English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1665-1672 DOI: 10.7536/PC140637 前一篇   后一篇

• 综述与评论 •

氧气直接氧化苯制备苯酚

王伟涛*1, 姚敏2, 马养民1, 张金1   

  1. 1. 陕西科技大学化学与化工学院 教育部轻化工助剂化学与技术重点实验室 西安 710021;
    2. 西安凯立化工有限公司 西安 710016
  • 收稿日期:2014-06-01 修回日期:2014-07-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 王伟涛 E-mail:wangweitao@sust.edu.cn
  • 基金资助:

    陕西科技大学博士科研启动基金项目(No. BJ13-26, BJ12-26)资助

Direct Oxidation of Liquid Benzene to Phenol with Molecular Oxygen

Wang Weitao*1, Yao Min2, Ma Yangmin1, Zhang Jin1   

  1. 1. Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry of Ministry of Education, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China;
    2. Xi'an Catalyst Chemical Co., Ltd, Xi'an 710016, China
  • Received:2014-06-01 Revised:2014-07-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    The work was supported by the Doctoral Starting up Foundation of Shaanxi University of Science & Technology (No. BJ13-26, BJ12-26)

苯酚是重要的化工原料,其工业生产主要是通过异丙苯氧化法制备,该方法存在制备流程长、消耗丙烯多以及产生大量副产物等不足。苯直接氧化制备苯酚,特别是氧气直接氧化苯制备苯酚,因其步骤少、操作成本低、环境友好等特点已成为苯酚绿色制备的研究热点。本文较为系统地总结了氧气氧化苯液相法合成苯酚的研究工作,综述了该反应体系下的反应机理以及所使用的催化剂、还原剂等;归纳了反应温度、反应压力、还原剂用量及反应溶剂等反应条件对苯酚产率的影响;分析了目前氧气直接氧化苯液相法制苯酚研究中存在的问题,并总结了未来的研究方向。

Phenol is a kind of important chemical materials, which is mainly produced from isopropylbenzene oxidation process. The drawbacks of the process include long synthesis process, consuming propylene and forming byproducts. Directly oxidation of benzene to phenol with molecular oxygen, possessing the advantages of less steps, low cost and environmental friendly, has become the research hotspot in green preparation of phenol. In this review, the progress of oxidation of liquid benzene to phenol with oxygen is summarized systematically. The reaction system, including the reaction mechanism, catalysts, and reductant is reviewed. The effects of reaction temperature, oxygen pressure, reductant and solvent on the yields of phenol are also discussed. Furthermore, the current research problems and future research perspectives are also suggested.

Contents
1 Introduction
2 Reaction mechanism
3 Catalysts
3.1 Vanadium-based catalysts
3.2 Copper-based catalysts
3.3 Heteropolyacids-based catalysts
3.4 Other catalysts
4 Reductants
5 The effects of reaction conditions
5.1 Reaction temperature
5.2 Reaction pressure
5.3 The account of reductant
5.4 Solvents
6 Conclusion and outlook

中图分类号: 

()

[1] 伯仁(Bo R). 精细化工原料及中间体(Fine Chemical Industrial Raw Materials & Intermediates), 2012, 8 (144): 30.
[2] 刘洁(Liu J), 梅来宝(Mei L B). 精细石油化工进展(Advances in Fine Petrochemicals), 2007, 8 (8): 41.
[3] Lücke B, Narayana K V, Martin A, Jähnisch K. Adv. Synth. Catal., 2004, 346 (12): 1407.
[4] 任永利(Ren Y L), 王莅(Wang L), 张香文(Zhang X W). 化学进展(Progress in Chemistry), 2003, 15 (5): 420.
[5] 尹双凤(Yin S F), 伍水生(Wu S S), 代威力(Dai W L), 李文生(Li W S), 黄孟光(Huang M G), 周小平(Zhou X P). 化学进展(Progress in Chemistry), 2007, 19 (5): 735.
[6] Jiang T, Wang W T, Han B X. New J. Chem., 2013, 37: 1654.
[7] Bianchi D, Bortolo R, Tassinari R, Ricci M, Vignola R. Angew. Chem. Int. Ed., 2000, 112 (23): 4491.
[8] Borah P, Ma X, Nguyen K T, Zhao Y L. Angew. Chem. Int. Ed., 2012, 51 (31): 7756.
[9] Kamata K, Yamaura T, Mizuno N. Angew. Chem. Int. Ed., 2012, 51 (29): 7275.
[10] Tang D Y, Zhu L F, Hu C W. RSC Adv., 2012, 2 (6): 2329.
[11] Xia H A, Sun K Q, Sun K J, Feng Z C, Li W X, Li C. J. Phys. Chem. C, 2008, 112 (24): 9001.
[12] Yamanaka H, Hamada R, Nibuta H, Nishiyama S, Tsuruya S. J. Mol. Catal. A: Chem., 2002, 178 (1): 89.
[13] Kato C N, Hasegawa M, Sato T, Yoshizawa A, Inoue T, Mori W. J. Catal., 2005, 230 (1): 226.
[14] Kharitonov A S, Sobolev V I, Panov G I. Russ. Chem. Rev., 1992, 61: 1130.
[15] 高肖汉(Gao X H), 吕雪川(Lv X C), 徐杰(Xu J). 分子催化(Journal of Molecular Catalysis (China)), 2008, 22 (4): 379.
[16] 陈练洪(Chen L H), 李稳宏(Li W H), 李冬(Li D), 韩枫(Han F). 化工进展(Chemical Industry and Engineering Progress), 2005, 24 (3): 236.
[17] Roduner E, Kaim W, Sarkar B, Urlacher V B, Pleiss J, Gläser R, Einicke W D, Sprenger G A, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu S F, Plietker B, Laschat S. Chem. Cat. Chem., 2013, 5 (1): 82.
[18] Kubacka A, Wang Z, Sulikowski B, Cortés Corberán V. J. Catal., 2007, 250 (1): 184.
[19] Bal R, Tada M, Sasaki T, Iwasawa Y. Angew. Chem. Int. Ed., 2005, 45 (3): 448.
[20] Masumoto Y K, Hamada R, Yokota K, Nishiyama S, Tsuruya S. J. Mol. Catal. A: Chem., 2002, 184 (1/2): 215.
[21] Ishida M A, Masumoto Y, Hamada R, Nishiyama S, Tsuruya S, Masai M. J. Chem. Soc., Perkin Trans. 2, 1999, (4): 847.
[22] Miyahara T, Kanzaki H, Hamada R, Kuroiwa S, Nishiyama S, Tsuruya S. J. Mol. Catal. A: Chem., 2001, 176 (1): 141.
[23] Chen J Q, Gao S, Li J, Lv Y. Chin. J. Catal., 2011, 32 (9/10): 1446.
[24] Gao X H, Lv X C, Xu J. Chin. J. Chem., 2009, 27 (11): 2155.
[25] Gu Y Y, Zhao X H, Zhang G R, Ding H M, Shan Y K. Appl. Catal. A: Gen., 2007, 328 (2): 150.
[26] Gao X H, Xu J. Catal. Lett., 2006, 111 (3): 203.
[27] Gao X H, Lv X C, Xu J. Kinet. Catal., 2010, 51 (3): 394.
[28] Zhao L N, Dong Y L, Zhan X L, Cheng Y, Zhu Y J, Yuan F L, Fu H G. Catal. Lett., 2012, 142: 619.
[29] Wang W T, Ding G D, Jiang T, Zhang P, Wu T B, Han B X. Green Chem., 2013, 15 (5): 1150.
[30] Ohtani T, Nishiyama S, Tsuruya S, Masai M. J. Catal., 1995, 155 (1): 158.
[31] Okamura J, Nishiyama S, Tsuruya S, Masai M. J. Mol. Catal. A: Chem., 1998, 135 (2): 133.
[32] Kitamura T, Kanzaki H, Hamada R, Nishiyama S, Tsuruya S. Can. J. Chem., 2004, 82 (11): 1597.
[33] Tani M, Sakamoto T, Mita S, Sakaguchi S, Ishii Y. Angew. Chem. Int. Ed., 2005, 44 (17): 2586.
[34] Liu Y Y, Murata K, Inaba M. Catal. Commun., 2005, 6 (10): 679.
[35] Ge H Q, Leng Y, Zhang F M, Zhou C J, Wang J. Catal. Lett., 2008, 124 (3): 250.
[36] Ge H Q, Leng Y, Zhou C J, Wang J. Catal. Lett., 2008, 124 (3): 324.
[37] Ge H Q, Leng Y, Zhang F M, Piao J R, Zhou C J, Wang J. Sci. China B, 2009, 52 (8): 1264.
[38] Zhou C J, Wang J, Leng Y, Ge H Q. Catal. Lett., 2010, 135 (1): 120.
[39] Zhou C J, Ge H Q, Leng Y, Wang J. Chin. J. Catal., 2010, 31 (6): 623.
[40] Long Z Y, Zhou Y, Chen G J, Zhao P P, Wang J. Chem. Eng. J., 2014, 239: 19.
[41] Wu Q, Yang H, Cheng H W, Liu Z G, You W S, Gao S. J. Mol. Struct., 2012, 1030: 83.
[42] Yang H, Li J, Wang L Y, Dai W, Lv Y, Gao S. Catal. Commun., 2013, 35: 101.
[43] Ichihashi Y, Taniguchi T, Amano H, Atsumi T, Nishiyama S, Tsuruya S. Top. Catal., 2008, 47 (3): 98.
[44] Laufer W, Niederer J P M, Hoelderich W F. Adv. Synth. Catal., 2002, 344 (10): 1084.
[45] Orita H, Hayakawa T, Shimizu M, Takehira K. J. Mol. Catal., 1987, 42 (1): 99.
[46] Liu Y Y, Murata K, Inaba M. J. Mol. Catal. A: Chem., 2006, 256 (1/2): 247.
[47] Burton H A, Kozhevnikov I V. J. Mol. Catal. A: Chem., 2002, 185 (1/2): 285.
[48] Sumimoto S, Tanaka C, Yamaguchi S, Ichihashi Y, Nishiyama S, Tsuruya S. Ind. Eng. Chem. Res., 2006, 45 (22): 7444.
[49] Yang H, Chen J Q, Li J, Lv Y, Gao S. Appl. Catal. A: Gen., 2012, 415/416: 22.
[50] Guo C, Du W D, Chen G, Shi L, Sun Q. Catal. Commun., 2013, 37: 19.
[51] Bortolotto L, Dittmeyer R. Sep. Purif. Technol., 2010, 73 (1): 51.
[52] Ehrich H, Berndt H, Pohl M M, Jähnisch K, Baerns M. Appl. Catal. A: Gen., 2002, 230 (1): 271.
[53] Sakamoto T, Takagaki T, Sakakura A, Obora Y, Sakaguchi S, Ishii Y. J. Mol. Catal. A: Chem., 2008, 288 (1): 19.
[54] Yamaguchi S, Sumimoto S, Ichihashi Y, Nishiyama S, Tsuruya S. Ind. Eng. Chem. Res., 2005, 44 (1): 1.
[55] Kanzaki H, Kitamura T, Hamada R, Nishiyama S, Tsuruya S. J. Mol. Catal. A: Chem., 2004, 208 (1): 203.
[56] Balducci L, Bianchi D, Bortolo R, D'Aloisio R, Ricci M, Tassinari R, Ungarelli R. Angew. Chem. Int. Ed., 2003, 115 (40): 5087.
[57] Peng J J, Shi F, Gu Y L, Deng Y Y. Green Chem., 2003, 5(2): 224.

[1] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[4] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[5] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[6] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[7] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[8] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[9] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[10] 刘喆, 张晓岚, 蔡婷, 袁静, 赵昆峰, 何丹农. 用于甲醛催化氧化的锰基催化剂及协同效应的影响[J]. 化学进展, 2019, 31(2/3): 311-321.
[11] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[12] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[13] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[14] 吴洋, 王玉, 仇荣亮, 杨欣. 应用零价铁基材料还原和催化氧化降解多溴联苯醚[J]. 化学进展, 2018, 30(4): 420-428.
[15] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
阅读次数
全文


摘要

氧气直接氧化苯制备苯酚