016/j.jmrt.2017.12.006    
[77]
Liu L Z, Zhang H B, Jia J P, Sun T H, Sun M M. Inorg. Chem., 2018, 57(14): 8451.

doi: 10.1021/acs.inorgchem.8b01125     URL    
[78]
Liu Y X, Dai H X, Deng J G, Du Y C, Li X W, Zhao Z X, Wang Y, Gao B Z, Yang H G, Guo G S. Appl. Catal. B: Environ., 2013, 140/141: 493.

doi: 10.1016/j.apcatb.2013.04.051     URL    
[79]
Chen H W, Cui W, Li D F, Tian Q Q, He J J, Liu Q, Chen X, Cui M F, Qiao X, Zhang Z X, Tang J H, Fei Z Y. Ind. Eng. Chem. Res., 2020, 59(23): 10804.

doi: 10.1021/acs.iecr.0c01182     URL    
[80]
Liu L Z, Li J X, Zhang H B, Li L, Zhou P, Meng X L, Guo M M, Jia J P, Sun T H. J. Hazard. Mater., 2019, 362: 178.

doi: 10.1016/j.jhazmat.2018.09.012     URL    
[81]
Sun X W, Wu D F. ChemistrySelect, 2019, 4(19): 5503.

doi: 10.1002/slct.v4.19     URL    
[82]
Wang Z W, Liu Y X, Yang T, Deng J G, Xie S H, Dai H X. Chinese Journal of Catalysis, 2017, 38(2): 207.

doi: 10.1016/S1872-2067(16)62569-X     URL    
( 王治伟, 刘雨溪, 杨涛, 邓积光, 谢少华, 戴洪兴. 催化学报, 2017, 38(2): 207.)
[83]
Genuino H C, Dharmarathna S, Njagi E C, Mei M C, Suib S L. J. Phys. Chem. C, 2012, 116(22): 12066.

doi: 10.1021/jp301342f     URL    
[84]
Wu H J, Wang L D, Shen Z Y, Zhao J H. J. Mol. Catal. A: Chem., 2011, 351: 188.

doi: 10.1016/j.molcata.2011.10.005     URL    
[85]
Beauchet R, Mijoin J, Batonneau-Gener I, Magnoux P. Appl. Catal. B: Environ., 2010, 100(1/2): 91.

doi: 10.1016/j.apcatb.2010.07.017     URL    
[86]
Barakat T, Rooke J C, Cousin R, Magnoux P. New J. Chem., 2014, 38: 2066.

doi: 10.1039/C3NJ01190A     URL    
[87]
Soares O S G P, Órfão J J M, Figueiredo J L, Pereira M F R. Environ. Prog. Sustainable Energy, 2016, 35(5): 1324.

doi: 10.1002/ep.v35.5     URL    
[88]
Xia Y S, Xia L, Liu Y X, Yang T, Deng J G, Dai H X. J. Environ. Sci., 2018, 064(002): 276.

doi: 10.1016/j.jes.2017.06.025     URL    
[89]
Guan Y L, Deng G F, Cheng Y, Wang Z C, Li Z H, Yang K, Yang Y X. Chem. Phys. Lett., 2020, 754: 137508.

doi: 10.1016/j.cplett.2020.137508     URL    
[90]
Kamal M S, Razzak S A, Hossain M M. Atmos. Environ., 2016, 140: 117.

doi: 10.1016/j.atmosenv.2016.05.031     URL    
[1] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[2] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[3] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[4] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[5] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[6] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[7] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[8] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[9] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[10] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[11] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[12] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[13] 刘毅强, 裘依梅, 唐兴, 孙勇, 曾宪海, 林鹿. 化学催化葡萄糖异构化果糖[J]. 化学进展, 2021, 33(11): 2128-2137.
[14] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[15] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
阅读次数
全文


摘要